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OBJECTIVE

Gastrointestinal adverse effects occur in 20–30% of patients with metformin-
treated type2diabetes, leading toprematurediscontinuation in5–10%of the cases.
Gastrointestinal intolerancemay reflect localizedhigh concentrations ofmetformin
in the gut. We hypothesized that reduced transport of metformin via the plasma
membranemonoamine transporter (PMAT)andorganic cation transporter 1 (OCT1)
could increase the risk of severe gastrointestinal adverse effects.

RESEARCH DESIGN AND METHODS

The study included 286 severemetformin-intolerant and 1,128metformin-tolerant
individuals fromthe IMIDIRECT (InnovativeMedicines Initiative:DIabetesREsearCh
on patient straTification) consortium. We assessed the association of patient
characteristics, concomitant medication, and the burden of mutations in the
SLC29A4 and SLC22A1 genes on odds of intolerance.

RESULTS

Women (P < 0.001) and older people (P < 0.001) were more likely to develop
metformin intolerance. Concomitant use of transporter-inhibiting drugs increased
the odds of intolerance (odds ratio [OR] 1.72, P < 0.001). In an adjusted logistic
regression model, the G allele at rs3889348 (SLC29A4) was associated with
gastrointestinal intolerance (OR 1.34,P = 0.005). rs3889348 is the top cis-expression
quantitative trait locus for SLC29A4 in gut tissue where carriers of the G allele had
reduced expression. Homozygous carriers of the G allele treated with transporter-
inhibiting drugs had more than three-times higher odds of intolerance compared
with carriers of no G allele and not treatedwith inhibiting drugs (OR 3.23, P < 0.001).
Use of a genetic risk score derived from rs3889348 and SLC22A1 variants found that
the odds of intolerance were more than twice in individuals who carry three or more
risk alleles compared with those carrying none (OR 2.15, P = 0.01).

CONCLUSIONS

These results suggest that intestinal metformin transporters and concomitant
medications play an important role in the gastrointestinal adverse effects of
metformin.

1Divisionof PopulationHealth andGenomics, School
of Medicine, University of Dundee, Dundee, U.K.
2Cell and Chemical Biology, Leiden University
Medical Center, Leiden, the Netherlands
3Wellcome Centre for Human Genetics, Univer-
sity of Oxford, Oxford, U.K.
4Oxford Centre for Diabetes, Endocrinology and
Metabolism, Radcliffe Department of Medicine,
University of Oxford, Oxford, U.K.
5Department of Clinical Sciences, Genetic and
Molecular Epidemiology Unit, Skåne University
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Metformin therapy can cause gastroin-
testinal (GI) discomfort that negatively
affects quality of life and adherence to
prescribed medications. GI adverse ef-
fects usually manifest as nausea, vomit-
ing, diarrhea, flatulence, indigestion,
bloating, abdominal discomfort, and
stomach ache and occur in 20–30% of
metformin-treated subjects with type 2
diabetes, leading to premature discon-
tinuation in 5–10%of the cases (1,2). This
inhibits adherence to therapy and may
lead to a change of treatment, depriving
intolerant patients of effective diabetes
therapy. Despite its clinical importance,
the underlying pathophysiology of met-
formin intolerance is not yet clear. How-
ever, multiple possible hypotheses have
been proposed, including high intestinal
metformin concentration (3,4), its effect
on the gut microbiota (5), altered trans-
portation of serotonin or direct seroto-
nergic effects (6), and reduced ileal
absorption of bile acid salts (7).
Metformin is not metabolized and is

excreted unchanged in the urine. At
physiologic pH, it is hydrophilic due
to the presence of a quaternary ammo-
nium group that results in a net positive
charge. Therefore, metformin does not
efficiently diffuse across the biologi-
cal membranes and requires carrier-
mediated transport. Multiple solute carrier
transporters expressed in membranes
of theenterocytes, hepatocytes, and the
kidney are reported to be involved in the
absorption, distribution, and elimina-
tion of metformin. Metformin requires
theentire lengthof the small intestine to
be absorbed (8): ;20% of the admin-
istered dose is absorbed in the duode-
num and 60% in the jejunum and ileum.
The remainder reaches the colon and
remains unabsorbed. Plasma mem-
brane monoamine transporter (PMAT)
and organic cation transporter 1 (OCT1)
are reported to play themajor role in the
intestinal absorption of metformin (9).
PMAT is expressed in theapical (luminal)
membrane of the enterocytes, but in-
testinal localization of OCT1 is ambig-
uous (9–11). An association between
reduced-function alleles in SLC22A1
and concomitant use of OCT1-inhibiting
drugs with metformin intolerance has
been reported (12,13). An interaction
between OCT1 and serotonin transporter
(SERT) also plays an important role in
the pathophysiology of metformin intol-
erance (13).

Although PMAT shares extensive sub-
strate and inhibitor overlap with OCTs (14),
no studies have investigated its role in
metformin intolerance. We therefore
hypothesized that reduced transport of
metformin by major transporters of met-
formin, PMAT and/or OCT1, could increase
intestinal metformin concentration and
subsequently increase the risk of GI ad-
verse effects. To address this, we used
prescribing, biochemistry, and clinical data
from 286 metformin-intolerant and 1,128
metformin-tolerant individuals from the
IMI DIRECT (Innovative Medicines Initia-
tive: DIabetes REsearCh on patient straT-
ification) consortium (15). Although OCT3
is expressed in the intestine, no common
functional variants are described, and we
therefore did not include OCT3 in this
analysis.

RESEARCH DESIGN AND METHODS

Study Population
We identified 286 metformin-intolerant
(case) and 1,128 metformin-tolerant
(control) subjects from prescribing
data in the IMI DIRECT consortium
from participating centers across north-
ern Europe (15). Each participant con-
sented to participate in the study, and
ethical approval was obtained from the
medical ethics committees of the re-
spective centers.

All metformin-intolerant (case) and
metformin-tolerant (control) subjects had
a clinical diagnosis of type 2 diabetes, a
creatinine clearance $60 mL/min at
metformin exposure, and were white
Europeans aged between 18 and 90 years
at recruitment.

Definition of Metformin Intolerance
The metformin intolerance phenotype
was defined in two ways: firstly, indi-
viduals who switched to an alternative
agent within 6 months of stopping
metformin (including modified-release
metformin) after having had up to
1,000 mg daily metformin for up to
6 weeks, who also reported GI adverse
effects on the metformin treatment as
the reason for switching or where GI
adverse effects were clearly docu-
mented in the clinical record as a rea-
son for transfer. In an alternative
definition, intolerant individuals were
defined as those who could not in-
crease their metformin immediate-
release dose .500 mg daily despite
an HbA1c .7% (53 mmol/mol) and

who reported GI adverse effects
on .500 mg or where GI adverse
effects were clearly documented in
the clinical record as a reason for
transfer.

Where the patient was asked to recall
adverse effects, the intolerant event was
limited to be within the last 5 years; if
adverse effects were documented from
clinical records, then there was no time
limit. Participants who did not recall
being on metformin or having adverse
effects were excluded (unless clearly
documented in clinical records).

Definition of Metformin Tolerance
Metformin-tolerant individuals were de-
fined as those treated with$2,000 mg of
metformin daily for more than a year
(excluding modified-release formulations
of metformin) and reported no adverse
effects.

Clinical Covariates
Weight, height, and creatinine were de-
fined as the closest measured values
within 180 days before the index intol-
erance event (ITE), and BMI was calcu-
lated as weight in kg/height in m2. The ITE
was defined as the date when patients
reported GI symptoms of metformin in-
tolerance for case subjects, and for con-
trol subjects it was the date when
patients started 2,000 mg of metformin.
Daily dose was the last dose during ITE
for case subjects and was determined
as the mean dose of prescriptions en-
cashed during the first 6 months of
metformin therapy for control subjects.

Concomitant Medications
Gut metformin transporters have strong
substrate and inhibitor overlap (16). We
therefore identified medications pre-
scribed together with metformin previ-
ously reported to inhibit the PMAT
and/or OCTs, proteins that mediate
transmembrane trafficking of their tar-
get molecules and are required for met-
formin absorption in the gut. These drugs
are selected based on their reported IC50
values. Accordingly, the use of any of
the following medications with metfor-
min were investigated: tricyclic antide-
pressants (TCAs) (17,18), proton pump
inhibitors (PPIs) (19), citalopram (18),
verapamil (17,18), diltiazem (18), doxa-
zosin (17,18), spironolactone (17,18,
clopidogrel (20), rosiglitazone (21),
quinine (18), tramadol (18,22), codeine
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(23), disopyramide (24), quinidine (21),
repaglinide (21), propafenone (17),
ketoconazole (17), morphine (22,23),
tropisetron (25), ondasetrone (25), anti-
psychotic agents (17), and tyrosine ki-
nase inhibitors (26).

Genotyping
DNA samples fromparticipants were gen-
otyped at the University of Oxford using
the Illumina HumanCoreExome-24 v1.0
BeadChip. Genotype calling was per-
formed using the GenCall algorithm in
the GenomeStudio software supplied by
Illumina. Data were subjected to a series
of standard quality control analyses
to highlight poorly performing genetic
markers and samples before imputation.
Samples were excluded for any of the

following reasons: call rate ,95%, het-
erozygosity .4 SD from the mean, high
correlation to another sample (pi-hat
$0.2), or identified as an ethnic outlier
from constructed axes of genetic varia-
tion from principal components analysis
implemented in Genome-wide Complex
Trait Analysis (GCTA) software (v1.24.7)
(27) using the 1000 Genomes as a ref-
erence. Further filtration was performed
to remove nonautosomal markers, du-
plicate markers (sharing the same posi-
tions), markers with minor allele
frequency (MAF),1%, Hardy-Weinberg
equilibrium P value ,0.0001, and call
rate ,98%. Imputation to the 1000 Ge-
nomes Phase 3 CEU (Northern Europeans
from Utah) reference panel was per-
formed with ShapeIt (v2.r790) (28)
and Impute2 (v2.3.2) (29).

Single Nucleotide Polymorphism
Selection
Because there are no functionally char-
acterized common nonsynonymous sin-
gle nucleotide polymorphisms (SNPs) in
the SLC29A4 gene, the tagging intronic
SNPs, rs3889348 and rs2685753 (r2 =
0.57, D’ = 1) was previously shown to
be associated with trough steady-state
metformin concentration (30). There-
fore, the rs3889348 G.A genotype
was extracted from existing genome-
wide data. The frequency of the minor
allele (A) of rs3889348was 38%. Data for
previously reported missense SLC22A1
variants M420del (18.6%), R61C (7.1%),
and G401S (3.1%) were also extracted
from the genome-wide data. There was
no deviation from Hardy-Weinberg equi-
librium for any polymorphism (P. 0.05).

Statistical Methods
Categorical data are presented as fre-
quency (percentage) and continuous
variables as mean 6 SD if normally
distributed or as median and interquar-
tile range (IQR) otherwise. The Student t
test and the Mann-Whitney U test were
used to compare differences in quanti-
tative variables distributed normally or
not, respectively. Comparison of cate-
gorical variables between case subjects
and control subjects was done using x2

test. Logistic regression was used to
estimate the association of independent
variables with metformin intolerance.
Multivariate logistic regression analyses
of metformin intolerance were per-
formedwithall of the covariates included
using SNPTEST (v2.5.2) (31). Associa-
tion of the intronic rs3889348 G.A in
SLC29A4 was explored assuming an ad-
ditive genetic model. SLC22A1 variants
M420del, R61C, and G401S were grouped
together by summing the number of
risk alleles. A combined unweighted ge-
netic risk score (GRS) was generated as
0, 1, or 2 according to the number of
reduced-function alleles in each individ-
ual. The combined genotype was then
added to the multivariate analyses as-
suming an additive model. A two-tailed
P value of ,0.025 was considered sta-
tistically significant.

Expression Quantitative Trait Locus
Analyses
We investigated whether rs3889348 is a
cis-quantitative trait locus (QTL) in the
gut using expressionQTL (eQTL) data sets
comprising 246 colon transverse and
122 terminal ilium samples from the
Genotype-Tissue Expression (GTEx) data
release v6 (32). Tissue procurement, gene
expression analysis, genotyping, and eQTL
analysis have been previously described
(32–34).

RESULTS

Phenotypic Differences Between
Tolerant and Intolerant Subjects
The characteristics of tolerant and in-
tolerant subjects are presented in Table
1. Women (P, 0.001) and older people
at diagnosis or at ITE (P , 0.001) were
more likely to be metformin intolerant.
Compared with tolerant subjects, met-
formin-intolerant individuals had lower
weight (P , 0.001), lower creatinine
clearance (P = 0.036), and were treated
with a lowermetformindose (P,0.001).

Concomitant Medications and
Intolerance
This analysis was performed on
237 metformin-intolerant and 1,128
metformin-tolerant subjects who had
complete data on history of concomi-
tant medications. The analysis showed
40% of metformin-intolerant subjects
were taking one or more cation trans-
porter inhibitory drugs compared with
24% of tolerant subjects (P , 0.0001)
(Table 1). A logistic regression model
adjusted for age, sex, and weight
showed concomitant use of these drugs
increased the odds of being intolerant
by 70% (odds ratio [OR] 1.72 [95% CI,
1.26–2.32], P, 0.001) (Supplementary
Table 1). When the individual drug or
drug groups were explored, concomi-
tant use of metformin with PPIs,
TCAs, or codeine increased the odds
of metformin intolerance significantly
(Fig. 1). The number of subjects who
were coprescribed metformin with
transporter-inhibiting drugs is reported
in Supplementary Table 2.

GeneticVariation in theGutMetformin
Transporters and Metformin
Intolerance
In a logistic regression model, carriers of
the G allele had 1.39 (95% CI 1.15–1.69,
P , 0.001) times higher odds of being
intolerant to metformin (unadjusted).
When rs3889348 was added to a model
adjusted for age, sex,weight, and genetic
substructure, the presence of the G al-
lele was independently associated with
metformin intolerance (OR 1.34 [1.09–
1.65], P = 0.005) (Supplementary Table
1). No statistically significant difference
in any of the baseline phenotypes by
genotype was observed (Supplementary
Table 3). In addition, no significant in-
teraction between rs3889348, the use of
metformin transporter-inhibiting drugs,
and any of the other clinical variables
(age, sex) was observed.

We then grouped subjects based on
the combination of SLC29A4 genotype
and concomitant use of metformin trans-
porter-inhibiting drugs. Taking those
with no risk allele and not treated
with transporter-inhibiting drugs as
the reference group, carriers of one
and two G alleles treated with trans-
porter-inhibiting drugs had more than
twofold (2.44 [95% CI 1.30–4.78]) and
threefold (3.23 [1.71–6.39]) higher odds of
intolerance, respectively, after adjusting
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for age, sex, and weight (Supplementary
Table 4).
The association between SLC22A1

genotypes and metformin intolerance
has been previously reported (12,35).
We analyzed the association between
two reduced-function (R61C andG401S)
and one loss-of-function (M420del)
SLC22A1 SNPs and metformin intoler-
ance by using a combined unweighted
GRS. In a logistic regression model
adjusted for age, sex, weight, genetic
substructure, and concomitant use of
transporter-inhibiting drugs, the SLC22A1
GRS was not statistically significantly
associated with metformin intolerance
(OR 1.35 [95% CI 0.84–2.12], P = 0.21).
A GRS was then generated from

SLC29A4 and SLC22A1 variants by sum-
ming the number of risk alleles for each
individual. Compared with those with no
risk allele, metformin-treated subjects

with type 2 diabetes who had two risk
alleles had nearly a twofold (1.93 [95% CI
1.10–3.65]) increased odds of GI intoler-
ance.Thosewhocarriedthreeormorerisk
alleles had more than twice (2.15 [1.20–
4.12]) the odds of intolerance (Fig. 2).

Sensitivity Analysis
There was a big difference in sam-
ple size between metformin-intolerant
and metformin-tolerant subjects. In ad-
dition, there were significant difference
in age and sex between case subjects and
control subjects. We therefore per-
formed a sensitivity analysis by compar-
ing the intolerant group (n = 237) with
an age- and sex-matched subgroup of
tolerant subjects (n = 711). The main
findings from the larger metformin-
tolerant group were confirmed in this
sensitivity analysis (Supplementary
Tables 5 and 6).

rs3889348 Is Associated With Altered
PMAT Expression in the Gut
Given PMAT is one of the major metfor-
min transporters in the gut, we explored
the possibility that the intronic SNP
rs3889348 is a cis-eQTL in the intestine
by using the publicly available data set
from the GTEx portal (v6p) (32). The G
allele of rs3889348 (associated with
higher risk of intolerance) was signifi-
cantly associated with lower expression
of SLC29A4 in the terminal ileum of
the small intestine (b = 20.42, P = 2.1
3 10204) and the transverse colon (b =
20.45, P = 1.43 10208) (Supplementary
Fig. 1). rs3889348 is the top cis-eQTL for
SLC29A4 in the transverse colon.

CONCLUSIONS

Intestinal absorption of metformin is
modulated by the function of cation
transporters expressed in the gut. An
association between reduced-function
alleles in the SLC22A1, encoding OCT1,
and metformin-related GI adverse ef-
fects has been previously reported
(12,13,36). However, the data on intes-
tinal localization of OCT1 are ambiguous,
with mixed reports suggesting in the
apical (10) and basolateral (11,37) sides.
In addition to OCT1, PMAT also contrib-
utes to the intestinal absorption of met-
formin. PMAT is abundantly expressed in
the human intestine and is concentrated
on the tips of themucosal epithelial layer
(38). Carriers of the G allele at this locus
(rs3889348) had significantly reduced
expression of SLC29A4 in the gut (32).
This could lead to higher luminal con-
centration of metformin. In this current

Table 1—Baseline characteristics of metformin-tolerant and metformin-intolerant subjects

Variable
Metformin tolerant

(n = 1,128)
Metformin intolerant

(n = 286) P

Age at diabetes diagnosis (years) 55.88 6 9.44 58.62 6 10.65 ,0.0001

Age at ITE (years) 60.73 6 9.84 64.63 6 9.91 ,0.0001

Sex ,0.0001
Males 696 (61.7) 117 (40.9)
Females 432 (38.3) 169 (59.1)

Weight (kg) 94.57 6 18.91 88.84 6 17.75 ,0.0001

BMI (kg/m2) 32.11 6 6.01 31.60 6 5.95 0.19

Creatinine (mmol/dL) 79.89 6 16.09 78.41 6 19.33 0.25

Creatinine clearance (mL/min) 85.17 6 19.36 82.23 6 29.44 0.04

Dose at diagnosis (mg)* 1,500 (1,000–2,000) 1,000 (500–1,000) ,0.0001

Duration of diabetes (years) 4 0.0 (1.7–7.0) 4.0 (2.0–9.0) 0.09

Use of metformin transporter-inhibiting drugs 274 (24.29) 95 (40.08) ,0.0001

Continuous data are presented as mean6 SD or median (IQR) and categorical data as n (%). *Dose was calculated as the last dose during ITE for case
subjects and was determined as the mean dose of prescriptions encashed during the first 6 months of metformin therapy for control subjects.

Figure 1—Association of individual intestinal metformin transporter-inhibiting drugs with
intolerance.
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study, we demonstrated a significant
association of the G allele of an intronic
SNP, rs3889348, in SLC29A4 encoding
PMAT,with higher odds of GI intolerance
after metformin therapy. Each copy
of the G allele was associated with
1.34-times higher odds of metformin

intolerance. We also showed that those
who carried two or more variants at
SLC29A4 or SLC22A1 were twofold
more likely to have GI intolerance. Given
that PMAT is apically located, this finding
suggests that intolerance is driven by
increased luminal concentration of met-
formin rather than by increased enter-
ocyte concentration anddirect toxicity to
the enterocytes.

There are a number of putative mech-
anisms whereby increased luminal met-
formin may increase GI intolerance to
metformin (outlined in Fig. 3). Firstly, a
higher concentration of metformin in the
gut has been shown to inhibit uptake of
histamine and serotonin, leading to in-
creased luminal concentration of these
biogenic amines (13). Metformin also
inhibits diamine oxidase, an enzyme
that degrades histamine, at therapeutic
doses (6). Biogenic amines play an im-
portant role in the GI pathophysiology.
Elevated levels of serotonin and hista-
mine in the GI tract cause GI symptoms

such as nausea, vomiting, and diarrhea
(6,39). Serotonin is produced mainly in
the gut and stored in the enterochro-
maffin cells of the epithelium. Its release
activates gut sensory neurons that will
increase intestinal motility, secretion,
and sensation (39,40). Increased colon
motility and softening of stool consis-
tency has also been observed in serotonin
reuptake transporter (SERT) knock-
out mice (39,40). In addition, a recent
study from the GoDARTS (Genetics
of Diabetes Audit and Research in
Tayside Scotland) cohort showed asso-
ciation of a composite SERT genotype, 5-
HTTLPR (5-hydroxy tryptamine [serotonin]
transporter-linked polymorphic region)/
rs25531, with intolerance to metformin
in subjects with type 2 diabetes (13). In
this study, carriers of the low-expressing
SERT S* alleles had.30% increased odds
of metformin intolerance (OR 1.31 [95%
CI 1.02–1.67], P = 0.031). Histamine is a
monogenic amine stored in the entero-
chromaffin-like cells within the gastric

Figure 3—Possible mechanisms for metformin intolerance. A: Metformin is absorbed from the gut lumen via cation transporters such as PMAT, OCT1,
SERT, andOCT3.B: Increased level of metformin in the gut lumen is observedwhenmetformin is takenwith cation transporter-inhibiting drugs such as
PPIs, TCAs, and codeine. These drugs competitively inhibit metformin uptake by the cation transporters. Metformin is also shown to inhibit diamine
oxide, an enzyme that metabolizes biogenic amines. In addition, transport capacity of the cation transporters could be reduced in carriers of reduced
function (420del, 61C, 401S in SLC22A1) or low expressing alleles (rs3889348_G in SLC29A4) and hence increased luminal metformin level. The
increased level ofmetformin increases the level of biogenic amines, affects the gutmicrobiota, andelevates bile acid levels. Thesemay cause symptoms
of GI adverse effects.

Figure 2—Association of a GRS derived from
SLC29A4 (PMAT) and SLC22A1 (OCT1) with
metformin intolerance. Bars indicate SE
around the mean. *P, 0.05. (A high-quality
color representation of thisfigure is available
in the online issue.)
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glands of the stomach. Binding of hista-
mine to theH1,H2, andH4 receptors that
are highly expressed in the gut stimulates
gastric acid secretion and increases in-
testinal motility and smooth muscle in-
flammation (6).
In addition to thepotential role of local

concentrations of serotonin and hista-
mine, increased luminal concentrations
of metformin could also cause intoler-
ance by other mechanisms that need to
be explored. For example, intolerance
could be mediated by a reduction in bile
acid reabsorption in the ileum leading to
elevated bile acid levels in the colon (41),
which is known to cause GI disturbances
(42). In addition, metformin affects com-
position and function of the gut micro-
biota favoring the growth of some
species like Akkermansia (5,43–46). Fur-
thermore, increased levels of active and
total glucagon-like peptide 1 levels in
subjects with type 2 diabetes and with-
out type 2 diabetes treated with met-
formin (47) were also reported, and this
might increase GI adverse effects (48)
(Fig. 3).
In this study, we observed an increased

risk of intolerance with older age, female
sex, lower weight, and lower creatinine
levels. Concomitant use of metformin
with PPIs and TCAs also increases the
risk of intolerance. These findings are
largely consistent with the results of
previous studies, providing further evi-
dence for clinical practice (12,35). The
U.S. Food and Drug Administration Ad-
verse Events Reporting System sug-
gested that women experience more
adverse effects than men (49). Several
factors can contribute to these differ-
ences. Sex-based variability in intestinal
expression of drug transporters may re-
sult in variability in drug concentrations
in the gut. Women have also slower
gastric emptying, altered bile composi-
tion, and slower intestinal transit time
thanmen (50). These factors could in turn
affect the rate and/or extent of absorp-
tion of oral medications and hence local
drug concentrations in the gut. For a
better understanding of the basic mech-
anisms of sex differences in metformin
intolerance, future studies should be
designed with a primary focus on this
topic.
In summary, we have identified a var-

iant that alters intestinal expression of
the cation transporter PMAT (SLC29A4)
that increases the risk of metformin-

associated GI intolerance. Combined
with the previously reported SLC22A1
variants, this genotype profile can in-
crease the odds of metformin intolerance
more than twofold. The apical location of
PMAT means that reduced expression
will result in increased luminal metfor-
min concentration, suggesting that met-
formin intolerance is caused by this
increased luminal concentration rather
than by increased enterocyte concentra-
tion.

A limitation of this study was the
definition for metformin-induced GI in-
tolerance. Even though we examined
patient reports and clinical records for
GI intolerance as a reason for stopping
metformin and switching to other med-
ications, there could have been other
reasons for stopping metformin such as
comorbidities that might cause GI dis-
turbance. In addition, initial conclusions
drawn from this study need validation
and replication in well-powered indepen-
dent studies.
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