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Abstract: Copy number variants (CNVs) play an important role in a number of human 

diseases, but accurate calling of CNVs remains challenging. Most current approaches to CNV 

detection use raw read alignments, which are computationally intensive to process. We use a 

regression tree-based approach to call germline CNVs from whole-genome sequencing (WGS, 

>18x) variant call-sets in 6,898 samples across four European cohorts, and describe a rich large 

variation landscape comprising 1,320 CNVs. 81% of detected events have been previously 

reported in the Database of Genomic Variants. 23% of high-quality deletions affect entire 

genes, and we recapitulate known events such as the GSTM1 and RHD gene deletions. We test 

for association between the detected deletions and 275 protein levels in 1,457 individuals to 

assess the potential clinical impact of the detected CNVs. We describe complex CNV patterns 

underlying an association with levels of the CCL3 protein (MAF=0.15, p=3.6x10-12) at the 

CCL3L3 locus, and a novel cis-association between a low-frequency NOMO1 deletion and 

NOMO1 protein levels (MAF=0.02, p=2.2x10-7). This work demonstrates that existing 

population-wide WGS call-sets can be mined for germline CNVs with minimal computational 

overhead, delivering insight into a less well-studied, yet potentially impactful class of genetic 

variant. 
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Availability: The regression tree based approach, UN-CNVc, is written in R and bash and is 

available on GitHub at https://github.com/agilly/un-cnvc. 

 

https://github.com/agilly/un-cnvc


Introduction 

Up to 19.2% of the human genome is susceptible to copy number variation, which can have a 

severe impact on gene function(Zarrei, MacDonald, Merico, & Scherer, 2015). CNV calling 

can be performed for individuals or families in a clinical context, or for large sample sizes in 

population cohorts. Whole-genome sequencing (WGS) at high depth has been the gold standard 

for detecting large polymorphisms in population studies, and is starting to replace array-based 

calling in the clinic. Yet, calling structural variants genome-wide has been an ongoing 

challenge throughout the history of computational genetics, and producing population-wide 

CNV call sets still represents a significant investment today. The reasons for this are twofold. 

First, detecting structural variants requires a different study design compared to association 

studies: whereas for the latter, haplotype diversity and hence sample size are key (Alex Buerkle 

& Gompert, 2013; Le & Durbin, 2011), for the former, high depth of sequencing is paramount, 

leading to prohibitive costs for population-wide studies. This is in addition to other upstream 

processing features, such as insert size, PCR bias, and choice of mapping software and 

reference genome, that also influence structural variant detection sensitivity (Trost et al., 2018). 

Second, structural variant detection poses a computational challenge, since most algorithms 

use aligned reads or read pileups as a starting point for event detection. As these file formats 

describe the entire read pool, processing them genome-wide across an entire population with 

high-depth WGS is demanding in terms of both running time and memory. CNV calling 

pipelines involving a combination of read-depth and insert-size based tools are increasingly 

included in analysis pipelines for large human population cohorts, however, the computing 

requirements and complexity of such methods often preclude their use in other settings. This 

is especially true when CNV calling algorithms were not integrated in standard WGS 

processing pipelines from the get-go, in which case the entire read pool needs to be re-

processed again to produce a CNV callset. This issue can be addressed by detecting deletions 

and insertions from existing variant call sets, which demands much less compute effort. Such 

methods were pioneered in the era of genotyping chips (PennCNV (Wang et al., 2007) and 

PlatinumCNV (Kumasaka et al., 2011), are still widely used (Kayser et al., 2018; 

Selvanayagam et al., 2018) and have recently been proposed to call CNVs from marker-level 

data in paired cancer samples (Putnam et al., 2017). To our knowledge, no such method exists 

for variant calls produced from population-scale whole-genome sequencing (do Nascimento & 

Guimaraes, 2017). Such variant call sets are typically produced in the Variant Call Format 

(VCF) in most association-focused studies, and analysis of these comparably small files for 



CNV calling would be computationally efficient. Here, we evaluate the effect of copy number 

variants on sequencing depth measured at variant sites using a novel tool (UN-CNVc), and 

provide a proof-of-concept for calling these large variations in population-wide WGS variant 

call sets. 

Materials and Methods 

The observed read depth for a single sample in a WGS experiment can be modelled as a noisy 

piecewise constant function: 

�̂�(𝑥) = ∑ 𝑘. 𝟙𝑑(𝑥)=𝑘(𝑥)

𝑘

 + 𝜖 

where 𝑑(𝑥) = 0.5𝑛 is the ideal relative depth at position 𝑥, 𝑛 is the copy number at this 

position, 𝟙𝑑(𝑥)=𝑘(𝑥) = {
1 𝑖𝑓 𝑑(𝑥) = 𝑘 
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

is the indicator function for copy number 𝑘 genome-

wide and 𝜖~𝒩(0, 𝜎) is the error in estimating true read counts. This error term captures all 

non-CNV factors influencing read depth, such as GC content or reference sequence quality. 

These variations tend to act on a short range, and over long stretches of sequence, average 

depths vary little around the per-sample mean (Supplementary Figure 1). 

 

Methods for fitting piecewise constant functions for CNV detection have included circular 

binary segmentation(Olshen, Venkatraman, Lucito, & Wigler, 2004; Venkatraman & Olshen, 

2007), hidden Markov models (Seiser & Innocenti, 2014), smoothing approaches (Hsu et al., 

2005; Tibshirani & Wang, 2008) as well as Bayesian methods(Hutter, 2007), often in the 

context of array comparative genomic hybridization studies.  Here, due to the density of the 

input dataset, we use regression trees to fit a piecewise constant function, although any 

segmentation algorithm able to handle hundreds of thousands of points could be used instead. 

Regression trees have been applied to WGS-based detection of CNVs before(Chen et al., 2015), 

and they have been used in analysing variant-level data from paired cancer samples(Putnam et 

al., 2017). We wrote the Unimaginatively Named CNV caller (UN-CNVc), a simple and fast 

CNV detection tool based on regression trees. Due to its sparse input format and the simplicity 

of the model used, it is able to process call sets from thousands of samples with WGS data in 

reasonable time. A summary of the CNV calling pipeline is described in Figure 1.a. 



Identifying variant regions 

Briefly, for each sample in 10Mb windows spanning the entire genome, we apply a regression 

tree using the rpart R library to the depth at marker sites normalised by chromosome-wide 

depth. We use the default values of 0.01 for the complexity parameter of the regression tree 

(the overall r2 of the model must increase of at least this value at each iteration) and 6 for the 

minimum leaf size. At sample sizes expected in cohort-wide WGS data (>100) in 10Mbp 

windows, these parameters are very restrictive, i.e. they will only fit a model that follows very 

broad variations of the data (Fig 1.b). Assembling the constant segments of depth across the 

entire set of samples provides a global picture of broad depth changes in each 10Mb window 

(Fig 1.c). Despite an apparent wide diversity of observed depths, the regressed segments cluster 

around multiples of 0.5 relative depth, as expected if these anomalies indeed corresponded to 

copy number variants (Supplementary Figure 2). 

For each window, we fit a Gaussian mixture model, with means constrained to multiples of 0.5 

within the observed depth range at that region. For each depth segment produced by the 

regression, we assign an ideal depth which is the multiple of 0.5 relative depth that is closest 

to the actual value of the segment. We also assign a score s=2p, where p is the one-sided p-

value for the Gaussian component centered around the ideal depth for that segment, and 

consider a call high-quality when s>0.1. We discretise the window in 5kb chunks, and consider 

a chunk as supporting a depth anomaly if the ratio of high-quality versus low-quality segments 

whose assigned depth is not 1 is greater than 1. This sets sensitivity to the highest level, 

guaranteeing that even a singleton is called as variable if a high-quality segment is present. To 

determine boundaries, we then apply run-length encoding (RLE) to this variable, which 

produces regions in which a majority of high-quality segments support a depth anomaly (Figure 

1.d). Application of this method on high-depth WGS data suggests that duplications may 

exhibit more complex depth variations than deletions. We therefore also implement a deletion-

only mode, where only those segments that support deletions are used to call events. 

 



 

Figure 1: Overview of the UN-CNVc algorithm. a. Overview of the pipeline, with input and 

output files in blue, and external tools and libraries in grey. b. Output of a piecewise constant 

regression (in red) on a 10Mb window on chromosome 11, for a homozygous deletion carrier. 

The gray signal is the raw relative depth at every sequenced marker for that sample. c. Pooled 

regressed segments across the population, with colour indicating the attributed ideal depth 

(0:red, 0.5:blue, 1:green, 1.5:purple).  d. Raw count (dashed line) and run-length encoding 

(shaded green bars) on the number of high-quality segments with ideal depth < 1. e. Genotyping 

using both weighted average segment depth (colour, scheme identical to c.) and average depth 

across markers (plotting glyphs, squares: 0, circles:0.5, triangles:1).  

 

Segment-based genotyping 

Because copy number events can be complex, it is common for a sample to have several 

segments, and hence several assigned depths per variable region. To produce a single genotype 

per individual, we compute the mean of the assigned depths weighted by the length of each 

segment, which is rounded to the next multiple of 0.5. Similarly, we produce an aggregate score 

summarising the average quality of the regressed segments for that sample. This allows for the 
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easy application of a quality control (QC) step, whereby genotypes with too high a number of 

segments, or too low an aggregate quality can be set to missing. 

Means-based genotyping 

The ability of the regression tree to correctly detect drops or increases in depth depends on the 

number of markers spanned by a CNV, as well as on the complexity parameter: for a constant 

complexity, smaller events are harder to distinguish from noise, hence harder to detect. At the 

limit of detection, it is therefore possible that not every carrier sample exhibits abnormal depth 

segments, leading to correct calling of the presence of a CNV, but false negative errors in 

genotyping. To address this issue, we implement means-based genotyping, where each sample 

gets assigned the multiple of 0.5 that is closest to the average depth across all markers spanning 

the CNVs called by the regression step (Figure 1.e). The quality score is then simply the 

distance between the average and assigned depths. This genotyping method is sensitive to 

incorrect calling of CNV boundaries, but it can perform well on smaller events where segment-

based genotyping is inaccurate. We implement a manual genotyper, which applies means-based 

genotyping on genomic coordinates specified by the user. 

  

Results 

CNV calling in 6,898 European samples 

We apply UN-CNVc on WGS data from 6,898 samples across four studies: the MANOLIS and 

Pomak isolated cohorts from the HELIC study(Panoutsopoulou et al.), the TEENAGE cohort 

of Greek adolescents(Ntalla et al.), and the INTERVAL study of blood donors in the UK(Di 

Angelantonio et al.). Similar sequencing protocol and identical SNV calling pipelines were 

used for the four cohorts in order to minimize batch effects (Supplementary Text). A total of 

401, 353, 349, and 973 CNVs were called from each cohort, respectively. A summary of sample 

sizes and quality metrics for each group is given in Supplementary Table 1.  

  

The genome was divided into 332 equal-sized 10 Mbp chunks, which were run in parallel, with 

some chunks empty due to overlap with pericentromeric regions. Runtime had a power 

dependency to sample size, between linear and quadratic (Supplementary Figure 3.a) with the 

linear model giving 2.4 seconds/sample (the best fit was for a 𝑛1.5 dependency). On a cluster 



providing 332 threads, this means UN-CNVc can call CNVs genome-wide on a 1,000-sample 

cohort in 40 minutes. Peak RAM usage was between a square and a cubic function of the 

sample number, with approximately 10Gb required for 3,000 samples (Supplementary Figure 

3.b). 

Quality control 

Quality control (QC) of the variants was carried out based on the plots and statistics files 

generated by UN-CNVc. Variants called within the centromeres and telomeres were first 

removed due to the low mapping quality in these regions. Following this, two rounds of QC 

were performed on the remaining CNVs. First, segment or boundary QC excluded variants 

based on calling metrics and diagnostics plots, with passing events having no multiple breaks 

within the call regions and homogenous boundaries (Supplementary Figure 4). Second, 

genotype QC was performed using the genotype diagnostics plots. For complex events with 

multiple breakpoints, or small events with incorrect genotypes, boundaries were adjusted using 

the manual genotyper. (Supplementary Figure 5).  

 

Following this QC procedure, we call 1,320 CNVs across the four cohorts (Table 1). Most of 

the variants that failed QC were concentrated within pericentromeric and telomeric regions 

(Figure 2). Assembly exceptions (stretches of DNA where genome assembly failed to produce 

a confident reference sequence) were particularly rich in CNVs, and although they tended to 

exhibit complex depth patterns, manual genotyping allowed to recover and genotype robust 

deletion signatures. Only a small minority (7.3%) of our high-quality CNVs overlapped 

substantially (>50%) with segmental duplications and large retrotransposable elements 

(Supplementary Table 2), which are highly variable regions prone to assembly errors. 101 

(7.7%) high-quality CNVs were shared between two or more cohorts, among which 12 were 

shared between all four cohorts and 37 between at least three cohorts. To make comparisons 

more meaningful, we applied a strict 80% reciprocal overlap criterion, which avoids counting 

as overlapping cases where a large event spans a much smaller one in another cohort. The 

largest overlap was between Pomak and INTERVAL, which shared 54 CNVs, followed by 

MANOLIS and INTERVAL, with 42 CNVs (Supplementary Figure 6). As expected from their 

isolated nature, MANOLIS and Pomak exhibited a smaller proportion of singletons, doubletons 

and rare CNVs compared to the cosmopolitan INTERVAL cohort (Supplementary Figure 7). 

 



CNVs were well tagged by SNVs, with 80%, 72%, 90% and 84% of deletions having at least 

one SNV in high linkage disequilibrium (LD) (r2>0.8) in MANOLIS, Pomak, TEENAGE and 

INTERVAL, respectively (Supplementary Table 3).  

 

Table 1: Number of CNVs called in each cohort. Interval-based QC was done based on calling 

metrics and diagnostics plots, with passing events having no multiple breaks within the call regions and 

homogeneous boundaries, whereas genotype QC was performed using genotype diagnostics plots. 

Called events with inaccurate genotypes or complex regions containing multiple deletion events were 

manually genotyped. An example of a “failed region” is shown in Supplementary Figure S4.b. The final 

set of high-quality deletion events comprises deletions passing both QC and the manually genotyped 

deletions.  

 MANOLIS Pomak TEENAGE INTERVAL 

Total called 401 353 349 973 

Centromeric/telomeric 

regions 
53 55 47 77 

Failed regions (as in 

Supplementary Figure 

S4.b) 

150 84 197 155 

Deletions that passed 

both interval-based QC 

and genotype QC 

154 178 60 675 

Regions that required 

manual genotyping  
44 36 45 66 

Manually genotyped 

deletions 
58 50 49 96 

Final no. of high-quality 

deletions 
212 228 109 771 

 



 

Figure 2: Chromosome map of all CNVs called by UN-CNVc in four cohorts. Light grey tracks 

represent CNVs that failed QC, while the red, blue, green, and yellow tracks represent high-quality 

CNVs in MANOLIS, Pomak, TEENAGE, and INTERVAL, respectively. Within the chromosomes, 

dark grey regions represent the centromeres. Regions marked in pink are assembly exceptions and 

patches, taken from the GRC data for GRCh38.p12, regions in blue are segmental duplications (from 
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UCSC), regions in light green are “CNV hotspots”, which are known, highly variable regions 

comprising an intergenic region on chr6q14.1, an olfactory receptor gene cluster (OR4C11-OR5L2) on 

chr11q11, a leukocyte immunoglobulin gene cluster (LILRB3-LILRB5) on chr19q13.42, the 

immunoglobulin κ, λ, and heavy chain loci  (IGKC, IGLC1, IGH), and the T cell receptor alpha locus 

(TRA). Regions in orange are large retrotransposable elements larger than 5kb, comprising Alus, SVAS, 

and L1, L2, and L3 elements.   

 

 

Cross-population heterogeneities in allele frequencies are of particular interest when studying 

isolated populations such as the HELIC cohorts, due to the enhanced effects of genetic drift 

following the founder event. We compare the population deletion allele frequencies between 

any event that was present in at least two cohorts, adjusting for the number of comparisons 

performed (𝑝 <
0.05

211
= 2.37 × 10−4 for the two-proportion chi-squared test). We find that 

40.5% (41/101) of all shared deletions exhibit significant allelic frequency differences 

(Supplementary Table 4). We only find modest common frequency differences in deletions 

shared between the HELIC isolates and the TEENAGE cohort, which is genetically closest, 

whereas most differences are found between the two Greek isolates and the UK-based 

INTERVAL cohort. This is expected given the different ethnic background of the Greek and 

UK cohorts, as well as the lack of power to detect differences compared to the TEENAGE 

cohort due to its reduced sample size. The CNV showing the highest heterogeneity in frequency 

is the known 60kb esv3608493 deletion at 6p22.1, in a region containing 4 HLA pseudogenes, 

HLA-H, HLA-T, HLA-K, and HLA-U. The deletion occurs most frequently in MANOLIS 

(MAF=0.2426) and TEENAGE (MAF=0.2250), followed by Pomak (MAF=0.1252) and then 

INTERVAL (MAF=0.0987), with the most pronounced difference observed between 

MANOLIS and INTERVAL (p=1.68x10-80). The low MAF of the variant in INTERVAL 

corresponds to findings from the 1000 Genomes Project Phase 3, where frequency in the GBR 

population was at 0.0879, lower than the European frequency of 0.1113.  

Gene deletions 

An average of 51% of our high-quality deletions overlapped protein-coding genes, with 45% 

of high-quality events deleting at least one exon and 23% deleting one or more entire genes 

(Supplementary Table 5). Some of these are common deletions that delete genes such as RHD 

and GSTM1 (Supporting Information material), while a number are in highly-recombinant 

regions such as the immunoglobulin heavy chain (IGH) locus on chromosome 14q32.33, and 



are unlikely to be functional. Additionally, we detect a known 58kb deletion overlapping the 

BTNL8 and BTNL3 genes that has been previously predicted to generate a fusion BTNL8/3 

protein product (Aigner et al., 2013) (Supporting Information material). We also find evidence 

of known disease-associated gene deletions in our cohorts, such as a common 30kb deletion of 

APOBEC3B (chr22:38982347-38992804) that has been associated with increased risk of lung 

cancer, prostate cancer, (Gansmo et al., 2018), breast cancer (Han et al., 2016; Long et al., 

2013; Xuan et al., 2013) and HIV-1 susceptibility(Singh et al., 2016), as well as a common 

CNV at the FCGR3B locus (1:161623196-161631963) linked to autoimmune disease 

susceptibility (Fanciulli et al., 2007) and malaria severity(Faik et al., 2017).  

Association analysis 

In the MANOLIS cohort, 275 quantitative proteomic traits were assayed using the Proximity 

Extension Assay provided by Olink Proteomics across three protein panels (Cardiovascular II, 

Cardiovascular III and Metabolism). We carried out association with the deletions called by 

UN-CNVc using Plink 1.9. We also applied the linear mixed model implemented in GEMMA, 

where we accounted for relatedness using an empirical kinship matrix calculated on LD-pruned 

common SNPs genome-wide. Traits were transformed by applying rank-based inverse normal 

transformation, and adjusted for 6 covariates: sex, age, age-squared, average levels across all 

proteins, season of the year, and assay plate. 4 signals pass the genome-wide significance 

threshold (p<1.79x10-6 ≈ 
0.05

132×212
, see Supporting Information material). We examined signals 

down to a suggestive significance level of 1.0x10-4 (Supplementary Table 6).  

 

We detect a deletion of the NOMO1 gene (chr16:14833681-14896160), associated with 

decreased NOMO1 protein levels (β=-0.6887, σ=0.1323, p=2.2x10-7). To account for potential 

genotyping error, the association was repeated using UN-CNVc’s raw estimates of mean depth 

as dosages instead of the assigned genotypes (β=-0.7841, σ=0.1535, p=3.75x10-7). There is no 

single-point SNV association in that gene for NOMO1 protein levels. The closest SNV 

association is in the upstream SHISA9 gene (rs200517050, β=-0.462, σ=0.0855, p=1.01x10-7), 

and a stronger association is also present in the NOMO3 gene (rs3891245, intronic, β=-0.371, 

σ=0.0476, p=5.12x10-14). NOMO1, NOMO2 and NOMO3 are closely located genes with very 

high sequence similarity (99.4% and 99.5% homology (BLAST)), and cannot be distinguished 

by the polyclonal antibody used in the OLINK proteomics assay. Both associations are 

independent, both of each other (r2<1x10-3) and the deletion (r2
rs200517050=0.06, 



r2
rs3891245=1.2x10-3), suggesting that a NOMO1 deletion and an intronic variant in NOMO3 

independently affect circulating levels of the NOMO proteins. 

 

We find evidence of a complex CNV overlapping the CCL3L3 gene and influencing CCL3 

protein levels (Supplementary Figure 8). We manually genotype a CNV (chr17:36195241-

36196130) affecting the last two exons of CCL3L3, which is associated with decreased CCL3 

levels, both when assigned genotypes are used (MAF=0.15, β=-0.378, σ=0.05348, p=2.55x10-

12) and when raw mean depths are used (β=-0.4212, σ=0.0573, p=3.64x10-13). Copy-number 

variation of CCL3L3 and CCL3L1, its alias on an alternate haplotype (NT_187661.1) of 

chromosome 17, have been extensively studied. In addition to levels of their protein product 

(Townson, Barcellos, & Nibbs, 2002), they have been shown to be associated with rheumatoid 

arthritis(Ben Kilani et al., 2016; Nordang et al., 2012), immune reconstitution following HIV 

therapy (Aklillu et al., 2013), and protection against malaria (Carpenter, Farnert, Rooth, 

Armour, & Shaw, 2012). The gene product of CCL3L3 binds to the same chemokine receptors 

as its close paralog CCL3, albeit with increased affinity, which suggests that the OLINK 

proteomics assay might not be able to differentiate the two ligands. This is even more likely as 

the two proteins are highly similar in sequence (95% homology; BLAST) and there is no 

commercially available antibody that can distinguish the two(Carpenter, McIntosh, Pleass, & 

Armour, 2012). Up to 14 copies of CCL3L3 have been validated in some genomes(Sudmant et 

al., 2010), with the majority of people carrying 1 to 6 copies (Rimoin, Pyeritz, & Korf, 2013), 

whereas we confirm up to 7 copies in the MANOLIS cohort. It has been hypothesised that 

increased copy number of this gene resulted in higher levels of expression of its protein product, 

however in our study, including copy numbers greater than 2 in the model weakened the 

association compared to a deletion-only model (Supplementary Figure 9) suggesting that 

although deletion of CCL3L3 decreases CCL3 levels, those levels are not affected by gene 

duplication.  

Discussion 

Comparison with other callers 

We compare UN-CNVc’s calling performance genome-wide with PennCNV, an array-based 

method, and the CNV discovery pipeline of GenomeSTRiP, a sequencing read-based method, 

on 211 MANOLIS samples with both sequencing and CoreExome array data. On this subset, 



PennCNV took 2 hours to run with 586Mb peak RAM use, and GenomeSTRiP took 14.5 hours 

with peak RAM use of 3Gb, compared to 16 minutes and 798Mb for UN-CNVc, excluding 

SNP calling using GATK3.5.  

On these samples, UN-CNVc calls 253 CNVs in deletion-only mode, whereas PennCNV and 

GenomeSTRiP call 2,716 and 10,660 CNVs with minimum copy number <2, respectively. As 

expected, our method called on average larger CNVs than the other two methods 

(Supplementary Figure 10). 54 (21%) of UN-CNVc’s events overlapped GenomeSTRiP’s with 

50% reciprocal overlap, however, 114 (45%) further regions called as variable by UN-CNVc 

completely contained one or more GenomeSTRiP CNVs, and 127 (50%) were tagged (r2>0.8) 

by at least one GenomeSTRiP CNV. 57 (23%) of UN-CNVc’s CNV regions had 50% 

reciprocal overlap with the CNVs called by PennCNV, while a further 30 (12%) regions 

completely contained one or more PennCNV variants. The Database of Genomic Variants 

(DGV) is a repository of structural variants of >50bp curated from multiple large peer-reviewed 

studies, including the 1000 Genomes Project.  A higher percentage of CNVs detected by UN-

CNVc (155, 61%) had 50% reciprocal overlap with known CNVs in DGV (build 38, May 

2016), compared to PennCNV 770 (29%) and GenomeSTRiP 3,384 (32%), although both 

methods called more known CNVs. By treating variants that can be found in DGV as true 

positives (TP) and all other called variants as false positives (FP), we calculate the precision 

(TP/TP+FP) and false discovery rates (FDR; FP/TP+FP) of the three methods (Supplementary 

Table 7). Our results show that despite its lower sensitivity UN-CNVc offers the highest 

precision (61%) and the lowest FDR (39%) among the three methods.  

 

False Discovery Rate and novel events 

In the full set of samples, we find an FDR of 18.1% on average across all four cohorts analysed 

(Supplementary Table 8). Other measures such as specificity and sensitivity cannot be 

calculated with a database overlap method given that not all events present in such a database 

are expected to be present in analysed cohorts, preventing the calculation of a false negative 

rate. Conversely, this FDR is likely to be an overestimate, given that the DGV database was 

not built using data from these cohorts, and therefore might not include some true positives. To 

further assess the validity of such novel events, we also compare the UN-CNVc callset to 

GenomeSTRiP in 211 samples for variants not present in the DGV database. A total of 253 

deletion variants were called in 211 MANOLIS samples, of which 155 (61.3%) overlapped 

reciprocally with at least one variant in DGV by >50%. Of the remaining 98 deletions not found 

in DGV, 3 (3.1%) additional variants were also found in the GenomeSTRiP callset (50% 



reciprocal overlap). However, a further 17 (17.3%) UN-CNVc regions completely contained 

at least one GenomeSTRiP variant in complete or high LD (r2>0.8) with the corresponding 

UN-CNVc deletion. This indicates that 20.4% of novel events can be validated using a third-

party in-silico method. 

 

Gene-deleting regions 

66 (33%) of UN-CNVc deletions affected entire genes, compared to 102 (4%) for PennCNV, 

and 74 (0.7%) for GenomeSTRiP. Of these, 56 (85%), 82 (80%), and 57 (77%), regions 

respectively have been previously reported (>50% reciprocal overlap) in DGV. Of the 

remaining 10 UN-CNVc gene deleting regions not found in the DGV database, 4 regions 

overlap at least one GenomeSTRiP variant in high LD (r2>0.8). Notably, the complete deletion 

of the RHD gene was detected only by UN-CNVc in the 211 MANOLIS samples. For the 

array-based PennCNV, this was likely due to the lack of tagging SNPs within the region. Only 

5 tagging SNPs in the CoreExome array were within the RHD gene coordinates, compared to 

141 SNPs from the WGS data used by UN-CNVc, demonstrating the advantage of using WGS 

data for CNV calling. For GenomeSTRiP, the deletion was split into six smaller CNVs with an 

average size of 11kb. This example, where the whole gene is known to be deleted, indicates 

that in some cases GenomeSTRiP may be tiling large CNVs by dividing them in smaller events. 

 

Carrying on from this observation, we attempt to validate our gene-deleting regions using 

GenomeSTRiP by calculating linkage disequilibrium and genotyping concordance between our 

gene-deleting events and any overlapping GenomeSTRiP events. 18 GenomeSTRiP regions 

containing 22 genes were in complete or high LD with their corresponding gene-deleting UN-

CNVC events, with an overall genotyping concordance rate of 97.0% (Supplementary Table 

9). In the case of the RHD gene deletion, 4 of 6 overlapping GenomeSTRiP variants were in 

complete LD with our event, 1 in high LD (r2=0.980), and 1 in medium LD (r2=0.532) 

(Supplementary Figure 11). This, along with clear patterns in the average depth across the 

region, suggests the presence of a large deletion that affects the entire gene, as well as several 

smaller deletions. This suggests that UN-CNVc is much less sensitive to within-population 

heterogeneity than GenomeSTRiP in complex regions where multiple CNVs are present.  

 

Genotyping accuracy 

Segment-based genotyping tends to be biased towards the reference for smaller events, whereas 

means-based genotyping is agnostic to variant size. Both methods should perform equally well 



for large variants. We calculate genotyping concordance for 54 CNVs that were called by both 

UN-CNVc and GenomeSTRiP (defined as 50% reciprocal overlap) (Supplementary Table 10). 

The overall genotyping concordance and non-reference concordance rates were 96.1% and 

85.9% for means-based genotyping, and 79.3% and 22.3% for segment-based genotyping, 

respectively (Supplementary Text). 

Limits of the piecewise constant regression model 

Despite providing a certain level of automation, UN-CNVc still requires post-run manual QC, 

in the same way as array-based genotypes require inspection of cluster plots. The software 

generates extensive diagnostic tables and plots to make this task easier for the user. Although 

piecewise constant regression can accurately model WGS depth in a single individual, UN-

CNVc leverages large sample sizes (n>100) to differentiate signal from noise. Furthermore, 

since the software performs clustering on depth averages, a high enough depth (>15x) is 

required to ensure proper cluster separation. Finally, using marker-level depth puts limits on 

the precision of the boundaries as well as the sizes of detected CNVs. The maximum precision 

achievable by a method such as UN-CNVc is the distance between two consecutive SNVs; in 

practice, it is limited to around 10kb by the minimum leaf size, the segment aggregation 

algorithm and the discretization step (Supplementary Table 11). Our method relies on at least 

one correct call by piecewise constant regression to genotype a CNV, which makes small, rare 

CNVs difficult to call. 

 

For cases where the study design deviates from the ideal use case above, users can adjust the 

sensitivity of UN-CNVc using several parameters. First, the complexity value passed directly 

to the regression tree directly influences the elasticity of the regression tree model 

(Supplementary Figure 12). Smaller values allow the piecewise constant regression to follow 

depth more closely, therefore allowing to detect smaller CNVs but increasing the risk of false 

positives. This parameter can be adjusted by starting at the default value of 0.01 and decreasing 

it until a reference deletion (e.g. the RHD gene deletion) is correctly detected and the number 

of carriers stops increasing. Second, the window size, which should be increased from its 

default of 10Mb if sample size is low (<100). Third, the ratio of high-quality vs. low-quality 

segments required to call a deletion, which can be increased from its default value of 1 when 

analysing a particularly noisy depth signal. Fourth, the discretisation step, which is set by 

default at 5kb, and which determines the precision of the CNV boundaries. This value should 



not be smaller than the minimum distance separating two SNPs, and should be kept reasonably 

large as decreasing it increases execution time linearly. In practice, changing parameters other 

than the complexity value should not be necessary under most use cases. 

Conclusion 

 

We demonstrate that it is possible to call large CNVs from variant-level WGS depth 

information in large cohorts. Compared to other methods, UN-CNVc performs well and offers 

better precision, although it is limited to large events. As a proof-of-concept, UN-CNVc 

successfully detects well-known deletions, such as the complete deletions of RHD, GSTM1 and 

CCL3L1, in 6,898 samples with deep WGS data. We conduct an association study with 272 

quantitative protein levels in a set of 1,457 individuals and find two association signals, in 

which deletion of the cis gene caused a significant decrease in the resulting protein levels. 

These results provide proof of principle for cohort-wide variant-level depth approaches as a 

platform for discovering disease-associated CNVs and genes. Although accurate read-based 

methods that integrate within standard single-nucleotide variant calling pipelines will remain 

the gold standard for CNV calling in terms of sensitivity, UN-CNVc provides a 

computationally inexpensive means for CNV calling, using only the ubiquitously available per-

sample depth (DP) field from Variant Call Format (VCF) files produced by widely-used variant 

callers, including GATK (Van der Auwera et al., 2013), SAMtools (Li et al., 2009), and 

FreeBayes (Garrison & Marth, 2012). This approach is much less intensive than read-based re-

analysis, and allows quick screening for areas harbouring copy number variation in cohorts 

where read-level data is unavailable or intractable to process. With a classical approach, 

researchers wanting to analyse CNVs would analyse the reads twice: once for SNVs and once 

for CNVs. In the case of UN-CNVc, calling is done without such an overhead when a SNV 

callset is present. Variable regions provided by our method can then be taken forward for read-

level analysis, which will provide base-pair resolution for breakpoints in CNVs of interest.   
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