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Allelic imbalance of Recurrently 
Mutated Genes in Acute Myeloid 
Leukaemia
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Vindi Jurinovic1,3, Maja Rothenberg-thurley3, Bianka Ksienzyk3, Julia philippou-
Massier5, Stefan Krebs5, Helmut Blum5, Stephanie Schneider3,6, Nikola Konstandin3, 
Stefan K. Bohlander  7, Caroline Heckman4, Mika Kontro8, Wolfgang Hiddemann3,9,10, 
Karsten Spiekermann3,9,10, Jan Braess11, Klaus H. Metzeler3,9,10, Philipp A. Greif3,9,10, 
Ulrich Mansmann  1,2,9,10 & tobias Herold  3,9,10,12

The patho-mechanism of somatic driver mutations in cancer usually involves transcription, but the 
proportion of mutations and wild-type alleles transcribed from DNA to RNA is largely unknown. We 
systematically compared the variant allele frequencies of recurrently mutated genes in DNA and RNA 
sequencing data of 246 acute myeloid leukaemia (AML) patients. We observed that 95% of all detected 
variants were transcribed while the rest were not detectable in RNA sequencing with a minimum read-
depth cut-off (10x). Our analysis focusing on 11 genes harbouring recurring mutations demonstrated 
allelic imbalance (AI) in most patients. GATA2, RUNX1, TET2, SRSF2, IDH2, PTPN11, WT1, NPM1 and 
CEBPA showed significant AIs. While the effect size was small in general, GATA2 exhibited the largest 
allelic imbalance. By pooling heterogeneous data from three independent AML cohorts with paired 
DNA and RNA sequencing (N = 253), we could validate the preferential transcription of GATA2-mutated 
alleles. Differential expression analysis of the genes with significant AI showed no significant differential 
gene and isoform expression for the mutated genes, between mutated and wild-type patients. In 
conclusion, our analyses identified AI in nine out of eleven recurrently mutated genes. AI might be a 
common phenomenon in AML which potentially contributes to leukaemogenesis.

Genomic alterations in cancer are heterogeneous and complex but mainly thought to disturb protein function or 
gene expression1. The extent to which such mutations are transcribed into RNA is largely unknown. One of the 
main reasons for this lack of knowledge is due to the intrinsic complexity of transcriptome sequence data, which 
makes it difficult to implement variant calling procedures2. Thus, variant identification from RNA sequences 
(RNA-Seq) is considered inferior to that from DNA sequences (DNA-Seq). Recent developments in computa-
tional algorithms address these issues and established splice-aware alignment of transcriptome sequences in an 
effective manner3,4. The choice of the aligner and variant caller has a major influence on variant detection5–7. In 
addition, finding insertions and deletions (INDELs) in RNA-Seq is still one of the major challenges due to the 
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complexity of RNA splicing8. The RNA variants can be compared with the variants from DNA to determine the 
reliability of RNA-Seq analysis pipelines for variant discovery8,9.

O’Brien and colleagues compared whole exome sequencing (WES) and RNA-Seq data from 27 lung cancer 
pairs of tumour and matched normal samples and found only 14% overlap among single nucleotide variants 
(SNVs) detected10. In contrast, another group observed 99% concordance of somatic mutations detected between 
DNA- and RNA-Seq in an analysis of mouse tumour cell lines11. They also examined the allelic imbalance (AI) 
and concluded that mutated and wildtype alleles were expressed equally irrespective of their mutation status. Few 
other studies have looked at the AI of somatic mutations between DNA and RNA12,13. Rhee and colleagues ana-
lysed the AI of somatic mutations in the cancer genome atlas (TCGA) cohort from five human solid tumour types 
and found differences in allele-specific expression among splice site mutations, nonsense SNVs and frameshift 
INDELs12. TCGA reported allelic biases in the expression of mutations in DNMT3A, RUNX1, TET2, TP53, WT1 
and PHF6 between paired DNA- and RNA-Seq data in acute myeloid leukaemia (AML) samples13. Despite the 
limitation of this analysis due to low mutation counts in the cohort, AI could be explained by copy number 
changes, loss of heterozygosity or hemizygosity in the case of PHF6. However, the higher expression of the mutant 
alleles could not be explained sufficiently in all other cases13. Celton et al. studied the expression levels of GATA2 
among normal karyotype AML samples and observed the existence of allele-specific expression in samples with 
low GATA2 expression and further demonstrated an increased DNA methylation in the lower expressed allele14.

Although the phenomenon of AI was observed in different cancer types, there is no systematic analysis or 
validation of such imbalances for recurrently mutated genes in AML. In our study, we examined the correlation 
between DNA and RNA Variant Allele Frequencies (VAFs) of recurrently mutated genes in 499 AML patients to 
determine AI. In contrast to previous analyses, we were able to compare high coverage DNA and transcriptome 
sequences in a large and homogenously sampled patient cohort and validate our findings in independent data 
sets. We identified a subgroup of genes that showed AI which potentially contributes to the pathogenic effect of 
these mutations.

Results
Our analysis included 499 adult AML patients from four independent cohorts with paired DNA- and RNA-Seq 
data. The AMLCG cohort (N = 246) was used as the discovery cohort. We focused on 36 genes which were recur-
rently mutated in more than 1% of AML patients15. Out of those, only 11 genes met our filtering criteria and 
were examined further (Fig. 1). The alignment and variant calling pipeline is shown in Supplementary Fig. S1. 
The effect of adapter trimming and quality filtering of DNA- and RNA-Seq in the AMLCG cohort is shown in 
Supplementary Figs. S2 and S3, respectively. The mean coverage of the regions of interest in the AMLCG data 
set among the targeted DNA- and RNA-Seq were 542x and 85x, respectively. Detailed alignment information are 
listed in Supplementary Table S1. Further, variant calling procedures were applied to extract putative somatic 
mutations which were used for downstream analyses.
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Figure 1. Flow diagram of primary and validation cohorts. The dotted blue boxes indicate general criteria 
applied on excluding genes and samples. The 11 genes included in the analyses were PTPN11, U2AF1, IDH2, 
FLT3, SRSF2, TET2, RUNX1, GATA2, CEBPA, WT1 and NPM1, respectively.
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Raw variants and read depth. We set out to determine the allele-specific transcript abundance by calling 
variants and classifying them into three groups: transcribed (present in both DNA and RNA), DNA-exclusive 
variants (not detected in RNA with minimum read depth of 4x) and RNA-exclusive variants (not detected in 
DNA with minimum read depth cut-off of 30x). The variants were called in the recurrently mutated regions in 
AML as defined in previous studies (Supplementary Table S2)15,16. The RNA-Seq variants were binned based on 
their read depth (Fig. 2). There were 8,052 variants called in the defined regions from both sequences including 
DNA-exclusive and RNA-exclusive variants (variants in both sequences were counted once, 89.3% were SNVs 
and 10.7% were INDELs). A large number of variants were RNA-exclusive (47.9%) most of which are likely 
to be false positives due to sequencing errors (Fig. 2a,b), while a minority may be the result of RNA editing. 
On the other hand, only a small number of variants were DNA-exclusive (3.8%). In Fig. 2a and Supplementary 
Fig. S4, the number of DNA-exclusive variants decreases with the increase in the RNA read depth. However, only 
a modest decrease could be observed in the case of RNA-exclusive variants. On the other hand, the proportion of 
transcribed variants also tend to vary across different RNA read depths, necessitating an appropriate minimum 
read depth cut-off in RNA-Seq. To select a suitable cut-off, we calculated the proportions between homozygous 
(BB) and heterozygous (AB) genotypes for all transcribed variants (Fig. 2c,d). With increasing RNA read depth, 
we observed a convergence of the homozygous and heterozygous proportions and the difference between them 
stabilized above a read depth of 10. Interestingly, TCGA also considered a minimum read depth of 10x to detect 
variants in RNA-Seq13. However, the number of RNA-exclusive variants did not show a considerable drop-off 
even in regions with high coverage in RNA-Seq (Fig. 2a). SNVs and INDELs showed noticeable differences, 
mainly due to the differences in their variant counts per read depth. Also, large number of somatic INDELs were 
heterozygous, which makes it difficult to assume similar proportions of homozygous and heterozygous variants 
(Supplementary Fig. S4).
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Figure 2. RNA-Seq read depths of all detected variants. (a) RNA-Seq read depths grouped based on the 
different variant classes. (c) RNA-Seq read depth of transcribed variants (variants detected in both DNA and 
RNA) grouped according to variant genotype information. (b,d) Read depth distribution based on variant 
groups.
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filtering variants. Using a minimum read depth cut-off on called variants did not sufficiently remove the 
large number of potential false positive variants caused by sequencing biases due to mapping quality, base quality, 
variant position in the aligned reads etc. (Supplementary Fig. S5). Applying additional filtering criteria account-
ing for these biases, error-prone regions, RNA editing sites and repeat regions excluded 36.2% of all transcribed 
variants, leaving 2302 SNVs and 182 INDELs (Supplementary Fig. S6). The reduction was more prominent 
among DNA- and RNA-exclusive variants (59.7% and 99.4%, respectively). Almost all potential false positives 
were removed in the case of RNA-exclusive variants.

DNA and RNA variant comparison. After minimizing the number of potentially false positive variants, 
we set out to determine the variability of VAF among transcribed (2,484) and DNA-exclusive (122) variants, in 
the remaining 2,606 variants. Of the variants detected in DNA-Seq, 95.4% were also found in RNA-Seq (tran-
scribed variants). Our observations based on genotype information alone showed that 92.3% of all filtered var-
iants display no observable changes in VAFs between DNA and RNA sequences (Fig. 3a,b). The observed VAFs 
of recurrent mutations in genes commonly affected in AML also showed a similar trend (83.5%). About 5.3% 
of mutated alleles were over-represented in RNA-Seq (variants with heterozygous mutant alleles in DNA and 
homozygous mutant allele in RNA) while we were unable to detect 9.9% of the recurrent mutations (at 10x cov-
erage), which were detected in the DNA-Seq data, indicating a lack of transcription.

Figure 3. Variant allele frequency differences of transcribed and DNA-exclusive variants (2,606) including 
recurrent mutations (284) for SNVs (a) and INDELs (b). Expected and observed RNA variant read depths of 
SNVs (c) and INDELs (d). The diagonal lines represent the expected DNA vs. RNA trend in terms of VAFs 
(a,b) and RNA variant read depths (c,d). The genotype conversion of AB → AA and AB → BB represent the 
allele specific transcript abundance of wild-type and mutant allele, respectively. The observation of BB → AB 
genotype change artefacts might be due to the arbitrary definition of homozygous and heterozygous variants. 
We excluded regions with DNA VAF < 2% and regions with BB → AA genotype change.
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All heterozygous mutations in genes with at least 5 heterozygous mutations in their exonic regions were 
extracted and included in a regression model (see methods) for SNVs and INDELs to determine the weighted allelic 
imbalance (WAI). The model on SNVs showed a substantial imbalance towards wild-type transcript abundance 
for PTPN11, whereas considerable imbalances towards mutant transcript abundance was observed for GATA2, 
RUNX1, TET2, SRSF2 and IDH2 (Fig. 4). On the other hand, INDELs in CEBPA and WT1 showed a noticeable WAI 
towards wild-type allele. Also, we detected the opposite effect in the case of NPM1 and RUNX1 INDELs in which 
the WAI tend towards increased mutant allelic abundance in RNA. The VAF of mutations in U2AF1 and FLT3 (both 
ITD and TKD mutations) remained stable between DNA and RNA in all patients. The effect of mutation type on 
the AI was also observed (Fig. 4c,d). Non-synonymous SNVs and frameshift INDELs showed a higher imbalance 
towards the mutant transcript abundance while non-frameshift insertions showed a trend towards the wild-type 
allele abundance in RNA. Surprisingly, stop/gain SNVs showed no signs of AI among the mutations analysed.

Weighted allelic imbalance in external validation cohorts. GATA2 mutations showed the highest 
allele-specific mutant transcript abundance in our cohort, but GATA2 mutations are rare in AML. To validate our 
results, we pooled GATA2 mutated samples along with samples harbouring mutations in 8 other genes of interest 
from external data sets with paired DNA- and RNA-Seq data (DKTK, TCGA and HELSINKI). The WAI analysis 
was modified to account for the differences in cohorts (methods).

We were able to validate the significant shift of AI towards mutant allelic abundance in RNA for GATA2, sug-
gesting consistent preferential transcript abundance (Fig. 5). Different from what we had observed in our discov-
ery cohort, NPM1 showed an allelic imbalance towards wild-type abundance. It is to be notated that NPM1 had 
a very low effect size (i.e. very small AI) in the discovery cohort. The rest of the genes showed no significant AI.
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Figure 4. Weighted allelic imbalance (WAI) of recurrent mutations per gene in the AMLCG cohort for SNVs 
(a) and INDELs (b). WAI of recurrent mutations per mutation type in the AMLCG cohort for SNVs (c) and 
INDELs (d). The dotted vertical line at WAI of 1 indicates no allelic imbalance among the variants in DNA and 
RNA. WAI ≥ 1 indicates preferential mutant transcript abundance and WAI ≤ 1 represents preferential wild-
type transcript abundance.

https://doi.org/10.1038/s41598-019-48167-4


6Scientific RepoRtS |         (2019) 9:11796  | https://doi.org/10.1038/s41598-019-48167-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

Weighted allelic imbalance based on SNP analysis. We extended our investigation to patients without 
recurrent mutations in the genes of interest (nine genes which showed significant AI in our main analysis), to deter-
mine if they also show allele-specific transcript abundance in AML. All common SNPs from the AMLCG cohort 
were extracted and filtered using the criteria we previously established (Supplementary). We then extracted all dbSNP 
annotated variants (build 138, NonFlagged) and performed our WAI analysis to compare the minor allele frequencies 
(MAFs) of the common variants (Supplementary Table S3). The analysis was restricted to five genes with significant 
AI and at least 5 SNPs in the pooled data set. We did not find any AIs for SNPs among the selected genes (Fig. 6).

Internal validation of allele-specific transcript abundance. Except for CEBPA, no other gene with 
significant WAI showed noticeable differential transcript abundance in our primary cohort between patients 
harbouring recurrent mutations in that gene and patients without mutations in the gene. Differential expression 
of transcript isoforms revealed one isoform in each of CEBPA, WT1 and SRSF2, to be differentially expressed 
based on the mutation status of those genes. However, the presence of these mutations was not restricted to these 
transcript isoforms alone. Other transcript isoforms in WT1 and SRSF2, also harbouring the recurrent mutations, 
did not show any substantial differential expression between mutated and wild-type patients. It is therefore highly 
unlikely that the differential isoform expressions observed in WT1 and SRSF2 can be explained by mutations in 
the respective genes (Fig. 7). In the case of CEBPA, there was only one transcript with sufficient read counts to be 
considered for the analysis.

Discussion
Only few studies have systematically investigated the difference of allele specific transcript abundance of genes 
with recurrent mutations in matched DNA and RNA sequencing samples so far11–13. We analysed a large cohort 
of AML patients with DNA and RNA sequence information and identified allele specific transcript abundance in 
9/11 recurrently mutated genes.
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Figure 5. Weighted allelic imbalance of recurrent mutations per gene among the pooled DKTK, TCGA and 
HELSINKI cohorts for SNVs (a) and INDELs (b).
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One of the major advantages of quantifying imbalances of transcript abundance in a uniform cohort lies in 
the reduction of ascertainment bias, which in turn improves the validity of the results. Studies comparing WES to 
transcriptome sequencing defined AI using the allelic fraction difference (RNA VAF minus DNA VAF)11,12,17,18. 
This method is not appropriate when comparing targeted DNA-Seq to RNA-Seq (as in our case) due to the vast 
differences in sequence coverage. We addressed this issue by transforming the VAFs of both sequences into 
expected and observed mutant allele reads ensuring their comparability.

A major drawback of using RNA-Seq for variant calling is the inherent low coverage in regions of interest, 
when compared to targeted DNA-Seq. Nevertheless, in accordance with previous publications we show that it 
is possible to validate the majority of the genomic variants using RNA-Seq (95.4%)9. However, RNA-Seq still 
remains unsuitable for variant discovery due to the large number of false positive variant calls (>52% in our 
analysis). To control for this, it is essential to select an ideal read depth cut-off. We approached this issue by opti-
mizing the parameters for variant calling in DNA-Seq and using less stringent parameters for RNA-Seq to avoid 
the loss of true positive variants. We then visualized the concordance rate of homozygous and heterozygous var-
iants with respect to incremental RNA read depths assuming similar proportions of the called variants. Indeed, 
the proportions of SNVs converged at 10x and remained stable at higher read depths, showing that 10x read 
depth is a reliable cut-off for RNA-Seq SNV calling, which is in agreement with the cut-off defined by Ley et al.  
for TCGA13. Similarly, Quinn et al. showed 89% specificity in calling SNPs at 10x cut-off19. Although a cut-off of 
10x for RNA-Seq seems to be sufficient for variant calling, there is a potential bias to be addressed in the case of 
gene mutations which are often sub-clonal. As an example in the case of PTPN11 mutations, VAF in DNA-Seq is 
usually low (median «50%) and thus a 10x read depth cut-off might not be ideal to confidently call the mutations 
or observe lack of transcription in RNA-Seq15. In contrast to SNVs, we were not able to define a reliable cut-off for 
INDELs due to their lower distribution per read depth in RNA-seq.

We observed preferential transcript abundance in nine genes (Fig. 4) that were found to be recurrently 
mutated in AML. Interestingly, six of them showed a significant (p < 0.05) increase in weighted AI towards the 
mutant allele, with GATA2 exhibiting the largest difference. Such preferential mutant allele transcript abundance 
has been observed before in low GATA2 expressing specimens of normal karyotype AML14. In the same study, 
the involvement of epigenetic mechanisms in allele-specific transcript abundance was demonstrated as well14. 
A similar observation of mono-allelic expression of the mutant allele of GATA2 was made by Al Seraihi et al.20. 
The down-regulation of GATA2 expression was shown to be a decisive step in the progression of leukaemia by 
transcriptional analysis in mouse models21. Ley et al. showed preferential allelic transcript abundance of RUNX1 
and TET2 and preferential transcript abundance of the wild-type allele of WT1 in an analysis of the TCGA cohort, 
which is consistent with our analysis13.

Some of the results can potentially be explained by the difference in the half-life of the RNA transcript of 
mutated and wild-type alleles, resulting from differential transcript stability. The phenomenon of uniparental 
disomy, copy number alterations or genomic imprinting might also be responsible for some AIs. Regardless of 
the mechanism, our results show small but significant imbalance in the transcription towards certain alleles. This 
does not seem to be random since it only occurs in genes affected by recurrent alterations. The WAI analysis based 
on SNPs showed no AI, in AML patients who did not harbour recurrent mutations in the genes. This observation 
implies an association of the presence of mutations and AI in these recurrently mutated genes.
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Irrespective of the sequencing techniques and cohorts we studied, we were able to independently validate the 
effect for GATA2 mutations in our pooled validation cohort mainly due to their larger effect size when compared 
to other genes. The differences in the preferential allelic transcript abundance of mutant versus wild-type alleles 
among the primary and validation cohorts in NPM1 might be due to its smaller effect size in the primary cohort. 
Minor technical differences such as library preparations might have also prevented us to validate such small effect 
sizes in NPM1 and other genes.

While we were able to show an effect of recurrent mutations on allele-specific transcript abundance in AML, 
we did not detect differential expression of transcript isoforms between mutated and non-mutated patients. 
Specifically, the recurrent mutations observed in the differentially expressed transcripts isoforms were also pres-
ent in transcripts that showed no relevant differential expression between the two groups. This observation is 
not compatible with the simplistic assumption that differential expression seen in patients with mutated and 
non-mutated genes can be solely attributed to its mutation status. Thus, it remains unclear which additional 
factors contribute to the observed AI. Nevertheless, a differential isoform transcript expression in mutated and 
non-mutated patients can be detected in three genes harbouring recurrent mutations and may imply a reduced 
expression of mutant alleles or may be the effect of counteracting mechanisms in the case of preferential wild type 
allelic abundance observed in SRSF2.

Our analysis on mutation types showed that frameshift INDELs have an increased mutant allele abun-
dance which contradicts Rhee et al.’s analysis, that demonstrated a tendency for negative allelic fraction differ-
ences12. Furthermore, we were unable to validate the negative allelic fraction difference among stop-gain SNVs 
observed by Rhee et al.12. Our results regarding stop-gain SNVs was also not compatible with known biological 
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mechanisms such as nonsense-mediated RNA decay22. This might be due to the differences in sequencing tech-
niques used in the studies. Rhee et al. compared RNA-Seq with WES, whereas we used targeted DNA-Seq12. 
Another explanation could lie in the different tumour types analysed and completely different genes included in 
each study. Rhee et al. included five different tumour types (Breast invasive carcinoma [BRCA], Head and Neck 
squamous cell carcinoma [HNSC], Kidney renal clear cell carcinoma [KIRC], Lung adenocarcinoma [LUAD] and 
Stomach adenocarcinoma [STAD] from TCGA) to determine the AI among the somatic mutations (AML was not 
included)12, thus suggesting a varying allele-specific expression between different genes and tumour entities. We 
tried to address this by including gene and mutation type interactions in our regression model but were unable to 
proceed further due to the few numbers of mutations.

The impact of AI on oncogenesis is unclear and may vary between different variants and diseases but it is 
tempting to speculate that the changes in expression enhance the impact of the underlying gene alteration (e.g. 
increasing the effect of a gain of function mutation). At the moment, sufficient data is missing to determine the 
incidence of this phenomenon. Functional analyses are a technically demanding challenge that can only be par-
tially addressed by current routinely applied molecular methods. Potentially, more sophisticated tools to regulate 
gene expression output levels in mammalian cells will be able to address this question in the future23.

In summary, we demonstrated the existence of allele-specific transcript abundance among some of the recur-
rently mutated genes under study in AML. We suggest that the preferential transcription of wild-type or mutant 
alleles could be a common and under-appreciated phenomenon in AML and further research will be required to 
determine the potential effect of allele-specific transcript abundance in AML pathogenesis.

Methods
Study population. Our primary cohort consist of German AML Co-operative Group (AMLCG) study 
participants, sampled at initial diagnosis from 1999 and 2008 trials (n = 246). Details regarding the treatment 
protocols and patient selection were published previously15,16. Our validation cohorts include patients from 
DKTK (n = 40), TCGA (n = 116) and HELSINKI (n = 97)13,24–26. We only included patients having both DNA 
and matched RNA sequencing as well. Also, we restricted to 36 genes which were recurrently mutated in more 
than 1% of the AML patients by Metzeler et al.15. A summarized flow diagram with inclusion and exclusion of 
samples is shown in Fig. 1.

DNA and RNA sequencing. A total of 246 samples (AMLCG) underwent DNA sequencing using a custom 
amplicon-based targeted enrichment assay (Haloplex, Agilent, Boeblingen, Germany) of 68 genes, which are 
recurrently mutated in AML15,16. The samples were sequenced paired-end (2 × 250 bp) on an IlluminaMiSeq 
instrument (Illumina, SanDiego, CA). Additionally, Whole Transcriptome Sequencing (Lexogen SENSE 
mRNA-Seq kit V2) was performed using a paired-end (2 × 100 bp), strand-specific, poly(A)-selected protocol16. 
Downstream analyses of both sequencing procedures included adapter clipping and quality trimming and was 
followed by sequence alignment. DNA and RNA sequences were mapped to the reference genome (hg19), using 
the BWA-MEM and the STAR aligner respectively3,27. In the case of RNA-Seq, sequence duplicates were removed 
after the alignment procedure. After processing the aligned sequences, SNVs were called using VarScan2, while 
INDELs were called using VarDict28,29. A detailed descriptions of both pipelines can be found in the supplemen-
tary methods and in Supplementary Fig. S1. In the case of the pooled validation cohorts (DKTK, TCGA and 
HELSINKI), details of WES are described in previous publications13,24,25. The sequence variants from both DNA 
and RNA were called using a variant calling pipeline similar to the one used in our primary cohort. Since raw 
sequencing files (fastq) were not accessible for TCGA and HELSINKI cohorts, the alignment files (bam) were 
integrated directly into the variant calling. The main difference in the variant calling procedure between the pri-
mary and the validation cohorts was the minimum read depth cut-off for DNA-Seq (10x when compared with 
our primary cohort 30x). This difference is due the differences in the sequencing methods.

Criteria for variant filtering. Several filtering criteria, including read depth, strand bias, mapping and base 
quality biases, position bias etc. along with custom filtering definitions (Supplementary), were applied to find 
the optimum balance between eliminating false positives variants and retaining true positives (Supplementary 
Fig. S5). In our RNA-Seq pipeline, we lowered the threshold of the variant callers’ filtering parameters to avoid 
the elimination of putative variants.

Statistical analysis. Recurrent mutations identified in our previous analysis, were selected from our dataset 
and their VAFs were compared between DNA- and RNA-Seq15,16. The genotype status of the alterations with allele 
frequencies between 2% and 75% were defined as heterozygous mutations. All homozygous mutations as well as 
RNA-exclusive variants were not included in the analysis. Linear regression models (1–3) including the observed 
and the expected RNA variant read depth in sequence fragments were used to determine the weighted allelic 
imbalance (WAI) of the mutations. We used a bootstrap approach (which does not rely on Gaussian distribution) 
to infer the statistic p-value and confidence intervals30. According to these models, an estimation of significant 
difference (p-value < 0.05) between the observed and expected RNA variant depth among variants in a gene 
indicate the presence of WAI in the respective gene. We defined the expected RNA variant read depth as follows:

= ∗RNA Variant Depth DNA VAF RNA Total Depth /100i, i, i,Exp Obs Obs

And the following linear regression models
For every gene in the primary cohort:
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+~RNA Variant Depth RNA Variant Depth Mutation Type (1)i, Obs i, iExp

For every mutation type in the primary cohort:

+~RNA Variant Depth RNA Variant Depth Gene (2)i, Obs i, iExp

For every gene in the validation cohort:

+ +~RNA Variant Depth RNA Variant Depth Mutation Type Cohort (3)i, Obs i, i iExp

Model (1) grouped the mutations for each gene separately and was adjusted for mutation types such as syn-
onymous and non-synonymous SNVs, stop/gain SNVs, frameshift and non-frameshift insertions, deletions and 
substitutions, in order to determine the possible effect of mutations on the difference of VAF between DNA and 
RNA. Each mutation pair (DNA and RNA) was considered as individual entity in the regression model even in 
the case of patients with multiple mutations on the same gene. Model (2) grouped the mutations by mutation type 
and was adjusted for gene as well. The regression models were applied on SNVs and INDELs separately. We also 
applied Model (1) on common SNPs in patients without recurrent mutations on the respective genes to determine 
the existence of allele-specific expression in general, irrespective of the mutational status. Model (3), modified 
from Model (1), was used to calculate the WAI in the validation cohort.

Differential expression of genes and transcripts. The AI and allele-specific expression of recurrent 
mutations were further investigated by differential expression of genes and transcripts. The transcript quantifi-
cation and aggregated gene quantification of our cohort was carried out using Salmon (v0.9.1)31. The quantified 
read counts with less than one count per million in five samples were filtered out and the rest were normalized 
(TMM) using edgeR (v3.20.9)32. They were then grouped based on the recurrent mutations of each gene with sub-
stantial WAI and the differential expression of those genes and transcripts were analysed using limma (v3.34.1) 
with sample-specific quality weight adjustments in the experiment design (voomWithQualityWeights)33. The fold 
changes were calculated and were adjusted for multiple testing.

All the processing of DNA- and RNA-Seq were carried out on an in-house Galaxy platform (v15.10.2)34. All 
statistical analyses were performed using R (v3.4.3) and were adjusted for multiple testing using Benjamini & 
Hochberg procedure35,36. We considered an adjusted p-value cut-off of 0.05 as significant.

ethical approval and informed consent. Study protocols were approved by the institutional review 
boards of the participating centers. All study protocols were in accordance with the Declaration of Helsinki, the 
ethical standards of the responsible committee on human experimentation (written approval by Ethikkommission 
bei der LMU München, number 427-13) and were approved by the institutional review boards of the participat-
ing centers. All patients provided written informed consent for inclusion on the clinical trial and in the genetic 
analyses.

Data Availability
The gene expression data are publicly available through the Gene Expression Omnibus Web site (GSE106291). 
Due to law restrictions the sequence information cannot be made publically available but controlled access can 
be provided upon request.
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