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telomere shortening has been associated with multiple age-related diseases such as cardiovascular 
disease, diabetes, and dementia. However, the biological mechanisms responsible for these 
associations remain largely unknown. in order to gain insight into the metabolic processes driving 
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the association of leukocyte telomere length (LtL) with age-related diseases, we investigated the 
association between LTL and serum metabolite levels in 7,853 individuals from seven independent 
cohorts. LTL was determined by quantitative polymerase chain reaction and the levels of 131 
serum metabolites were measured with mass spectrometry in biological samples from the same 
blood draw. With partial correlation analysis, we identified six metabolites that were significantly 
associated with LTL after adjustment for multiple testing: lysophosphatidylcholine acyl C17:0 (lysoPC 
a C17:0, p-value = 7.1 × 10−6), methionine (p-value = 9.2 × 10−5), tyrosine (p-value = 2.1 × 10−4), 
phosphatidylcholine diacyl C32:1 (PC aa C32:1, p-value = 2.4 × 10−4), hydroxypropionylcarnitine (C3-
oH, p-value = 2.6 × 10−4), and phosphatidylcholine acyl-alkyl C38:4 (PC ae C38:4, p-value = 9.0 × 10−4). 
pathway analysis showed that the three phosphatidylcholines and methionine are involved in 
homocysteine metabolism and we found supporting evidence for an association of lipid metabolism 
with LTL. In conclusion, we found longer LTL associated with higher levels of lysoPC a C17:0 and PC ae 
C38:4, and with lower levels of methionine, tyrosine, PC aa C32:1, and C3-OH. These metabolites have 
been implicated in inflammation, oxidative stress, homocysteine metabolism, and in cardiovascular 
disease and diabetes, two major drivers of morbidity and mortality.

Telomeres are located at the ends of chromosomes and protect against spontaneous DNA damage, thus preserving 
genomic integrity1,2. The progressive shortening of telomere length with each subsequent cell division underlies 
the so-called mitotic clock, i.e. the limited replicative capacity of a cell3. Replicative senescence and subsequent 
cell death occurs when the mean telomere length reaches a critical value and telomere length is therefore seen as 
a marker for biological age4–6. Short leukocyte telomere length (LTL) has been associated with age5,7–9 and mul-
tiple age-related diseases such as cardiovascular disease10–15, diabetes10,16,17 and dementia18,19. Short LTL has also 
been associated with mortality20–27, although not all studies support this association28–33. However, the biological 
mechanisms underlying the associations of LTL with age-related diseases and mortality are still largely unknown.

Longevity in humans has previously been associated with various metabolic traits in the elderly, including 
traits related to blood pressure and lipids, suggesting that changes at the metabolic level are key features in lon-
gevity34–36. Metabolic profiles have been associated with age and various age-related diseases, such as type 2 dia-
betes, atherosclerosis, cancer, and Alzheimer’s Disease37–44. Only a few studies investigated the association of 
metabolic markers with LTL, all using untargeted metabolomics45–47. One study focused on metabolic markers 
involved in aging and early development in 6,055 individuals included in the TwinsUK registry45. Although a 
combined set of 22 metabolites was strongly correlated with age and age-related traits, the individual metabolites 
were not significantly associated with LTL45. Another study identified 19 metabolites associated with LTL in a 
small sample of American Indians (n = 423)46. The most recent study was conducted in 3,511 females from the 
TwinsUK registry, reporting associations of five metabolites with LTL. These include gamma-glutamyltyrosine, 
gamma-glutamylphenylalanine, 1-stearoylglycerophosphoinositol, 1-palmitoylglycerophosphoinositol, and 
4-vinylphenol sulfate47.

In the current study, we used a standardized targeted metabolomics approach to investigate the association 
between LTL and serum metabolites of key biochemical pathways in the largest sample so far consisting of 7,853 
individuals from seven independent population-based cohorts from Europe and Australia. We further aimed to 
disentangle the metabolic pathways that are represented by the metabolites significantly associated with LTL.

Methods
cohort descriptions and measurements of LtL and metabolites. The cohorts included in this study 
are the Cooperative Health Research in the Region of Augsburg (KORA) study, the Netherlands Twin Register 
(NTR), the Estonian Genome Center University of Tartu (EGCUT) study, the TwinsUK cohort, the Erasmus 
Rucphen Family (ERF) study, the Leiden Longevity Study (LLS), and the Queensland Institute of Medical 
Research (QIMR) study, all part of the ENGAGE consortium. Details on the individual cohorts as well as details 
on the LTL quantitative polymerase chain reaction measurements and the metabolites as measured with the 
AbsoluteIDQTM p150 kit (BIOCRATES Life Sciences AG, Innsbruck, Austria) are provided in the Supplementary 
Materials. In summary, both LTL and metabolite concentrations were measured in the same laboratories accord-
ing to a common protocol, using blood samples taken at the same time point. To ensure good data quality, each 
metabolite had to meet three criteria for inclusion in the study: 1) coefficient of variation (CV) not exceeding 
25%; 2) less than 5% missing values; 3) median of metabolite concentrations above the limit of detection. This 
quality control was performed per cohort. Supplementary Table 1 describes the reasons for exclusion of metab-
olites from the analysis for each cohort. The metabolites measured include hexoses (H1), amino acids (AA), 
acyl-carnitines (AC), sphingomyelins (SMs), diacyl phosphatidylcholines (PC aa), acyl-alkyl-phosphatidylcho-
lines (PC ae) and lysophosphatidylcholines (lysoPC).

Written informed consent was obtained from all study participants. The study protocol was approved by the 
medical ethics boards of the Helmholtz Zentrum München, VUmc Amsterdam, University of Tartu, St. Thomas’ 
Hospital London, Erasmus MC Rotterdam, LUMC Leiden, and Queensland Institute of Medical Research and all 
investigations were carried out in accordance with the Declaration of Helsinki.

Statistical analysis. To standardize LTL measurements across cohorts we Z-transformed the LTL values. 
Metabolite concentration values were natural log-transformed to attain a better approximation of the normal 
distribution. We performed partial correlation analysis per cohort, adjusting for age and sex, and if necessary for 
family relationships (model 1). In the extended model (model 2) we additionally adjusted for body mass index 
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(BMI). We performed a sensitivity analysis to test the robustness of the results and repeated the meta-analysis 
excluding studies with low sample size or high mean LTL values.

A multiple testing-corrected statistical significance threshold for association of metabolite concentrations 
with LTL was defined at the meta-analysis level. We accounted for multiple testing by Bonferroni correction 
based on the effective number of independent variables (VeffLi) in the metabolite concentration data48 (https://
neurogenetics.qimrberghofer.edu.au/matSpD/). The VeffLi value was determined using the correlation matrix 
of the quality controlled and log-transformed metabolomics data in the ERF and NTR cohorts, yielding a VeffLi 
(representing the number of independent metabolites) of 46 for both cohorts. This resulted in a Bonferroni cor-
rected significance threshold of p-value < 1.1 × 10−3 (=0.05/46).

pathway analysis of the associated metabolites. For interpretation of the observed associations we 
followed two bioinformatics approaches in parallel. First, we employed a bioinformatics pipeline based on a 
workflow management software tool called “Taverna” (http://www.taverna.org.uk)49 to determine if the metab-
olites associated with LTL share a network space within two reaction steps. We took as input all possible pairs of 
significantly associated metabolites. In this pipeline, all the reactions within a radius of two steps in the reaction 
space of the first metabolite were obtained from the KEGG database50. The second metabolite is searched against 
the substrates and the products of the reactions obtained in the previous step. The presence of the second metab-
olite in any of the reaction steps is an indication that the two metabolites participate in reactions within two steps 
of each other. In the final step, the path between the two metabolites is returned to the user. In order to prevent 
non-specific connections, an intermediate step filters out hub metabolites such as ATP, ADP, and NADP. Next, 
we used the function “heatmap.2” included in the R package “gplots” (https://CRAN.R-project.org/package=g-
plots) to prepare a heat map of the correlation of the individual metabolites with LTL in models 1 and 2. For this 
analysis, default functions for clustering were used (distance measure: euclidean distance). We also derived a 
correlation matrix for the significantly associated metabolites in ERF and visualized this in a correlogram using 
the R package “corrplot”51.

Results
General characteristics of the study populations are provided in Table 1. The study covers a wide age range, with 
the mean age of the participants ranging from 18.4 to 62.9 years. Most studies had approximately equal numbers 
of males and females, except for NTR (33% female) and TwinsUK (only females). Mean LTL ranged from 1.44 
(LLS) to 3.58 (TwinsUK). BMI was on average between 25.2 and 27.6 kg/m2, but was unavailable at the time of 
metabolite and LTL assessment in the QIMR study.

Out of the 131 metabolites that passed quality control, 27 showed at least nominally significant correlation 
(p-value < 0.05) with LTL when adjusting for age and sex in model 1 (Table 2). Six metabolites surpassed the 
multiple-testing corrected significance threshold (p-value < 1.1 × 10−3). Five of these metabolites were consist-
ently associated with LTL in the same direction in at least five out of seven studies: lysophosphatidylcholine 
acyl C17:0 (lysoPC a C17:0, r = 0.05, p-value = 7.1 × 10−6) and phosphatidylcholine acyl-alkyl C38:4 (PC ae 
C38:4, r = 0.04, p-value = 9.0 × 10−4) were positively associated with LTL, while methionine (Met, r = −0.04, 
p-value = 9.2 × 10−5), tyrosine (Tyr, r = −0.04, p-value = 2.1 × 10−4), and phosphatidylcholine diacyl C32:1 (PC 
aa C32:1, r = −0.04, p-value = 2.4 × 10−4) were negatively associated with LTL. Although hydroxypropionylcarni-
tine (C3-OH, r = −0.10, p-value = 2.6 × 10−4) was also found negatively associated with LTL, this effect was only 
based on two out of seven studies. Additionally adjusting for BMI in model 2 had limited effect on the correlation 
coefficients of the six significant metabolites in model 1 and all metabolites except PC ae C38:4 remained signifi-
cantly associated with LTL (Table 2). The summary statistics for all metabolite-LTL correlations for both models 
can be found in Supplementary Table 2. Study-specific results for the age- and sex-adjusted model are provided 
in Supplementary Table 3.

We next conducted a sensitivity analysis to determine whether the analyses were driven by a single cohort. We 
removed two cohorts from the analysis: the TwinsUK cohort, which had a high mean LTL ( = .x 3 58LTL ) and the 
QIMR cohort, which had a small sample size (N = 193) and was on average younger than the other cohorts. After 
excluding the TwinsUK cohort from the meta-analysis, all metabolites remained significantly associated with 

n
n_
BMI % female

LTL Age BMI

mean SD 95% CI mean SD 95% CI mean SD 95% CI

KORA 3003 2988 51.8 1.85 0.33 1.84 - 1.86 56.08 13.25 55.61 - 56.55 27.61 4.80 27.44 - 27.78

NTR 1314 1307 33.3 2.54 0.47 2.51 - 2.57 50.60 14.13 49.84 - 51.36 25.97 3.80 25.76 - 26.18

EGCUT 1084 1084 50.3 1.90 0.30 1.88 - 1.92 37.78 15.70 36.85 - 38.71 25.16 4.56 24.89 - 25.43

TwinsUK 810 810 100.0 3.58 0.64 3.54 - 3.62 53.72 10.76 53.10 - 54.34 26.44 5.35 26.13 - 26.75

ERF 806 806 53.7 1.79 0.37 1.76 - 1.82 47.76 13.97 46.80 - 48.72 27.17 4.81 26.84 - 27.50

LLS 643 643 50.1 1.44 0.27 1.42 - 1.46 62.91 6.61 62.40 - 63.42 26.65 4.01 26.34 - 26.96

QIMR 193 0 48.2 3.43 0.56 3.35 - 3.51 18.44 12.65 16.66 - 20.22 NA NA NA

Table 1. General characteristics of the study populations. Abbreviations: n = number of participants with data 
available on metabolites, telomere length, age, and sex; n_BMI = number of participants with data available on 
metabolites, telomere length, age, sex, and BMI; LTL = leukocyte telomere length; SD = standard deviation. LTL 
as a ratio of telomere repeat length to copy number of the single copy gene 36B4; Age in years; BMI in kg/m2.
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LTL, except for PC aa C32:1 (p-value = 1.1 × 10−3) (Supplementary Table 4). All metabolites, except for PC ae 
C38:4 (p-value = 1.8 × 10−3), remained significantly associated with LTL after excluding the QIMR cohort from 
the meta-analysis (Supplementary Table 5).

To explore to which extent the various metabolites cluster, we constructed a heat map based on the correlation 
of each individual metabolite with LTL in both model 1 and model 2 (Fig. 1). The heat map shows two clusters 
of which one (hereafter referred to as “cluster 1”) includes lysoPC a C17:0, PC ae C38:4, and a series of PC ae 
metabolites positively associated with LTL, while the second cluster (hereafter referred to as “cluster 2”) includes 
methionine, tyrosine, PC aa C32:1, and a series of PC aa metabolites negatively associated with LTL. Figure 1 
further shows that C3-OH is relatively dissimilar from all other metabolites. A correlogram of the six metabolites 
associated with LTL after correction for multiple testing is presented in Fig. 2 and shows a positive correlation of 
methionine with the three PC metabolites. LysoPC a C17:0 and PC ae C38:4 (cluster 1) are most strongly corre-
lated in Fig. 2. Methionine and tyrosine are highly correlated with each other and both amino acids are correlated 
to PC aa C32.1 (Fig. 2).

Pathway analysis using the Taverna workflow showed that phosphatidylcholines (lysoPC a C17:0, PC aa C32:1, 
and PC ae C38:4) and methionine are involved in homocysteine metabolism. Homocysteine is the intermediate 
product in the conversion of the amino acid methionine to cysteine, a precursor of the antioxidant glutathione 
(Fig. 3). Briefly, PC is a precursor of choline which is oxidized to betaine. Betaine is used to convert homocyst-
eine to methionine. Methionine is first converted to S-adenosylmethionine followed by demethylation to 
S-adenosylhomocysteine (SAH). Next, hydrolysis of SAH forms homocysteine, which can either be re-methylated 
into methionine (transmethylation cycle) or metabolized to cysteine (transsulfuration pathway) as shown in Fig. 3.

Discussion
When adjusting for false positive findings due to multiple testing, this study identified significant associations 
between LTL and six metabolites, which form two extended clusters. These metabolites include three phosphati-
dylcholines (lysoPC a C17:0, PC aa C32:1, PC ae C38:4), two amino acids (methionine, tyrosine), and one acyl-
carnitine (C3-OH). Longer LTL was associated with higher levels of lysoPC a C17:0 and PC ae C38:4, and with 

Metabolite

Model 1: age + sex Model 2: age + sex + BMI

Metabolite full namen direction* r p-value FDR n direction* r p-value FDR

lysoPC a C17:0 7853 ++−++++ 0.05 7.1 × 10−6 9.3 × 10−4 7638 ++−+++ 0.04 4.7 × 10−4 6.9 × 10−3 Lysophosphatidylcholine acyl C17:0

Met 7852 −−−−−−+ −0.04 9.2 × 10−5 6.0 × 10−3 7637 −−−−−− −0.05 7.5 × 10−5 9.3 × 10−4 Methionine

Tyr 7047 −−−−?−+ −0.04 2.1 × 10−4 6.9 × 10−3 6832 −−−−?− −0.04 8.9 × 10−4 6.9 × 10−3 Tyrosine

PC aa C32:1 7851 −−−−+−+ −0.04 2.4 × 10−4 6.9 × 10−3 7636 −−−−++ −0.04 3.4 × 10−4 6.9 × 10−3 Phosphatidylcholine diacyl C32:1

C3-OH 1449 ????−−? −0.10 2.6 × 10−4 6.9 × 10−3 1449 ????−− −0.10 2.7 × 10−4 6.0 × 10−3 Hydroxypropionylcarnitine

PC ae C38:4 7853 +−+−+++ 0.04 9.0 × 10−4 2.0 × 10−2 7638 +−+−++ 0.03 4.7 × 10−3 3.1 × 10−2 Phosphatidylcholine acyl-alkyl C38:4

PC ae C40:3 7853 +++++++ 0.04 1.6 × 10−3 3.0 × 10−2 7638 ++++++ 0.03 8.5 × 10−3 3.8 × 10−2 Phosphatidylcholine acyl-alkyl C40:3

PC ae C40:5 7853 +−+++++ 0.04 1.9 × 10−3 3.1 × 10−2 7638 +−++++ 0.03 1.9 × 10−2 1.0 × 10−1 Phosphatidylcholine acyl-alkyl C40:5

SM C20:2 7853 +−+−+++ 0.03 2.4 × 10−3 3.5 × 10−2 7638 +−+−++ 0.03 2.7 × 10−3 2.0 × 10−2 Sphingomyeline C20:2

C9 5262 +??−++ ? 0.04 2.9 × 10−3 3.8 × 10−2 5247 +??−++ 0.04 1.1 × 10−2 7.5 × 10−2 Nonaylcarnitine

PC ae C40:4 7853 +0+++++ 0.03 4.1 × 10−3 4.9 × 10−2 7638 +−++++ 0.03 2.8 × 10−2 1.1 × 10−1 Phosphatidylcholine acyl-alkyl C40:4

PC aa C38:3 7852 −−−−+++ −0.03 7.0 × 10−3 7.5 × 10−2 7637 −−−−++ −0.02 3.5 × 10−2 1.3 × 10−1 Phosphatidylcholine diacyl C38:3

PC ae C36:1 7852 +−+−+++ 0.03 7.4 × 10−3 7.5 × 10−2 7637 +−+−++ 0.02 5.8 × 10−2 2.1 × 10−1 Phosphatidylcholine acyl-alkyl C36:1

PC aa C36:1 7850 −−−−+++ −0.03 9.3 × 10−3 8.3 × 10−2 7635 −−−−++ −0.03 4.0 × 10−3 3.0 × 10−2 Phosphatidylcholine diacyl C36:1

PC ae C40:6 7853 +−+−+++ 0.03 9.5 × 10−3 8.3 × 10−2 7638 +−+−++ 0.02 8.5 × 10−2 2.4 × 10−1 Phosphatidylcholine acyl-alkyl C40:6

SM (OH) C16:1 7047 +−+−?++ 0.03 1.1 × 10−2 9.4 × 10−2 6832 +−+−?+ 0.02 5.3 × 10−2 1.6 × 10−1 Hydroxysphingomyeline C16:1

C2 7853 −−+−−−+ −0.03 1.4 × 10−2 1.0 × 10−1 7638 −−+−−− −0.03 1.5 × 10−2 8.3 × 10−2 Acetylcarnitine

PC ae C36:2 7853 ++−−+++ 0.03 1.4 × 10−2 1.0 × 10−1 7638 +−−−++ 0.02 1.3 × 10−1 2.4 × 10−1 Phosphatidylcholine acyl-alkyl C36:2

PC ae C38:3 7852 +++−+++ 0.03 1.7 × 10−2 1.1 × 10−1 7637 +++−++ 0.02 3.6 × 10−2 1.3 × 10−1 Phosphatidylcholine acyl-alkyl C38:3

PC aa C42:0 7853 +++++++ 0.03 2.0 × 10−2 1.3 × 10−1 7638 +++−++ 0.02 8.9 × 10−2 2.4 × 10−1 Phosphatidylcholine diacyl C42:0

PC aa C32:0 7853 −−−−+++ −0.03 2.1 × 10−2 1.3 × 10−1 7638 −−−−++ −0.03 5.9 × 10−3 3.5 × 10−2 Phosphatidylcholine diacyl C32:0

PC aa C40:5 7849 −−−−+++ −0.03 2.2 × 10−2 1.3 × 10−1 7634 −−−−++ −0.03 1.7 × 10−2 8.3 × 10−2 Phosphatidylcholine diacyl C40:5

PC aa C38:1 836 ?????++ 0.08 2.6 × 10−2 1.5 × 10−1 643 ?????+ 0.05 1.7 × 10−1 2.4 × 10−1 Phosphatidylcholine diacyl C38:1

PC aa C36:2 7853 −−−−−++ −0.02 3.0 × 10−2 1.6 × 10−1 7638 −−−−−+ −0.03 1.0 × 10−2 4.9 × 10−2 Phosphatidylcholine diacyl C36:2

PC aa C34:1 7852 −−−−+++ −0.02 3.1 × 10−2 1.6 × 10−1 7637 −−−−++ −0.03 1.3 × 10−2 7.5 × 10−2 Phosphatidylcholine diacyl C34:1

PC ae C42:4 7853 +−+++++ 0.02 3.5 × 10−2 1.8 × 10−1 7638 +−++++ 0.01 2.1 × 10−1 2.5 × 10−1 Phosphatidylcholine acyl-alkyl C42:4

SM C26:0 5454 +??−+++ 0.03 4.3 × 10−2 2.1 × 10−1 5246 +??−++ 0.02 2.3 × 10−1 2.6 × 10−1 Sphingomyeline C26:0

Table 2. Partial correlation meta-analysis results of LTL and metabolites (p-value in model 1 < 0.05). 
Abbreviations: n = number of participants, r = correlation coefficient, BMI = body mass index, FDR = false 
discovery rate. *Order of cohorts in direction column: KORA, NTR, EGCUT, TwinsUK, ERF, LLS, QIMR; 
Direction of effect represented by − (negative correlation) + (positive correlation) or ? (not included) for each 
study. Bold p-values: associations surpassing significance threshold (p-value < 1.1 × 10−3).
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Figure 1. Heat map showing the results of the cluster analysis of metabolite correlations with LTL. The two 
statistical models used in our analysis are shown on the horizontal axis and all individual metabolites are 
depicted on the vertical axis. In model 1 we investigated the association of the metabolites with LTL adjusting 
for age and sex and in model 2 we additionally adjusted for BMI. A blue color indicates a negative partial 
correlation point estimate, while a red color indicates a positive partial correlation point estimate. Cluster 1 is 
shown by a red rectangle and cluster 2 by a blue rectangle. The stars represent the significance: *p-value < 0.05; 
**p-value < 0.01; ***p-value < 0.001.
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lower levels of methionine, tyrosine, PC aa C32:1, and C3-OH. Pathway analysis highlighted a key role of the 
homocysteine metabolism.

A problem when comparing our findings to those in earlier studies is that the metabolites are platform- 
specific and thus we cannot replicate directly previous findings43,44. However, the PCs significantly asso-
ciated with LTL in our study belong to the same metabolite family of glycerophospholipids52 as two metabo-
lites significantly associated with LTL in the study of Zierer et al.47: 1‐stearoylglycerophosphoinositol and 
1‐palmitoylglycero-phosphoinositol. These metabolites are involved in fatty acid metabolism and particularly 
membrane composition in biological aging. The small study (N = 423) performed in American Indians from the 
Strong Family Heart Study also found associations of glycerophospholipids (e.g. glycerophosphoethanolamines, 
glycero-phosphocholine, and glycerophosphoglycerol) with LTL46.

The metabolite most significantly associated with LTL in our study was lysoPC a C17:0. LysoPCs are formed 
through hydrolysis of PCs by phospholipase A253 and have pro-atherogenic and pro-inflammatory effects through 
impairment of endothelium-dependent vascular relaxation54, monocyte recruitment and macrophage prolifer-
ation55,56, and increased expression of adhesion molecules57. Previously, negative associations of lysoPC a C17:0 
levels with high-sensitivity C-reactive protein (hsCRP), interleukin-6, insulin, and myocardial infarction have 
been found58,59. These results indicate the involvement of inflammation58,59. Inflammation and cardiovascular 
disease are related to telomere shortening60,61 and our study brings to surface lysoPC a C17:0 as a novel key player.

We further identified a negative association of the two highly correlated amino acids methionine and tyrosine 
with LTL. Methionine is an essential amino acid and involved in multiple important biological processes neces-
sary for normal growth and development in mammals, including protein synthesis, methylation, the transsul-
furation pathway, and homocysteine metabolism62. Previous studies have shown that a methionine-restricted diet 
increased lifespan in rodents63–67. Tyrosine is a non-essential amino acid and a precursor for several catechola-
mines, including dopamine, as well as thyroid hormones (T3 and T4)68,69. Low thyroid hormone levels have been 
associated with increased lifespan in multiple animal models70–72 and in humans73–75. Moreover, a role of tyrosine 
as developmental regulator and modulator of longevity has been described in Caenorhabditis elegans76. Tyrosine 
can also form a dipeptide with gamma-glutamate called gamma-glutamyltyrosine (http://www.hmdb.ca/metab-
olites/HMDB0011741), which was negatively associated with LTL in the TwinsUk cohort47. It is involved in the 
gamma-glutamyl cycle (as shown in Fig. 3) and indicates involvement of increased oxidative stress47, a factor 
related to LTL shortening77,78. Elevated blood levels of the amino acid tyrosine are seen in obese individuals79,80, 
and were found to be a novel risk factor for the development of diabetes38,81. Type 2 diabetes has been associated 
with shorter LTL10,16,17.

Both methionine and tyrosine are correlated to PC aa C32:1, which is the fourth metabolite significantly 
associated with LTL. PCs are the major phospholipids in cell membranes and lipoproteins82,83. They consist of a 
glycerol backbone with different fatty acid combinations that are linked by ester (a) or ether (e) bonds, resulting 
in either diacyl (aa) or acyl-alkyl (ae) PCs84. We observed a cluster of metabolites (cluster 2) negatively associ-
ated with LTL, including methionine, tyrosine, PC aa C32:1 and multiple other diacyl PCs. Various metabolites 

Figure 2. Correlogram of the six metabolites associated with LTL after correction for multiple testing in 
the first model using ERF data. Positive correlations are displayed in blue and negative correlations in red. 
Color intensity and the size of the circle are proportional to the correlation coefficients, with larger circles 
indicating higher correlation point estimates. Abbreviations: lysoPC.a.C17.0 = lysophosphatidylcholine 
acyl C17:0; Met = Methionine; Tyr = Tyrosine; PC.aa.C32.1 = phosphatidylcholine diacyl C32:1; 
C3.OH = hydroxypropionylcarnitine; PC.ae.C38.4 = phosphatidylcholine acyl-alkyl C38:4. *p-value < 0.05; 
**p-value < 0.01; ***p-value < 0.001.
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of this cluster including PC aa C32:1, PC aa C36:1, PC aa C38:3, and PC aa C40:5, have been associated with 
increased risk of type 2 diabetes40. The other PC that surpassed the significance threshold in model 1 was PC ae 
C38:4. However, PC ae C38:4 was nominally significant after including BMI in the model (model 2) and after 
excluding the younger QIMR study from the meta-analysis. PC ae C38:4 showed a positive association with LTL 
and clustered with lysoPC a C17:0 and a series of PC ae metabolites (cluster 1) that also show consistent effect 
across cohorts such as PC ae C40:3, PC ae C40:4, and PC ae C40:5 (FDR < 0.05). In line with this finding, PC ae’s 
have been shown to have antioxidant properties, protecting lipids from oxidation85,86, and the metabolites in this 
cluster showed a reduced risk of type 2 diabetes40.

Although also C3-OH was found to be associated with LTL when adjusting for multiple testing, the associa-
tion with LTL was only observed in ERF and LLS. In the other five studies, this metabolite did not pass the quality 
control. Therefore, this finding and other findings based on data of two studies only, such as PC aa C38:1, should 
be interpreted with care and more research, including alternative assessments of these metabolites, is needed. 
C3-OH is a metabolite of interest for further investigation as it is an acylcarnitine and involved in lipid trans-
port as well as lipid and fatty acid metabolism (http://www.hmdb.ca/metabolites/HMDB0013125). Carnitine 
is mainly absorbed from the diet but can also be synthesized from the amino acids lysine and methionine87 
and is essential for energy metabolism as it transports fatty acids from the cytosol into the mitochondrion for 
β-oxidation88,89. Figure 2 shows indeed that C3-OH is correlated to methionine, as predicted87. Carnitine insuffi-
ciency has been implicated as a common trait of insulin-resistant states, including advanced age, genetic diabetes, 
and diet-induced obesity90. However, when clustering the correlations of the metabolites to LTL, we find that 
C3-OH does not cluster with other metabolites (Fig. 1).

Pathway analysis using the Taverna workflow revealed that both methionine and PCs are part of homocyst-
eine metabolism. Our results give novel metabolic insights into the findings of previous studies that describe an 
increase in plasma homocysteine with age and shortening of LTL with increasing homocysteine levels91,92. Our 
study suggests that lysoPC a C17:0, PC aa C32:1, PC ae C38:4 as well as methionine and tyrosine are key metab-
olites in the link between the homocysteine pathway and telomere length. Homocysteine metabolism has been 
implicated in a wide range of age-related diseases, such as cardiovascular diseases93,94, dementia95,96, Alzheimer’s 
disease96,97, diabetes and its associated vascular complications98–100, and in mortality101–104. Taking together the 
findings of our study with that of previous studies, the endothelium may be the tissue of interest. There is sub-
stantial evidence that homocysteine and lysoPC are involved in endothelial dysfunction77,78 caused by inflamma-
tion and oxidative stress105–109. In cultured endothelial cells, homocysteine was also shown to accelerate telomere 
shortening and endothelial senescence92,110.

A major strength of this study is that both LTL and metabolites were measured centrally, using a standard pro-
tocol and blood samples taken at the same time point. Metabolite levels were quantified using the AbsoluteIDQ 
p150 kit (Biocrates Life Sciences, Innsbruck, Austria) that detects biologically relevant metabolites from four 
compound classes: acylcarnitines, amino acids, hexoses, and phosho- and sphingolipids. This method has been 
proven to be in conformance with FDA Guideline ‘Guidance for Industry—Bioanalytical Method Validation 
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(May 2001)’111, which implies proof of reproducibility within a given error range. At the same time, measuring 
metabolites with this specific platform may be considered also a limitation of our study as other metabolites might 
also be related to LTL.

In conclusion, using data from 7,853 individuals from seven independent cohorts, we found longer LTL asso-
ciated with higher levels of lysoPC a C17:0 and PC ae C38:4, and with lower levels of methionine, tyrosine, PC aa 
C32:1, and C3-OH. These metabolites form two clusters, one including lysoPC a C17:0, PC ae C38:4, and a series 
of PC ae metabolites positively associated with LTL, while the second cluster includes methionine, tyrosine, PC 
aa C32:1, and a series of PC aa metabolites. These metabolites have been implicated in cardiovascular disease and 
diabetes, two major drivers of morbidity and mortality. The functional role of these metabolites involves inflam-
mation and oxidative stress. Our pathway analysis links the metabolites to homocysteine metabolism, a pathway 
linked to cardiovascular disease, diabetes and many other age-related diseases.

Data Availability
All results generated during this study are included in this published article and its Supplementary Materials. The 
datasets analysed for each individual cohort can be requested by contacting the responsible Principal Investigator. 
Because of restrictions based on privacy regulations and informed consent of the participants, data cannot be 
made freely available in a public repository. For the Rotterdam Study data, requests should be directed towards 
the management team of the Rotterdam Study (secretariat.epi@erasmusmc.nl), which has a protocol for approv-
ing data requests.
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