Supplementary Data

Predicting cardiac electrical response to sodium channel blockade and Brugada syndrome using polygenic risk scores

Short title: Genetic prediction of cardiac sodium-channel blockade

Rafik Tadros MD PhD^{1,2}, Hanno L Tan MD PhD¹ for the ESCAPE-NET Investigators, Sulayman el Mathari MSc¹, Jan A Kors PhD³, Pieter G. Postema MD PhD¹, Najim Lahrouchi MD¹, Leander Beekman¹, Milena Radivojkov-Blagojevic MSc⁴, Ahmad S Amin MD PhD¹, Thomas Meitinger MD MSc⁴, Michael W Tanck PhD⁵, Arthur A Wilde MD PhD^{1,6}, Connie R Bezzina PhD¹

¹ Amsterdam UMC, University of Amsterdam, Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam, The Netherlands

² Cardiovascular Genetics Center, Montreal Heart Institute and Faculty of Medicine, Université de Montréal, Montreal, Canada

³ Department of Medical Informatics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands

⁴ Institute of Human Genetics, Helmholtz Zentrum München, Munich, Germany

⁵ Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam UMC, University of Amsterdam. Amsterdam, The Netherlands

⁶ Princess Al-Jawhara Al-Brahim Centre of excellence in research of hereditary disorders, Jeddah, Kingdom of Saudi Arabia

Single SNP association analysis

Methods

For PR and QRS slopes and BrS ECG, single SNP genome-wide association analysis was performed using a linear mixed model accounting for relatedness estimated with a genetic relatedness matrix for each chromosome, leaving one chromosome out, as implemented in GCTA.²³

Results

No associations were uncovered for PR or QRS slopes at genome-wide statistical significance (i.e. $P<5x10^{-8}$) (**Supplementary Figure 5**, **A** and **B**). The result of the case-control genome-wide association analysis of the drug-induced type I BrS ECG including 431 ajmaline-positive cases and 922 ajmaline-negative controls is presented as a Manhattan plot in **Supplementary Figure 5C** and quantile-quantile plot in **Supplementary Figure 6**. The *SCN5A-SCN10A* locus previously associated with BrS itself¹³ was also strongly associated with the development of ajmaline-induced type I BrS ECG (P= $8.6x10^{-19}$). The lead SNP rs10428132 shows a higher frequency of the BrS risk allele [T] in cases with an ajmaline-induced type I ECG (0.41), associated with an odds ratio of 2.1 per risk allele. The P-values of single SNP associations of previously published SNPs in PR, QRS and BrS with PR slope, QRS slope and ajmaline-induced type I ECG, respectively, are listed in **Supplementary Table 3**. The combination of these multiple SNPs with small effect sizes is the foundation underlying the use of PRS to predict the response to ajmaline, described in the main manuscript.

dbSNP ID	Cytoband	Chromosome	Genomic position (GRCh37)	Reference allele	Alternate allele	Beta (alternate allele)	P-value in prior GWAS	Reported genes
PR interval G	WAS (van Se	etten et al ¹⁹) for	PRS _{PR}					
rs4648819	1p36.33	1	2204790	G	А	1.7	4.68E-10	SKI
rs7538988	1p32.3	1	51817541	Т	С	-2.1	1.14E-08	EPS15
rs12127701	1p13.3	1	109838264	А	G	1.7	1.54E-09	MYBPHL, SYPL2
rs11264339	1q22	1	155140648	С	Т	-0.7	5.94E-10	ADAM15
rs397637	1q42.13	1	228453328	G	Т	0.8	7.11E-10	OBSCN
rs3856447	2p25.1	2	8750266	А	G	-1.2	1.20E-26	ID2
rs4430933	2p14	2	66749610	А	G	-1.3	5.06E-30	MEIS1
rs2732860	2q12.1	2	103398334	G	А	0.9	3.03E-15	TMEM182
rs13018106	2q24.3	2	164375202	G	С	-0.8	1.53E-11	FIGN
rs922984	2q31.2	2	179615887	Т	С	-1.5	1.79E-11	TTN
rs9826413	3p24.1	3	27834747	А	Т	2	1.69E-08	EOMES
rs11708996	3p22.2	3	38633923	G	С	3.1	1.06E-68	SCN5A
rs6599250	3p22.2	3	38784029	Т	С	-3.8	4.42E-242	SCN10A
rs900669	3p14.1	3	69406802	Т	А	0.8	5.71E-09	FRMD4B
rs13087058	3p13	3	73551228	Т	С	-1	5.82E-17	PDZRN3
rs16858828	3q13.2	3	111630787	А	С	0.9	2.41E-08	PHLDB2
rs6441111	3q25.31	3	156821808	С	Т	-0.8	6.96E-11	CCNL1
rs7638853	3q27.2	3	185350706	G	А	-0.7	2.44E-08	SENP2
rs343849	4q21.23	4	86663055	А	Т	2.1	3.12E-61	ARHGAP24
rs17446418	4q26	4	114418006	Т	G	0.8	3.41E-09	CAMK2D
rs3733409	4q35.2	4	187627593	С	Т	0.9	2.67E-08	FAT1
rs7729395	5q21.1	5	102100576	С	Т	2.4	1.00E-10	PAM
rs255292	5q35.1	5	172580866	С	А	1.1	5.99E-21	BNIP1, NKX2-5, CREBRF
rs11763856	7p14.2	7	35545787	С	Т	3.1	4.47E-10	TBX20, HERPUD2
rs3807989	7q31.2	7	116186241	А	G	-2	8.65E-69	CAV1, CAV2
rs2129561	7q32.3	7	130963771	А	G	1	3.39E-15	MKLN1
rs881301	8p11.22	8	38332318	Т	С	0.8	5.04E-10	FGFR1
rs12678719	8q23.1	8	106516054	С	G	0.8	3.77E-10	ZFPM2
rs12359272	10q24.1	10	97365163	G	А	1	3.68E-16	ALDH18A1, SORBS1
rs12257568	10q24.33	10	105522875	С	Т	1	5.83E-18	SH3PXD2A, OBFC1
rs1372797	11p15.1	11	20015276	G	Т	-1.1	2.36E-09	NAV2
rs652673	11q13.5	11	75931291	С	Т	0.8	4.41E-08	WNT11
rs17287293	12p12.1	12	24770878	А	G	-2.2	2.33E-41	C12orf67, SOX5
rs6489953	12q24.21	12	114764762	С	Т	-1.2	1.94E-16	TBX5
rs1896312	12q24.21	12	115346424	С	Т	-1.6	1.16E-34	ТВХЗ

Supplementary Table 1: SNPs and effect sizes used to calculate PRS_{BrS}, PRS_{PR} and PRS_{QRS}

rs11067773	12q24.21	12	116228495	Т	С	-1.3	1.02E-08	MED13L		
rs2585897	13q12.11	13	21398979	G	А	1.2	9.28E-16	XPO4		
rs718426	13q12.11	13	22085659	А	G	-1.2	3.25E-24	EFHA1		
rs9590974	13q14.13	13	47238717	С	А	-1.1	1.02E-19	LRCH1		
rs11465506	14q11.2	14	23842661	G	А	-6.4	7.06E-10	IL25,MYH6		
rs4901308	14q22.1	14	53379925	Т	С	0.8	2.04E-08	FERMT2		
rs17767398	14q24.2	14	71770485	С	G	1	6.44E-13	SNORD56B, SIPA1L1		
rs904974	15q23	15	70447582	Т	С	-1.1	4.53E-08	TLE3		
rs1984481	17p12	17	12637742	G	С	-0.8	1.37E-11	MYOCD		
QRS duratio	QRS duration (van der Harst et al ²⁰) for PRS _{QRS}									
rs17391905	1p32.3	1	51546140	Т	G	-1.27	1.07E-11	CDKN2C		
rs2207790	1p31.3	1	61897967	G	А	-0.55	6.71E-19	NFIA		
rs12039739	1p13.1	1	116333111	С	Т	-0.41	6.22E-10	CASQ2		
rs3770770	2p22.2	2	37192866	С	Т	0.49	4.95E-11	STRN		
rs6801957	3p22.2	3	38767315	Т	С	-0.77	6.90E-40	SCN10A, SCN5A		
rs4687718	3p21.1	3	53282303	А	G	0.57	6.70E-10	ТКТ		
rs2242285	3p14.1	3	66431602	А	G	-0.34	5.65E-09	LRIG1, SLC25A26		
rs1344852	4p15.31	4	20183937	G	С	0.46	1.45E-09	SLIT2		
rs13165478	5q33.2	5	153869040	G	А	-0.59	8.06E-19	HAND1		
rs1321311	6p21.31	6	36622900	С	А	0.84	1.03E-37	CDKN1A SLC35F1, PLN,		
rs11153730	6q22.31	6	118667522	Т	С	0.63	7.44E-29	CEP85L		
rs1419856	7p14.3	7	35306983	А	G	0.67	6.67E-18	TBX20		
rs6968945	7p12.3	7	46640900	С	Т	-0.34	5.14E-09	TNS3		
rs11773845	7q31.2	7	116191301	С	А	-0.36	7.50E-10	CAV1, CAV2		
rs1194743	10q21.1	10	54212597	Т	С	-0.44	5.87E-09	DKK1		
rs7918405	10q25.2	10	114505465	G	А	0.5	1.05E-14	VTI1A		
rs174577	11q12.2	11	61604814	С	А	-0.38	4.79E-12	FADS2, TMEM258		
rs883079	12q24.21	12	114793240	С	Т	-0.52	4.58E-16	ТВХЗ		
rs728926	13q22.1	13	74513122	С	Т	-0.4	5.60E-11	KLF12		
rs12880291	14q24.2	14	71884567	G	Т	-0.49	4.41E-14	SIPA1L1		
rs17608766	17q21.32	17	45013271	Т	С	0.52	8.98E-09	MAPT, KANSL1		
rs9910355	17q24.2	17	64315205	А	С	-0.41	1.14E-11	PRKCA		
rs879568	18q12.2	18	34311659	G	С	-0.34	1.88E-09	FHOD3		
rs10853525	18q12.3	18	42436652	С	Т	0.46	1.41E-14	SETBP1 GSS, EDEM2,		
rs2025096	20q11.22	20	33540000	G	А	-0.37	4.08E-09	МҮН7В		
rs13047360	21q21.3	21	28851580	Α	G	0.47	4.02E-10	ADAMTS5		
BrS GWAS (Bezzina et al ¹³) for PRS _{BrS}										
rs11708996	3p22.2	3	38633923	G	С	0.55	1.02E-14	SCN5A		
rs10428132	3p22.2	3	38777554	Т	G	-0.94	1.01E-68	SCN10A		
rs9388451	6q22.31	6	126090377	Т	С	0.46	5.14E-17	NCOA7, HEY2		

	Total cohort (N=1368)*	Ajmaline test positive for a type I BrS ECG (N=431)	Ajmaline test negative for a type I BrS ECG (N=922)	P-value (positive vs. negative)
Male sex	691 (50.5%)	216 (50.1%)	475 (51.5%)	0.64
Age at ajmaline infusion	43.2±14.6	44.5±13.6	42.5±14.9	0.017
Pathogenic or likely pathogenic SCN5A variant/SCN5A tested	64/415 (15%)	48/245 (19.6%)	16/170 (9.4%)	0.00096
Infused dose (mg)	77.3±19.2	71.1±23.3	80.4±16.0	< 0.0001
Infused dose (mg/kg)	1.0[1.0-1.1]	1.0[0.8-1.1]	1.0[1.0-1.1]	< 0.0001
Test indication Unexplained VF FHx BrS FHx SCD Suspicious ECG Syncope Other	40 (2.9%) 601 (44%) 491 (36%) 149 (11%) 32 (2.3%) 55 (4.0%)	10 (2.3%) 215 (50%) 78 (18%) 105 (24%) 15 (3.5%) 8 (1.9%)	29 (3.1%) 377 (41%) 411 (45%) 41 (4.4%) 17 (1.8%) 47 (5.1%)	<0.0001

Supplementary Table 2: Basic characteristics of included patients

*Of the 1368 ajmaline infusion tests performed, 15 had an inconclusive BrS result. BrS, Brugada syndrome; FHx, family history of; SCD, sudden cardiac death; VF, ventricular fibrillation

dbSNP ID	Chromosome	Genomic position (GRCh37)	Reported gene	P-value
PR SNPs ¹⁹				PR slope
rs4648819	1	2204790	SKI	NA
rs7538988	1	51817541	EPS15	0.705
rs12127701	1	109838264	MYBPHL, SYPL2	0.689
rs11264339	1	155140648	ADAM15	0.992
rs397637	1	228453328	OBSCN	0.544
rs3856447	2	8750266	ID2	NA
rs4430933	2	66749610	MEIS1	0.817
rs2732860	2	103398334	TMEM182	0.029
rs13018106	2	164375202	FIGN	0.550
rs922984	2	179615887	TTN	0.771
rs9826413	3	27834747	EOMES	0.414
rs11708996	3	38633923	SCN5A	0.273
rs6599250	3	38784029	SCN10A	0.021
rs900669	3	69406802	FRMD4B	0.065
rs13087058	3	73551228	PDZRN3	NA
rs16858828	3	111630787	PHLDB2	0.381
rs6441111	3	156821808	CCNL1	0.381
rs7638853	3	185350706	SENP2	0.428
rs343849	4	86663055	ARHGAP24	0.565
rs17446418	4	114418006	CAMK2D	0.825
rs3733409	4	187627593	FAT1	0.226
rs7729395	5	102100576	PAM	0.325
rs255292	5	172580866	BNIP1, NKX2-5, CREBRF	0.214
rs11763856	7	35545787	TBX20, HERPUD2	0.561
rs3807989	7	116186241	CAV1, CAV2	0.916
rs2129561	7	130963771	MKLN1	0.574
rs881301	8	38332318	FGFR1	0.875
rs12678719	8	106516054	ZFPM2	NA
rs12359272	10	97365163	ALDH18A1, SORBS1	0.399
rs12257568	10	105522875	SH3PXD2A, OBFC1	0.745
rs1372797	11	20015276	NAV2	0.895
rs652673	11	75931291	WNT11	0.752
rs17287293	12	24770878	C12orf67, SOX5	0.193
rs6489953	12	114764762	TBX5	0.913
rs1896312	12	115346424	ТВХЗ	0.168

Supplementary Table 3: Association of PRS SNPs with PR or QRS slopes and type I BrS ECG

rs11067773	12	116228495	MED13L	0.325
rs2585897	13	21398979	XPO4	0.654
rs718426	13	22085659	EFHA1	0.729
rs9590974	13	47238717	LRCH1	0.579
rs11465506	14	23842661	IL25, MYH6	0.722
rs4901308	14	53379925	FERMT2	0.111
rs17767398	14	71770485	SNORD56B, SIPA1L1	NA
rs904974	15	70447582	TLE3	0.663
rs1984481	17	12637742	MYOCD	NA
QRS SNPs ²⁰				QRS slope
rs17391905	1	51546140	CDKN2C	0.027
rs2207790	1	61897967	NFIA	0.530
rs12039739	1	116333111	CASQ2	0.721
rs3770770	2	37192866	STRN	0.456
rs6801957	3	38767315	SCN10A, SCN5A	0.043
rs4687718	3	53282303	ТКТ	0.764
rs2242285	3	66431602	LRIG1, SLC25A26	0.148
rs1344852	4	20183937	SLIT2	0.879
rs13165478	5	153869040	HAND1	0.847
rs1321311	6	36622900	CDKN1A	0.012
rs11153730	6	118667522	SLC35F1, PLN, CEP85L	0.014
rs1419856	7	35306983	TBX20	0.949
rs6968945	7	46640900	TNS3	0.539
rs11773845	7	116191301	CAV1, CAV2	0.808
rs1194743	10	54212597	DKK1	0.297
rs7918405	10	114505465	VTI1A	0.395
rs174577	11	61604814	FADS2, TMEM258	0.152
rs883079	12	114793240	ТВХЗ	0.449
rs728926	13	74513122	KLF12	0.976
rs12880291	14	71884567	SIPA1L1	0.088
rs17608766	17	45013271	MAPT, KANSL1	0.342
rs9910355	17	64315205	PRKCA	0.604
rs879568	18	34311659	FHOD3	0.838
rs10853525	18	42436652	SETBP1	0.513
rs2025096	20	33540000	GSS, EDEM2, MYH7B	0.121
rs13047360	21	28851580	ADAMTS5	0.388
BrS SNPs ¹³				Ajmaline-induced BrS ECG
rs11708996	3	38633923	SCN5A	1.06E-05
rs10428132	3	38777554	SCN10A	1.34E-18
rs9388451	6	126090377	NCOA7, HEY2	0.014

Supplementary Table 4: Multivariable analysis of PR slope, QRS slope and BrS type I ECG including *SCN5A* mutation status in the model

Predicted phenotype	Sample size	Predictors	Regression coefficient (standard error)	P-value
		Female sex	1.7 (1.7)	0.32
DP clone	291	PRS _{PR}	-0.20 (0.16)	0.21
PR Slope		Baseline PR	0.08 (0.03)	0.006
		SCN5A mutation	6.0 (2.6)	0.02
	295	Age (yr)	0.10 (0.06)	0.09
QRS slope		PRS _{QRS}	0.39 (0.49)	0.43
		SCN5A mutation	21.0 (2.3)	<2E-16
		QRS	0.0018 (0.0028)	0.53
	292	PRS _{BrS}	0.17 (0.03)	0.000002
BrS ECG		FHx-BrS	-0.03 (0.07)	0.64
		Type II/III ECG	0.14 (0.07)	0.047
		SCN5A mutation	0.14 (0.09)	0.11

FHx-BrS, Family history of Brugada syndrome.

Number of QRS data points per individual

Supplementary Figure 1: Histograms of number of PR or QRS data points per sample

Number of PR data points per individual

Supplementary Figure 2: Linear mixed modeling results of ajmaline dose-response on PR and QRS before marker correction. Panels **A** and **B** represent residuals vs. fitted values and observed vs. fitted values, respectively, for PR interval. Panels **C** and **D** show the same for QRS duration.

Supplementary Figure 3: Linear mixed modeling results of ajmaline dose-response on PR and QRS after marker correction. Panels **A** and **B** represent residuals vs. fitted values and observed vs. fitted values, respectively, for PR interval. Panels **C** and **D** show the same for QRS duration.

Supplementary Figure 5: Manhattan plots of linear mixed model association of PR slope (**A**), QRS slope (**B**) and ajmaline-induced type I ECG (**C**). Red and blue horizontal lines represent the genome-wide significance ($P < 5 \times 10^{-8}$) and suggestive significance ($P < 10^{-5}$), respectively

Supplementary Figure 6: Quantile-quantile (QQ) plot for single SNP association with ajmalineinduced type I BrS ECG using linear mixed modeling.

Supplementary Figure 7: Density plots of PRS_{PR} , PRS_{QRS} and PRS_{BrS} . Corresponding means \pm standard deviations are shown at the bottom of each plot.

Supplementary Figure 8: Receiver operating classifier (ROC) curve for ajmaline-induced BrS based on PRS_{BrS} alone (**A**) and when combined with family history of BrS (FHx BrS), baseline QRS duration, and the presence of a baseline type II or III BrS ECG (**B**). C-statistic and its 95% confidence intervals (CI) are shown for each model.

