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Abstract  

Sensitivity and resolution together determine the quality of NMR spectra in biological 

solids. For high-resolution structure determination with solid-state NMR, proton-

detection emerged as an attractive strategy in the last few years. Recent progress in 

probe technology has extended the range of available MAS frequencies up to above 

100 kHz, enabling the detection of resolved resonances from sidechain protons, which 

are important reporters of structure. Here we characterise the interplay between MAS 

frequency in the newly available range of 70-110 kHz and proton content on the 

spectral quality obtainable on a 1GHz spectrometer for methyl resonances. Variable 

degrees of proton densities are tested on microcrystalline samples of the α-spectrin 

SH3 domain with selectively protonated methyl isotopomers (CH3, CH2D, CHD2) in a 

perdeuterated matrix. The experimental results are supported by simulations that allow 

the prediction of the sensitivity outside this experimental frequency window. Our results 

facilitate the selection of the appropriate labelling scheme at a given MAS rotation 

frequency. 
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Introduction 

 

Direct detection of proton signals represents the most effective way to enhance NMR 

sensitivity (Maudsley et al. 1977) (Bodenhausen and Ruben 1980), (Ishii et al. 2001). 

In solids, however, the strong network of homonuclear dipolar couplings produces 

broad lines up to several kilohertz at moderate magic angle spinning (MAS) rates, with 

a consequent loss of spectral resolution (Maricq and Waugh 1979). Dilution of the 

proton content in a sample has been demonstrated as an effective strategy to retrieve 

narrow proton lines (McDermott et al. 1992) (Reif et al. 2001). However, both sensitivity 

and resolution are affected by the level of proton dilution depending on the MAS rate 
(Saalwächter 2005). 

 

The maximum achievable frequency of sample spinning at the magic angle is inversely 

proportional to the diameter of the employed rotors (Samoson et al. 2005). Therefore, 

faster spinning implies smaller rotor volumes and less sample, and thus to start out 

with a reduced sensitivity. The effect is compensated by coil efficiency which is 

inversely related to coil diameter. In addition, protonated samples become accessible 

at ultra-fast rotation frequencies (Agarwal et al. 2014) (Andreas et al. 2016)  

(Bockmann et al. 2015). On the other hand, faster MAS is more effective in averaging 
1H dipolar interactions, and tolerate less stringent dilutions, reducing the associated 

signal loss. 

 

For 4.0 mm diameter (10-20 mg sample), the maximum MAS frequency amounts to 

18 kHz. Partial deuteration (H: D » 10: 90) of exchangeable amide sites in an otherwise 

extensively deuterated environment is essential to obtain high proton spectral quality 

(Chevelkov et al. 2006; Reif 2012). Faster spinning (3.2 mm diameter, 23 kHz) allowed 

to increase the proton density at exchangeable sites to ~ 30%. With the emergence of 

1.3 mm probes (2 mg sample, maximum of ~ 67 kHz MAS), 100% protons at 

exchangeable amide sites (Lewandowski et al. 2011) in an otherwise deuterated 

sample yield optimal spectral quality for amide resonances (Schubeis et al. 2018; 

Stock et al. 2018; Vasa et al. 2019), opening the possibility for efficient detection of 

multiple triple-resonance correlations for site-specific backbone assignments (Barbet-

Massin et al. 2014; Knight et al. 2011; Nieuwkoop et al. 2015). Fully-protonated 

samples become accessible at above 100 kHz MAS achievable in 0.7 mm probes 
(Andreas et al. 2016; Schubeis et al. 2018; Vasa et al. 2019).   
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 In comparison to the amide backbone, the proton density in the aliphatic sidechain is 

significantly higher. Fractional labelling of protons in the amino acid sidechains (Asami 

and Reif 2012, 2013; Asami et al. 2010) and/or inverse fractional deuteration (Mance 

et al. 2015) yield excellent spectral resolution at moderate MAS frequencies.  

 

It is obvious from the few available studies that even at the highest MAS frequency 

commercially available today, dipolar dephasing is still a major impediment for 

protonated samples (Bockmann et al. 2015). Despite the recent examples of a 

constructive use of side-chain proton resonances in fully-protonated systems with 

frequencies of ~110 kHz (Andreas et al. 2016; Stanek et al. 2016), experiments and 

simulations indicate that sensitivity and resolution are destined to increase above MAS 

frequencies beyond 100 kHz (Cala-De Paepe et al. 2017; Penzel et al. 2019), even for 

highly deuterated, CH3 methyl protonated samples (Agarwal et al. 2014; Penzel et al. 

2015). In fact, MAS frequencies beyond 300 kHz are needed to reach 80 % of the 

maximum achievable sensitivity (Xue et al. 2018). 

 

In solution NMR, -CH3 methyls yield the highest sensitivity with comparable resolution 

when comparing -CHD2, -CH2D and -CH3 isotopomers. CH3 methyl labelling is 

therefore the preferred strategy to investigate large molecular weight systems 

(Sprangers and Kay 2007; Sprangers et al. 2007). In solids, the situation is quite 

different. Although CH3 has the highest proton density, intra-methyl as well as inter-

methyl dipole-dipole couplings are significant and efficient averaging by MAS is difficult 

to achieve (Xue et al. 2018). 

 

In selectively methyl protonated samples, the CH3 isotopomer in principle yields a 3-

fold higher sensitivity in comparison to CHD2 labelling. At the same time, intra- and 

inter- methyl 1H, 1H dipolar interactions induce dipolar broadening that counters the 

advantage. A comparison of deuterated samples, with selectively labelled CH3 and 

CHD2 methyls at Ile and Val has been carried out previously by Schanda and co-

workers for the sedimented 468 kDa dodecameric aminopeptidase TET2 (Kurauskas 

et al. 2016). The authors concluded that at > 60 kHz MAS and 14.1 T (600 MHz for 1H) 
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magnetic field the two schemes (CH3 and CHD2) yield comparable linewidths, with 

the CH3 labelling providing improved sensitivity. 

 

We here address the question of which methyl isotopomer yields the highest sensitivity 

at the highest available MAS rates in a model, ordered microcrystalline sample using 

experiments and numerical simulations. It is found that a MAS frequency of 68 kHz on 

average is needed to achieve a break-even in the sensitivity when CHD2 and CH3 

labelled samples are compared. 

 

We believe that the identification of the methyl isotopomer that yields the largest 

sensitivity at a given MAS rotation frequency will be useful for studies involving very 

large protein complexes, such as ribosomal complexes, for which sensitivity is limiting 

(Barbet-Massin et al. 2015) (Kurauskas et al. 2016) (Barbet-Massin et al. 2018) . 

 

Results  

We recorded 1H detected 2D 13C,1H correlation spectra as a function of MAS frequency 

in the range of 70-106 kHz, employing Cross Polarization (CP) (Pines et al. 1973). We 

used two selectively methyl labelled (13CH3, 13CHD2) samples of the α-spectrin SH3 

domain otherwise perdeuterated. Spectra for a sample containing 13CH2D isotopomers 

were estimated using numerical simulations. 
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Figure 1. A) CP based HSQC spectra recorded for CHD2 and CH3 selectively methyl 
protonated α-spectrin SH3 domain samples. Experiments were performed using 70 kHz MAS, 
on a 1 GHz spectrometer. Contour levels were set according to the same values, however 
accounting for the different amount of material in both samples. At this MAS frequency, not all 
cross peaks are observable for the CH3 labelled sample (e.g. V23	𝛾1, V9	𝛾1, indicated by red 
circle). B) Superposition of CP based HSQC spectra recorded for CHD2 (red trace) and CH3 
(black trace) selectively methyl protonated samples at 106 kHz MAS, where all the cross peaks 
are visible. Contour levels were set to the same values accounting for the different amount of 
materials in both samples. C) Proton lineshapes for V44𝛾1 and V53𝛾1 at 106 kHz MAS. The 
full width at half height FWHH) of the proton methyl resonance of the CH3 selectively protonated 
SH3 sample (~ 90 Hz) are much larger than those observed for the CHD2 labelled sample (~ 
35 Hz). Absolute signal to noise ratio for all methyl cross peaks in CHD2 and CH3 selectively 
methyl protonated SH3 samples recorded at 106 kHz (D) and 70 kHz (E) MAS. The signal to 
noise ratio for the CHD2 sample was scaled according to amount of sample in each rotor (CH3: 
CHD2 = 1: 1.3) as shown in Figure S4. Due to the fact that the proton content of the CH3 
isotopomers is 3 times higher than the CHD2 isotopomers, we expect better sensitivity for the 
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CH3 labelled sample. This is the case for the majority of the residues with the exception of 5 
sites showing higher sensitivity in the CHD2 labelled sample. 
 

In the following, we compare the experimental intensities from CP based HSQC 

spectra for CH3 and CHD2 labelled samples acquired at a MAS frequency of 106 kHz. 

As expected, we observe that the sensitivity of the methyl resonances is significantly 

increased for all methyl resonances in the CH3 labelled sample, with the exception of 

a few sites. To appreciate the effects of the proton network and the induced site-

specific dipolar broadenings, we compared the experimental CH3/CHD2 intensity ratios 

to the gain in sensitivity that is theoretically expected. The ratio of the cross-peak 

intensities for CH3 and CHD2 labelled samples 	 # $%&
# $%'(

	  depends on number of 

protons, the respective 1H and 13C linewidth, as well as the transfer efficiencies (	𝜖	) in 

the following way: 

𝐼 𝐶𝐻-
𝐼 𝐶𝐻𝐷/

	= 	3 ∗ 	
𝐿𝑊 	5𝐻, 𝐶𝐻𝐷/	
𝐿𝑊 	5𝐻, 𝐶𝐻-	

∗
𝐿𝑊 	5-𝐶, 𝐶𝐻𝐷/	
𝐿𝑊 	5-𝐶, 𝐶𝐻-	

∗ 	
𝜖 	𝐶𝐻-	
𝜖 	𝐶𝐻𝐷/	

																												(1) 

The transfer efficiency (	𝜖	) in the CP based experiments, as presented in this work, is 

related to 𝑇5
;, whereas in the INEPT based experiments, the transfer efficiency strongly 

depends on the proton spin bath. T'2 typically increases with increased MAS rotation 

frequency (Asami and Reif 2012; Lewandowski et al. 2011). The ratio of 1H and 13C 

line widths of CHD2 versus CH3 labelled samples is on the order of 0.6 and 1.1, 

respectively (Figure S1). The ratio of the transfer efficiencies amounts to 1.45 (Figure 

S1). Accounting for all experimental parameters, we expect an increase of the 

intensities for the CH3 labelled sample by inserting experimental values in equation 1 

as follows: # $%&
# $%'(

=	3*0.6*1.1*(1/1.45) ~1.33 at a MAS rotation frequency of 106 kHz. 

This is in good agreement with the experimental intensity ratios represented in Figure 

1D. Of note, we consider negligible contribution of heterogeneity of magnetic field and 

sample to linewidths, which can be significant for samples such as amyloid fibrils or 

samples with local structural disorders. 

Next, we compared the CH3/CHD2 intensity ratios with the 𝑑=>> values extracted from 

the X-ray structure of the α-spectrin SH3 domain. Following the convention of Zorin et 

al. (Zorin et al. 2006), 𝑑=>> refers to the square root of the sum of squared dipolar 

couplings: 
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𝑑?
=>> =

𝜇A
4𝜋

𝛾%/
1
𝑟?,E
- 	

/

E

																																																																																										(2) 

𝑑=>> is a proxy for the strength of the dipolar coupling network. The 𝑑=>> values have 

been calculated using the X-ray structure of the α-spectrin SH3 domain (PDB-ID: 2nuz) 
(Chevelkov et al. 2007). In the calculation, a distance cut-off of 15 Å has been 

employed. As indicated schematically in Figure 2A, the number of potential proton-

proton interactions increases more than quadratically with the number of protons in the 

respective isotopomer. Figure 2B shows the CH3/CHD2 intensity ratios correlated with 

the respective 𝑑=>> values.  

 

 
 
Figure 2. (A)Schematic representation of the dipolar coupling network for CH3, CH2D and CHD2 
selectively protonated methyl groups. The number of expected 1H-1H dipolar interactions is 
indicated below each scheme. (B) Correlation between the experimental CH3/CHD2 intensity 
ratio and the effective dipolar coupling dRSS. For the CHD2 selectively methyl protonated 
sample, dRSS has been calculated using a distance cut-off of 15 Å. For some leucine residues, 
the 1H-1H inter dipolar coupling is close to 0. For those residues, the sensitivity gain from CHD2 

to CH3 is close to the maximum value of 3. 

 

The distance between two protons in a methyl group is on the order of 1.79 Å, 

corresponding to a dipole-dipole coupling of ~ 21 kHz. Assuming a rigid CH3 group, 

the total intramethyl 𝑑=>> is ~ 51.4 kHz (=√3*√2*21 kHz). Due to the fast methyl group 
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rotation, the anisotropic interactions are scaled by a factor of -1/2, yielding an averaged 

value of ~ 26 kHz. For CH3, the inter-methyl contribution to 𝑑=>> varies between 0 and 

36 kHz (corresponding to a 1H-1H distance of 2.13 Å).  For CHD2, 1/9 of these 

interactions remain, and 𝑑=>> is reduced to a value on the order of 0-12 kHz. The 𝑑=>> 

values in Figure 2B account only for the inter-methyl dipolar contributions. We find that 

the peak intensity ratios correlate rather well with the magnitude of the proton dipolar 

network. 

 

Subsequently, we compared the CH3/CHD2 intensity ratio to explicit simulations carried 

out using the program SIMPSON (Bak et al. 2000; Tošner et al. 2014). Simulations 

and normalization of the experimental intensities was done as described previously 

(Xue et al. 2017; Xue et al. 2018). In brief, simulated and experimental intensities are 

related with the equation: 

 

𝐼𝑁𝑇E
HIJ	 𝑖 = 𝜅E𝐼𝑁𝑇E

M?N 𝑖 	𝜖E																																																																																										(3) 

 

where 𝜅E is an empirical fitting factor that is determined for each experiment. The index 

j denotes the MAS rotation frequency. 𝜖E  describes the magnetization transfer 

efficiency at the MAS frequency j. In the following, we have employed cross 

polarization for magnetization transfer. 𝐼𝑁𝑇EM?N 𝑖  and 𝐼𝑁𝑇E
HIJ	 𝑖  are cross peak 

intensities from simulation and experiment respectively and i is a residue specific 

index. Intensities for the CH3 and CHD2 labelled samples were normalized to 100 and 

100/3, respectively. In the simulation, each methyl group was assumed to be 

interacting with the two closest methyl groups in the X-ray structure (i.e. the spin 

system to be simulated contained up to 9 spins). Methyl rotations were considered by 

scaling the intra-methyl 1H-13C and 1H-1H dipolar coupling by 1/3 and -1/2, respectively.  

 

Simulated intensity build-up curves for the three labelling schemes (-CH3, -CH2D, -

CHD2) are represented in Figure 3A. The simulations are superimposed with 

experimental data (shown in red) for CH3 and CHD2 labelled samples. In Figure 3A, 

two residues have been selected that represent methyl groups in a dilute (L34) and a 

dense (V44) proton network. The signal intensities as a function of MAS frequency are 

shown in Figure S2. Individual simulated 1D-1H spectra are shown in Figure 3B.  
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Figure 3. A) Cross peak intensity build-up curves for L34δ1 and V44γ in the α-spectrin SH3 
domain as a function of the MAS frequency for CHD2, CH2D and CH3 selectively protonated 
samples. Residues V44 and L34 are embedded in differing proton networks and experience 
different effective proton dipolar couplings dRSS. Experimental intensities were corrected for CH3 
and CHD2 with respect to the amount of protein in each rotor, employing a direct excitation 1D-
13C experiment for quantification. Experimental intensities are normalized using the same 
method as described previously (Xue et al. 2018). B) Simulated proton lineshapes for the 
methyl groups L34𝛿1 and V44γ2. All simulations were carried out assuming a MAS frequency 
of 110 kHz and an external magnetic field of 1GHz. Intensities are normalized according to the 
number of protons. C) Simulated CH3/CHD2 intensity ratio as a function of MAS for V44γ2. The 
methyl group of V44γ2 is located in the core of the protein and experiences the highest proton 
density. D) MAS frequency necessary to reach equal intensity in CH3 (red) and CH2D (black) 
with respect to CHD2 selectively methyl protonated SH3 samples assuming a B0 field of 1 GHz. 
 

For L34, CH3 labelling yields a better sensitivity already above a MAS rotation 

frequency of 15 kHz in comparison to CHD2 labelling (Figure 3), if we assume the same 

polarization transfer efficiency. For V44, however, CH3 labelling will not be beneficial 

below a MAS frequency of 125 kHz with respect to the CHD2 labelled sample. The 

situation is even worse for CH2D labelled samples for which the break-even in 

comparison to CHD2 is expected above MAS rotation frequencies of 175 kHz.  
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We would like to point out here that the high proton density in CH3 labelled 

microcrystalline samples can have an impact on the sensitivity of the experiment and 

might prevent the detection of a CH3 labelled methyl group in the core of a protein 

structure. Care has to be taken in particular in experiments aiming at a structural 

analysis. Missing methyl cross peaks might result in a lack of short-range distance 

restraints that are potentially essential to define the geometry of the core of the protein 

structure. 

 

Conclusion 

We have shown that a MAS rotation frequency above 110 kHz is necessary to yield 

higher sensitivity for all methyl resonances in CH3 selectively methyl protonated 

microcrystalline samples in comparison to their CHD2 labelled counter parts. We 

believe that the obtained results will be in particular of interest for the design of 

experiments involving very large and ordered protein complexes for which sensitivity 

is limiting, and for which an additional gain in sensitivity would be desirable.   

 

 

Materials and methods  

The perdeuterated, selectively methyl protonated sample of the micro-crystalline SH3 

domain was prepared as described previously (Agarwal et al. 2008). In brief, 

expression was carried out in 100 % D2O M9 medium, supplemented with 15N-

ammonium chloride and u-[2H, 13C]-D-glucose. α-ketoisovalerate (2-keto-3-(methyl-

d3)-butyric acid-4-13C sodium salt, Sigma-Aldrich) (-CH3 and -CHD2 labelled) was 

added to the M9 medium 1 h prior to induction with 1 mM IPTG (at OD600 0.5-0.6). 

Subsequent to overnight expression, the SH3 domain was purified via anion exchange 

and size exclusion chromatography as described before. For crystallization, pure 

protein was lyophilized and dissolved in 100 % D2O (final concentration: 8-10 mg/ml). 

Ammonium sulfate (dissolved in 100 % D2O) was added to a final concentration of 100 

mM and the pH was adjusted to 8.0 by adding NaOD.  

 

All NMR experiments were carried out using a 0.7 mm H/C/N triple resonance MAS 

probe operating at a static magnetic field of 23.6 T (1 GHz 1H Larmor frequency). As 

the sample was recrystallized from 100 % D2O, no solvent suppression was employed. 

For all experiments, the effective sample temperature was adjusted to be the same, 

using DSS and the residual water signal for calibration (Linser et al. 2007). The pulse 

sequences used to quantify the transfer efficiency are reported in the Supplementary 
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Material (Figure S3). The optimised 1H-13C and 13C-1H CP conditions at 1GHz field are 

as follows: at 106 kHz MAS (60 kHz on 13C, 177 kHz on 1H), at 90 kHz MAS (60 kHz 

on 13C and 160 kHz on 1H) and at 70 kHz MAS (50 kHz on 13C and 130 kHz on 1H). In 

all cases, 1H RF amplitude during Hartmann-Hahn matching was varied between 90% 

to 100 % of the nominal values whereas constant amplitude was used for 13C. The 

contact times for 13C-1H were set to 500 µs for both samples, whereas for 1H-13C 

transfer, 500 µs and 1.5ms contact times were chosen for CH3 and CHD2 samples, 

respectively.  
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Figure S1: Intensity analysis for spectra obtained for CH3 and CHD2 labelled SH3 domain 

protein. CP based HSQC spectra were obtained at 106 kHz MAS and 1 GHz B0 field. Raw 

data were processed with 35 ms acquisition in carbon detection. In proton dimension, no 

window function is given, CH3 was processed with 20 ms acquisition and CHD2 was 

processed with 50 ms acquisition. Square sine bell (QSINE as implemented in Topspin 

Bruker) window function was applied for apodization in the indirect dimension. All peaks were 

nicely resolved. (Measured site-specific proton T2 is 6 ms on average for CH3 and 50 ms on 

average for CHD2). The mean efficiency of 2 CP steps together (1H->13C and 13C->1H) 

amounts to 0.32 and 0.22 for CHD2 and CH3 labelled samples, respectively (B) measured by 

employing pulse sequence described in Figure S3A. Of note, no scaling of intensities due to 

sample amount was performed in A as done in Figure 1D in the main manuscript. 
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Figure S2: to be continued 
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Figure S2: HSQC 1H spectral intensities for all valine and leucine methyl groups α-spectrin 

SH3 as a function of MAS frequency. The experimental intensities were corrected for the 

experimental CP transfer efficiency. Experimental normalization method is the same as 

mentioned in previous publication.  

 

 
 
Figure S3: Pulse sequences for residue specific Dipolar coupling based cross polarization 

efficiency. 
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Figure S4: Bloch decay spectra to quantify sample amounts in CH3 and CHD2 labelled 

proteins in the two different rotors. The amount is judged based only on the methyl region of 

the spectra. 
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