Supporting Information

Mass Transfer Limitation During Slow Anaerobic Biodegradation of 2-Methylnaphthalene

- 4 Sviatlana Marozava#, Armin H. Meyer#, Alfredo Pérez-de-Mora #, Mehdi Gharasoo#, Lin
- 5 Zhuo[#], He Wang [#], Olaf A. Cirpka[§], Rainer U. Meckenstock⁺, Martin Elsner ^{&#*}
- ⁶ [#]Institute of Groundwater Ecology, Helmholtz Zentrum München-German Research
- 7 Center for Environmental Health, Ingolstädter Landstrasse 1, D-85764 Neuherberg,
- 8 Germany

1

- ⁹ ⁺University Duisburg-Essen, Biofilm Centre, Universitätsstr. 5, D-45141 Essen,
- 10 Germany
- ¹¹ [§]University of Tübingen, Center for Applied Geoscience, Hölderlinstr. 12, 72074 Tübingen,
- 12 Germany
- ¹³ [&]Technical University of Munich, Chair of Analytical Chemistry and Water Chemistry,
- 14 Marchioninistr. 17, 81377 Munich, Germany

15	^ Un	iversity	of	Waterloo,	Department	of	Earth	and	Environmental	Sciences,
16	Ecohy	ydrology	y, 200	0 University	Avenue West	t, Wa	aterloo,	Ontar	io N2L 3G1, Car	ada
17										
18	Conta	ains:								
19	Pa	age: 7								
20	Fi	gure: 0								
21										
22	Conte	ents:								
23	1.	Introdu	uction	า						
24		1.1	Dete	ermination o	f enrichment f	acto	rs by th	e Ray	leigh equation	
25	2.	Materi	al an	d Methods						
26		2.1	Chei	micals						
27		2.2	Culti	vation cond	itions and deg	grada	ation ex	perime	ents	
28		2.3	Anal	ytical Metho	ods					
29										
30	1.	Introd	uctio	n						
31	1.1	Detern	ninat	ion of enric	hment factors	by th	e Rayle	eigh eq	uation:	
32	Cha	anges ir	n iso	tope values	s are indicativ	ve of	f the e	xtent o	of degradation a	nd can be
33	descr	ibed by	the F	Rayleigh eq	uation (Eq. 1):	:				

35
$$\frac{R_t}{R_0} = \frac{1 + \delta 13 \text{Ct}}{1 + \delta 13 \text{Co}} = f^{\varepsilon}$$
(1)

where R_t and R_0 (or $\delta^{13}C_t$ and $\delta^{13}C_0$) describe the average isotope composition of the heavy isotope to the light isotope in a specific compound at a given time and at the beginning of the reaction, respectively (i.e., when nothing has been degraded so far). The remaining fraction *f* of the compound is given by the ratio C_t/C_0 , where C_t is the concentration of this compound at a given time and C_0 at the beginning of the reaction.

42 **2.** Materials and Methods

43 **2.1** Chemicals

Unless stated otherwise, all reagents and solvents were of analytical grade. 2-MN (98%) and naphthalene (99%) (used as internal standard for GC-MS measurements) were obtained from Aldrich Chemie, CAS: 91-57-6 and CAS: 91-20-3, respectively. n-Hexadecane (CAS: 544-76-3 (99%), used as solvent-carrier phase for 2-MN, was obtained from Acros Organics. Cyclohexane (CAS: 110-82-7), utilized as extractant for 2-

34

49 MN from the aqueous phase and solvent for measurements of 2-MN in the hexadecane

50 carrier phase, was obtained from Fluka Analytical.

51

52 2.2 Cultivation conditions and degradation experiments

2-methylnaphthalene degrading pure culture NaphS2 were cultivated as described in 53 Widdel and Bak¹ and Galushko et al. ² Degradation experiments were carried out either 54 in aqueous medium solution (one phase) or in two phase systems with hexadecane as 55 an overlaying carrier phase. In the one phase system pure 2-MN crystals were added to 56 1 L bottles with 850 ml of anoxic artificial seawater medium ² and 150 ml of CO₂/N₂ (20:80 57 v/v) headspace. Crystals were stirred until complete dissolution occurred. Final 2-MN 58 concentration was 0.060 mM. 59 In the two-phase systems two different concentrations of 2-MN in hexadecane were 60 used: 61 Ten milliliters of the carrier phase containing 2-MN concentrations of 80 mM and 10 mM 62 were added to 220 ml bottles with 180 mL of anoxic artificial seawater medium and 10 ml 63 of CO₂/N₂ (20:80 v/v) headspace, providing a final nominal concentration of 4 mM and 64

65	0.5 mM of 2-MN in the whole two-phase system (water phase + organic phase) in each
66	condition respectively. According to our abiotic experiments, the aqueous concentration
67	of 2-MN after establishment of equilibrium with the donor phase in the absence of
68	biodegradation was 4 and 0.5 μ M, respectively (Table 1). The actual concentration in the
69	gas phase was not measured and was neglected because of the low hexadecane-water
70	partitioning coefficient (10 ^{-5.8} , Schwarzenbach Lehrbuch). Calculation of a substrate in
71	the water phase for two conditions of 10 and 80 mM was the same and was equal to 0.1
72	% (Table 1) because the partitioning coefficient was the same in all conditions and was
73	calculated to be in our systems approx. 20 000). The fraction of a substrate was calculated
74	according to the following equation
75	$f_{naphthalene,aq} = (V_{aq}/V_d)/(partition coefficient)$
76	where V_{aq} is the volume of the aqueous phase and V_{d} the volume of the donor phase
77	in milliliters.
78	The reason why estimated partition coefficients where higher in our experiments than the
79	theoretical one is likely due to the elevated salt concentration of our medium ("salting out"

80 effect).

81	In order to decrease the accumulation of relevant toxic amounts of sulfide ³ by sulfate
82	reduction we exchanged the aqueous medium by fresh medium, when concentrations of
83	sulfide were around around 5-6 mM.
84	All cultivation bottles were sealed with Viton stoppers (Maag Technik, Dübendorf,
85	Switzerland) and inoculated with 10% inoculum. All incubations were performed at 30 $^\circ$ C,
86	in the dark, and with gentle shaking (52 rpm). This shaking speed was chosen as a
87	compromise between homogeneous substrate distribution and minor disturbance of the
88	culture. All experiments were conducted in triplicates surplus two controls. In the control
89	experiments autoclaved culture solution was added.
90	
91	2.3 Analytical Methods.
92	Concentration analyses. Analyses of the 2-MN degradation progress in the one phase
93	system were done in duplicates for each sampling point. Thus for each replicate 0.8 mL
94	of the aqueous solution were withdrawn. Extraction of 2-MN was done by vortexing the
95	aqueous sample with cyclohexane in a v/v ratio of 2/1 (aqueous solution/cyclohexane) for
96	2 min in a 2-mL glass vial (Supelco, Bellefonte, PA) closed with a Teflon coated cap. After

97	30 min – time of separation of the aqueous and cyclohexane phase, 162 μL of the
98	cyclohexane phase were transferred to a another 2-ml glass vial containing a 200 μL
99	micro-insert (Carl Roth Chemicals, Karlsruhe) and 18 μ L of the internal naphthalene
100	standard stock solution (1 mmol/L in cyclohexane) were added. Extraction efficiency was
101	never worse than 95 % (data not shown).
102	For the determination of the concentrations of 2-MN in the two phase system, 18 μL of
103	the hexadecane phase were taken and added to 144 μL of cyclohexane in 2-ml glass vial
104	containing a 200 μL micro-insert. Further, 18 μL of the internal standard naphthalene
105	stock solution (10 mmol/L in cyclohexane) were added to a final volume of 180 $\mu L.$
106	For all approaches, extracted samples were analyzed after preparation immediately.
107	Determination of 2-MN concentration was carried out on a Agilent GC 7890A gas
108	chromatograph hyphenated to a 5975C inertXL EI/CI MSD detector (Agilent
109	Technologies, Waldbronn). Chromatographic separation was done on a fused silica HP-
110	5MS column (30m x 0.250 mm, film thickness 0.25 μ m) with the following temperature
111	program: start at 50°C, 10°C/min heat up to 130°C, hold for 1 min, 5°C/min to 200°C,
112	30°C/min heat up to 280°C, hold for 3 min. The injection volume was 1 μ L. The samples

113	were injected in splitless mode. Analyte detection was done in SIM (single ion mode)
114	mode for the following masses: m/z = 132 and 131 for 2-MN and m/z = 129 for
115	naphthalene. External standard series of 2-MN ranged from 20 μM to 100 mM.
116	Isotope analyses. For the C and H isotopic analyses of 2-MN during its degradation in
117	the one-phase setup, aqueous samples of 12-37 mL (depending on the 2-MN
118	concentration) were periodically taken from culture bottles, transferred into Supelco vials
119	with Teflon coated caps, and stored immediately, at -20 °C prior to isotope analysis
120	according to Elsner et al ⁴ . For the two-phase systems two replicates of 175 μL (C and H
121	isotope analyses) of the hexadecane phase were taken and transferred to 2-mL vial with
122	200 μL micro-inserts and closed with Teflon coated caps and stored at -20°C until
123	analyses.
124	Carbon and hydrogen compound specific isotope ratios of 2-MN were measured using
125	a TRACE GC Ultra gas chromatograph (GC) (Thermo Fisher Scientific; Milan, Italy),
126	coupled to a Finnigan TM MAT253 IRMS (Thermo Fisher Scientific; Bremen, Germany).
127	The temperature of the combustion oven was 1050 $^\circ\mathrm{C}$ for carbon isotope analysis. For
128	hydrogen isotope analysis a pyrolytic interface was used running at 1430 °C. The GC was

129	equipped with a programmable temperature vaporizer (PTV) injector (Optic3, ATASGL
130	International B.V.; Veldhoven, Netherlands) with cryofocussing option by liquid N_2 . A
131	purge and trap concentrator Tekmar VelocityXPTTM together with an autosampler
132	Tekmar AQUATek 70 (Tekmar-Dohrmann; Mason, Ohio, USA) were connected online to
133	the PTV injector of the GC-IRMS. Operation of the purge & trap system including
134	cryofocussing of analytes in the injector was accomplished according to Jochmann et al. ⁵
135	The GC-oven program was identical to the GC-MS setup. The carrier gas was He with a
136	purity of 5.0. Carrier gas flow was 1.4 for carbon isotope analyses and 1.2 for hydrogen
137	isotope analyses. Injections were done in split mode with a split ratio ranging from 10 to
138	50.
139	For the carbon isotope analysis of 2-MN by GC-IRMS, a laboratory CO_2 standard was
140	used as calibration gas. This laboratory standard had been calibrated to V-PDB by
141	reference CO_2 standards (RM 8562, RM 8563, RM 8564). Hydrogen isotope analysis of
142	2-MN was performed using a laboratory H_2 monitoring gas, which had not been calibrated
143	against an international standard. For this reason, changes in hydrogen isotope ratios are
144	given as relative differences $\Delta\delta^2 H$ = $\delta^2 H_t - \delta^2 H_0$ where $\delta^2 H_0$ is the mean isotope value of

the control bottles at time point zero. Samples for C isotope analyses were measured in

duplicate, for hydrogen isotope analyses in triplicate. Reproducibility for $\delta^{13}C$ and $\delta^{2}H$

147 was always better than 0.5‰ and 5‰.

148 References

1. Widdel, F.; Bak, F., Gram-negative mesophilic sulfate-reducing bacteria. In The 149 Prokaryotes, 2nd ed.; Balows, A.; Trüper, H. G.; Dworkin, M.; Harder, W.; Schleifer, K. 150 151 H., Eds. Springer-Verlag: New York, N.Y., 1992; pp 3352-3378. 152 2. Galushko, A.; Minz, D.; Schink, B.; Widdel, F., Anaerobic degradation of naphthalene by a pure culture of a novel type of marine sulphate-reducing bacterium. 153 154 Environ. Microbiol. 1999, 1, (5), 415-420. 3. Reis, M.; Almeida, J.; Lemos, P.; Carrondo, M., Effect of hydrogen sulfide on 155 156 growth of sulfate reducing bacteria. *Biotechnol. Bioeng.* **1992**, *40*, (5), 593-600. 4. Elsner, M.; Couloume, G. L.; Sherwood Lollar, B., Freezing to preserve 157 groundwater samples and improve headspace quantification limits of water-soluble 158 organic contaminants for carbon isotope analysis. Anal. Chem. 2006, 78, (21), 7528-159 7534. 160 5. Jochmann, M. A.; Blessing, M.; Haderlein, S. B.; Schmidt, T. C., A new approach 161 to determine method detection limits for compound-specific isotope analysis of volatile 162

163 organic compounds. *Rapid Commun. Mass. Spectrom.* **2006**, *20*, (24), 3639-3648.

164