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Translational genomics aims to improve human health by building on discoveries
made through genetics research and applying them in the clinical setting. This progress
has been made possible by technological advances in genomics and analytics and by
the digital revolution. Such advances should enable the development of prognostic
markers, tailored interventions, and the design of prophylactic preventive approaches.
We are at the cusp of predicting disease risk for some disorders by means of polygenic
risk scores integrated with classical epidemiological risk factors. This should lead to
better risk stratification and clinical decision-making. A deeper understanding of the
link between genome-wide sequence and association with well-characterized
phenotypes will empower the development of biomarkers to aid diagnosis, inform
disease progression trajectories, and allow better targeting of treatments to those

patients most likely to respond.

rogress in the field of human genetics has

been accelerated by recent technological

advances, which allow the genome-wide

interrogation of individual and population-

wide sequence variation. This has led to
the identification of new variants for Mendelian
disorders already affecting clinical care; for more
common complex diseases, in which multiple
genetic and environmental effects combine to
increase disease risk, thousands of genetic suscep-
tibility variants have been identified. Translation
of these findings into improvements in healthcare
will require moving from association signal dis-
covery to functional interpretation of that signal,
and ultimately to clinical treatment, facilitated by
large-scale data generation; developing advanced
computational tool Kits to process the wealth of
information; addressing ethical, legal, social, and
economic considerations; and effectively integrat-
ing genomics into routine clinical practice.

The translation of improvements in genetic
understanding to health care can be seen for some
rare monogenic diseases in which precision medi-
cine, defined as an approach to allow more ac-
curate prediction of the groups of people who will

Unstitute of Translational Genomics, Helmholtz Zentrum
Mtinchen, German Research Center for Environmental
Health, Neuherberg, Germany. Oxford Centre for Diabetes
Endocrinology and Metabolism, Oxford University, Oxford,
UK. Wellcome Centre for Human Genetics, University of
Oxford, Oxford, UK. “Oxford NIHR Biomedical Research
Centre, Churchill Hospital, Oxford, UK. ®Versus Arthritis
Centre for Genetics and Genomics, Centre for
Musculoskeletal Research, Manchester Academic Health
Science Centre, University of Manchester, Manchester, UK.
®NIHR Manchester Biomedical Research Centre, Manchester
University NHS Foundation Trust, Manchester, UK.
"Department of Health Sciences, University of Leicester,
Leicester, UK. ®National Institute for Health Research,
Leicester Respiratory Biomedical Research Centre, Glenfield
Hospital, Leicester, UK.

*Corresponding author. Email: eleftheria.zeggini@
helmholtz-muenchen.de

Zeggini et al., Science 365, 1409-1413 (2019)

benefit from a specific treatment or prevention
strategy for a particular disease, is already being
used clinically. For example, ivacaftor is a drug
that acts at the cystic fibrosis transmembrane
conductance regulator channel to alter activity
and is licensed for use in the 4 to 5% of cystic
fibrosis patients with specific gating mutations
in the gene encoding the protein (7). Cancer
research is using precision medicine to target
therapies according to tumor mutations and has
led the field in translating insights from ge-
nomics into a better understanding of the mech-
anisms of disease and new drug development. For
example, genome sequencing coupled with multi-
omics-based molecular profiling has led to the
development of personalized interventions such
as chimeric antigen receptor T cell (CAR-T) immu-
notherapy (2). For common diseases, which are
caused by combinations of multiple genetic and
environmental factors, progress has been slower.
However, genetically driven approaches are now
starting to emerge; for example, recent studies
have identified variants influencing efficacy (3)
and tolerance (4) of metformin, a first-line treat-
ment for type 2 diabetes, and have the potential
to affect patient care.

In this review, we focus on complex disease
genetics and explore how genetic and genomic
discoveries can fuel the translational pathway to
improve human health (Fig. 1).

How can genetic studies translate into
clinical application?

Precision medicine

One of the immediate clinical applications arising
from studies of complex disease genetics is the
improved targeting of available therapies to those
most likely to respond, or avoidance of therapy in
those likely to develop adverse events. Informa-
tion on an individual’s genetic makeup can be
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used to estimate their likelihood of developing
disease and their likely benefit if targeted for
preventive care, or aid in the selection of the best
treatment for that individual. Genetic studies to
inform precision medicine in the context of best
treatment include both “pharmacogenomic” studies
(the identification of genetic variants that influ-
ence drug pharmacokinetics) and genetic studies
that strive to define disease “endotypes” that
might reflect different underlying disease etio-
pathologies that lie under the same diagnostic
umbrella but with different optimal treatment
strategies.

Most common complex diseases exhibit a varia-
ble disease course and response to therapy; of
the 10 best-selling drugs in the United States,
between 4 and 25 patients are treated in order
to achieve one patient with a good response (5).
This is not only a burden on health resources,
but also exposes those patients who are treated
without achieving a clinically significant response
to the risk of harm through development of ad-
verse events or through delays in switching to al-
ternative treatments that might achieve benefit.
This illustrates the need to develop better ways to
target therapies.

Initiatives in the United States (6) and Europe
(7) have been established to drive forward the
precision medicine agenda, but progress has been
relatively slow. One limiting factor is the measure-
ment of progression or treatment response, which
is often based on clinical end points rather than
biomarkers. Genetic studies can identify which
components of the outcome measures are heri-
table, and therefore predictable, which may help
in developing outcomes that are more objectively
measured (8). A further challenge in identifying
predictors of drug response is poor drug adherence,
which is common in chronic complex diseases.
At least one in four patients does not take medi-
cation as prescribed (9), and this degree of mis-
classification affects the power of genetic and
other biomarker studies to identify predictors of
response. Despite these challenges, some genetic
markers of drug response are emerging, such as
the associations of the human leukocyte antigen
(HLA)-C*06:02 with biologic therapy response in
psoriasis (10), and HLA-DRB1 with severity, mor-
tality, and treatment response to biologic drugs
in rheumatoid arthritis (11).

Future precision medicine studies will consider
the impact of nonresponse and nonadherence
in the context of both pharmacogenomic studies
and the emerging recognition of disease endotypes
across most common complex diseases. The use
of biomarkers as outcome measures, rather than
clinical end points, will provide objective mea-
sures of response that more closely reflect the
underlying biological processes in each patient.

Functional genomics and new drug
target discovery

Genome-wide association studies (GWAS) in com-
plex diseases have been successful in identifying
robust associations between specific sequence
variants and the phenotypes of interest. Individ-
ually, these associations characteristically confer
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Fig. 1. The translational potential of complex disease genomics. Improvements to human health (inner
circle) are achieved through various enabling milestones at different translational axes (outer circle).

modest to small effects, although there are notable
exceptions, including the HLA alleles, which tend
to exert large effects in autoimmune disease sus-
ceptibility in particular (72). In addition, rare or
population-specific common variants have been
associated with large effects on complex traits such
as osteoarthritis (73) and type 2 diabetes (14).
However, even if the genetic effect is small, it can
be informative in terms of drug development
pipelines; indeed, recent studies suggest that genes
with underlying genetic support for an association
with disease are twice as likely to encode successful
drug targets in clinical development (15, 16). Al-
though the most widely described examples of drug
targets with genetic support arise from familial
rare disease studies, where rare variants with high
penetrance and large effects result in disease (e.g.,
PCSK9) (17), GWAS signals increasingly implicate
genes that encode known drug targets (Fig. 2).
This provides retrospective proof of concept of
the ability of GWAS to identify potentially new
druggable targets. Furthermore, GWAS have iden-
tified drug-repurposing opportunities, i.e., targets
for which there are already approved drugs, for
other indications (78, 19), which might be effective
in treating an alternative disease.

The GWAS catalog currently contains ~138,000
genetic association signals with disease status or
quantitative phenotypes from 4000 studies. Al-
though each of these signals can act as a signpost
to important genes and pathways, making the
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link between the signal and the specific gene(s)
underlying the association has remained a major
bottleneck. Although some signals very clearly im-
plicate a particular gene, for example, through an
experimentally validated functional amino acid
change or introduction of a stop codon, the majority
of genetic signals are either very broad, encom-
passing many variants across multiple genes, or
are outside of gene regions entirely, suggesting
a regulatory effect for which the target gene can
be difficult to identify.

Computational (in silico) approaches can be
used to map signals to effector genes; the avail-
ability of increasingly large sample sizes, deeply
sequenced reference panels that allow variants
not captured by genotype arrays to be imputed,
and samples from ethnically diverse populations
allow genetic association signals to be refined to
smaller regions. However, it can still be challenging
to determine which gene is being regulated and
which variant is responsible. A genetic variant
regulating gene expression may be functional and
will likely reside in a region of open chromatin,
but this may vary according to cell type and sti-
mulatory condition. The increasing availability
of multi-omics data, such as transcriptomics,
proteomics, chromatin accessibility, and histone
modifications, across multiple cell types and tissues
and under different conditions, now facilitates
advances in linking genetic signals to genes. In-
ternational efforts such as the Genotype-Tissue
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Expression (GTEx) project, ENCODE, ROADMAP,
and BLUEPRINT (20-22) have provided publicly
available resources for studying tissue-specific
gene expression and regulation, which can be
leveraged to identify effector transcripts for GWAS
signals (23). Interrogation of gene and protein
expression data, annotation of epigenetic markers
indicative of regulatory genomic regions, and
chromosome interactions have identified poten-
tially causal variants and genes for a large number
of GWAS signals (Fig. 3). For example, in type 2
diabetes, functional annotation of genetically as-
sociated variants in human pancreatic islet cells
enabled the fine-mapping of 20% of disease loci
(24). Although these approaches give insight into
the underlying mechanisms of the genetic signal
and inform the design of targeted molecular ex-
periments, they are often limited by the range
and sample size of molecular data and disease-
relevant tissues that are available, as well as by
reproducibility (Fig. 2). The challenge now is to
extend these efforts to less accessible disease-
relevant cell types at different developmental
stages and under different stimulatory and disease-
relevant conditions to allow integration with
large-scale genetic discovery efforts. The recently
established Human Cell Atlas (HCA) is focused
on providing greater resolution by generating
reference maps of all human cells using both
emerging single-cell “omics” and whole intact-
tissue methodologies (25). Acceleration of prog-
ress in the development of approaches such as
high-throughput screening and genetic manip-
ulation coupled to cellular phenotyping is needed.

Access to certain human tissues remains a
challenge, but the emergence of protocols for in
vitro differentiation of human induced pluripotent
stem cells (iPS), which can be differentiated into
otherwise inaccessible cell types, offers the poten-
tial for disease-associated variants to be investi-
gated in appropriate cell types. However, these
studies are new and we are still learning much
about how representative these systems will be
for population-level medical applications.

Together, these efforts will accelerate trans-
lation of GWAS findings to therapeutic inter-
ventions through increased confidence in target
identification.

Prediction, prevention, and prognosis

Common complex disease risk is conferred poten-
tially by up to thousands of variants, prompting
the development of polygenic risk scores to cap-
ture the likelihood of developing disease. As these
variants are usually common in frequency with
individually small contributions to overall risk,
combining information from multiple variants,
weighted by their effect size, has the potential to
improve on the predictive value of clinical data
alone. Genetic risk scores (GRSs) have been deve-
loped that comprise only signals that pass stringent
criteria or that capture a greater proportion of
genome-wide risk information (often termed poly-
genic risk scores). The choice of variants to include
in the score is determined by the intended use
of that score (e.g., to demonstrate the combined
effect of specific genetic risk factors to overall
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disease risk or the development of a predictive tool
for clinical use) and their power is determined by
the number of variants included in the score, the
frequency of those variants in the population, the
choice of weighting, and the contribution of envi-
ronmental risk factors.

A recent study by Khera et al. (26) demon-
strated the power of polygenic risk scores in the
context of five common disease, showing that
~20% of the population had a polygenic threefold-
increased risk of one or more common diseases;
this was comparable to levels of risk conferred by
rare disease-causing variants of high penetrance
(26). A GRS for chronic obstructive pulmonary
disease (COPD) demonstrated an almost fivefold
relative risk when comparing high versus low
genetic risk score deciles and when this was com-
bined with absolute risk estimates for COPD among
smokers, an absolute risk of COPD of 82.4% for
smokers in the highest-risk score decile (com-
pared with 17.4% for those in the lowest decile)
(27). GRSs for obesity (28) and blood pressure
(29), which are common risk factors for multiple
diseases such as cardiovascular disease and type 2
diabetes and are considered to be modifiable,
have also demonstrated substantial variation across
the population. From a public health perspective,
the extent to which these risk factors can be mo-
dified on a background of high genetic predisposi-
tion, and the most effective means of implementing
such modifications, are research areas that should
be prioritized to accelerate implementation.

The utility of GRSs in population-based gen-
etic screening as a preventive strategy for complex
diseases depends on the frequency of the disease
being investigated as well as the genetic risk con-
ferred by the associated variants. It is likely to be
useful for highly prevalent complex conditions
such as coronary artery disease, which affects be-

Fig. 2. Identifying therapeutic
targets. (A) Effector transcripts
identified at genetic signals are
genetically manipulated to recapit-
ulate in vivo effects on gene
expression (e.g., CRIPSR
knockdown or overexpression) in
human cell lines (e.g., iPS cell-
derived models) and in animal
models, which can be phenotyped.
(B) Additional alleles are identified
using sequence data and assessed
for their relationship to disease risk
or related traits. To provide insight
into the therapeutic window, in vitro
functional severity and clinical
severity are explored to establish
the relationship between target
perturbation and outcome.
Potential adverse on-target effects
are investigated using genome-
wide datasets for other disorders
[phenome-wide association
studies (PheWAS)]. (C) Examples
of therapeutic targets confirmed or
identified by human GWAS.
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tween 10 and 20% of the population in Western
countries (30). However, for some complex poly-
genic diseases with a low background prevalence
(<5% of the population), even those at the highest
genetic risk are more likely not to develop disease
than to develop it: for example, in a disease with a
population prevalence of 1% (such as rheumatoid
arthritis), even those with a 20-fold increased risk
will still have an 80% chance of not developing
the condition on the basis of genetic risk alone.
Additionally, as there are more individuals at lower
genetic risk in the population, it has been shown
that the majority of cases within the population
will come from people at lower genetic risk for
disease (31, 32). Age-related macular degeneration
is a case in point: it affects 5% of the >75-year-old
population and was one of the first conditions in
which GWAS identified genetic associations, with
two genetic susceptibility variants conferring a
50-fold risk of disease development. However,
only 20% of patients carry high-risk genetic var-
iants, meaning that the majority of cases come
from those with lower genetic risk, and genetic
screening is not currently included in guidelines
(33, 34). Nonetheless, genetic information adds
value over and above clinical characteristics in
predicting the progression of macular degenera-
tion, particularly in those with a less severe disease
stage (35).

As such, implementation of GRSs for targeting
of disease screening requires careful consider-
ation in terms of which thresholds of risk are
selected as the basis for screening decisions and
the added value beyond clinical information alone
(36). For common complex diseases such as stroke
and coronary heart disease, where both genetic
and environmental factors contribute to disease
risk, environmental factors can have a greater
influence (37, 38). Modifiable environmental risk

A Transcript manipulation

factors mean that identifying those at high gen-
etic risk of developing disease can still have utility
in effecting behavioral change. In a randomized
control trial in asymptomatic first-degree relatives
of patients with rheumatoid arthritis, disclosure
of genetic risk information led to positive behavior
modifications including increased smoking cessa-
tion and better dental hygiene, both of which are
environmental risk factors (39). As GRS tests may
call for lifestyle adaptations in response to risk of
individual diseases, further research is required to
evaluate how to implement best practices to faci-
litate such changes.

Beyond identifying those at highest risk of
developing disease, GRSs can also inform the
development of precision medicine approaches
for earlier and more effective treatment by iden-
tifying those with the disease who are at highest
risk of rapid progression or of more severe mani-
festations of disease (26, 40). Furthermore, using
disease-relevant quantitative traits to define the
underlying biological processes characterizing the
disease in an individual holds the promise of
assisting with patient stratification; for example,
patients with type 2 diabetes largely owing to
insulin secretory defects may respond better to
therapies focused on restoring insulin secretion
as opposed to improving the action of insulin in
target tissues (40). Such studies require large,
prospective collections of patient samples with
high-quality phenotype data to define disease
trajectories and/or classify disease subtypes and
will be essential if GRSs are to inform clinical care.

The implications for potential additional bur-
den on clinical services of any genetic testing also
requires consideration if advances are to translate
to the clinical setting. For example, introducing
genetic testing for variants that affect warfarin
metabolism in routine clinical care of patients
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receiving warfarin anticoagulation reported bene-
fits (41). However, the 45 min required to obtain
results affected the clinic workflow and potentially
required a reorganization of service delivery (41).

GRSs have numerous potential applications in
prediction and prevention, but care in their design
and implementation is warranted, for example,
with respect to transferability across and within
populations (42). Most GRSs to date have been
developed with data from European ancestry
studies and although there is support for some
generalizability of such scores across ancestries,
it is evident that predictive power decreases with
ancestral divergence and variation in minor allele
frequencies as well as differences in relevant envi-
ronmental exposures (27, 43). If GRSs are to be
incorporated into clinical decision-making or pub-
lic health interventions, then the development of
ancestry- and population-specific GRSs is vital to
ensure equity in health care and optimal benefit
to patients.

How can the discovery pipeline
be accelerated?

Genomics in diverse populations

The majority of genetic association studies have
focused on people of European ancestry. This not
only leads to a bias in our understanding of gen-
etic disease, but also results in a fundamental
gap as different population characteristics can
help identify and fine-map causal variants. At one
end of the spectrum, isolated (founder) popula-
tions demonstrate high levels of genetic similarity
(44), whereas African populations are character-
ized by high levels of genetic diversity (45). Thus,
in isolated populations, protective or deleterious
variants that are rare in the general population
may be increased in frequency and thus be more
easily detected. By contrast, the highly diverse
African populations can help to determine the
architecture of complex disease through fine-
mapping and reveal associations that have been
missed because of differences in allele frequency
between populations (45). For example, a G6PD
variant that is common (minor allele frequency,
11%) in African populations but rare or absent
in European populations is associated with de-
creased HbAlc levels independently of blood
glucose levels. Because raised HbAlc is a di-
agnostic marker for type 2 diabetes, a chronic
condition that affects >400 million people
globally, this could lead to substantial under-
diagnosis of type 2 diabetes in African ancestry
populations if based on HbA1lc levels alone (46).
Going forward, the next frontier in genomic
medicine will require embracing whole-genome
sequencing across all global populations to cap-
ture and understand the full spectrum of ge-
netic variation and disease associations.

Deep phenotypic characterization

Retrospective and prospective longitudinal linkage
to electronic health records (EHRs) in cohorts with
genetic data can lead to better clinical character-
ization of the study population and enable dis-
covery of new genetic associations with disease,

Zeggini et al., Science 365, 1409-1413 (2019)
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transcripts they regulate through conformation
capture approaches (e.g., promoter Hi-C).
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transcripts and the direction of effect (e.g.,
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disease subtypes, and disease-relevant quantita-
tive phenotypes. Several large-scale biobanks
and population-based cohorts, such as the UK
Biobank (500,000 participants), the All of Us
initiative (1,000,000+ participants), and the
Million Veterans Programme, now include link-
age to EHRs (47). There are already successful
translational examples of coupling genomics
to EHRs; for example, identification of loss-of-
function mutations in ANGPTL3 associated with
the development of coronary artery disease and
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the subsequent development of an inactivating
monoclonal antibody offering promise for dis-
ease prevention (48).

Unlike information and measurements collected
in a research cohort setting, clinically derived
EHRs have not been recorded with research in
mind and are therefore even more prone to bias,
inconsistency, and noise. Differences in how health-
care is delivered, for example, through a universal
system [such as the National Health Service (INHS)
in the United Kingdom] or through multiple in-
dependent providers (as in the United States),
leads to differences in how the same condition
might be recorded across countries, even when
international coding systems are used. Particularly
for fragmented health care systems, completeness
of records is highly variable and this limits their
utility to address many research questions, includ-
ing those related to longitudinal measures. Even
within a single system such as the NHS, regional
differences in terms of coding exist and can vary
from practice to practice and hospital to hospital,
and detailed disease-specific records such as diag-
nostic scans are not yet fully captured by routine
linkage in many healthcare systems. Furthermore,
an understanding of the mechanisms that drive
coding decisions is needed to identify potential
sources of bias (e.g., the Quality and Outcomes
Framework in the NHS whereby reward and
incentivization of general practitioners influences
coding practice). These variations exist not only
across regions but also over time as coding sys-
tems, such as the World Health Organization Inter-
national Classification of Disease, are updated.

Deeper phenotyping can also be achieved in
research cohort settings through recall of partic-
ipants. For example, imaging is being under-
taken in 100,000 participants in UK Biobank, and
imaging-derived traits can serve as markers of
biological processes with a genetic underpinning
and boost discovery in genetic association studies
(49). Many cohorts now have consent to recall
participants on the basis of either their phenotype
(i.e., disease status) or genotype (e.g., carriers of
a putative high-risk variant), thereby providing
further opportunities to undertake deeper or
more specific phenotypic characterization to
address specific hypotheses. Recall-by-genotype
studies are an exciting new tool when investigat-
ing causality in disease (50). The establishment
of large-scale biobanks and registries geared
toward genomics [as elegantly exemplified by the
Nordic countries (51)] also means that previously
difficult-to-reach genetic effects, such as gene-
environment and gene-gene interactions [e.g.,
(52)], can be further explored.

The ability to refine phenotypes has clear bene-
fits in our understanding of disease and disease
endotypes, but the temptation to divide partic-
ipants into smaller and smaller subgroups also
runs the risk of reducing sample size, and conse-
quently statistical power, for genetic discovery
and so a balance must be struck. Furthermore,
as phenotype definition becomes more nuanced
and narrow, the potential for the variation in
coding practices in EHR described above to
affect interpretation becomes more pronounced.
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Pragmatic definitions that capture the pheno-
type being studied with reasonable precision and
minimal misclassification yet at the same time
maximize sample size might be the optimal strategy
for genetic association discovery where statistical
power is a major consideration, in part because of
the large multiple testing burden of genome-wide
analyses.

Stricter phenotyping, such as that appropriate
for descriptive classical epidemiological studies
and clinical practice, could then be applied post
hoc to delve deeper into the associations that are
identified.

Genetic study designs that will be optimal
to reap the rewards of deeper phenotyping will
ideally require multidisciplinary collaboration that
includes both genetic and classical epidemiology
expertise as well as clinical insight. Researchers
must be cognizant of subjective influences on
phenotype definitions in large-scale EHR re-
sources and take an integrative approach that
also combines measures that might be less prone
to bias (or at least, prone to different biases),
such as biomarkers. The use of carefully con-
sidered sensitivity analyses to test the impact
of assumptions made and misclassification will
continue to be best practice in these studies.

Conclusion

A better understanding of the genetic etiology of
complex diseases can provide new insights into
fundamental biology and translational opportu-
nities. In recognition of this translational poten-
tial, there is a rising number of high-profile,
large-investment initiatives focused on genomics
in medicine. These traverse public and private
funding mechanisms to generate the large-scale
clinical and biodata resources needed to spur in-
novation for personalized medicine and popula-
tion health. This new, eagerly awaited digital
health era is now becoming a tangible prospect.
To ensure that the potential is realized, we re-
commend focusing on biological outcome
measures where possible, accounting for non-

Zeggini et al., Science 365, 1409-1413 (2019)

adherence in studies of treatment response or
ascertainment bias in prognostic studies, collect-
ing prospectively recruited cohorts across diverse
ancestries and with linkage to electronic health
records so that population-specific PRS can be
developed for a range of diseases, and, finally,
investing time in determining how to implement
genetic testing as a diagnostic test or to effect
behavior change.
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