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ABSTRACT 
Translational genomics aims to improve human health by building on discoveries made through 
genetics research and applying them in the clinical setting. This progress has been made possible by 
technological advances in genomics, analytics and the digital revolution. Such advances should 
enable the development of prognostic markers, tailored interventions and the design of prophylactic 
preventative approaches. We are at the cusp of predicting disease risk for some disorders by means 
of polygenic risk scores integrated with classical epidemiological risk factors. This should lead to 
better risk stratification and clinical decision-making. A deeper understanding of the link between 
genome-wide sequence and association with well-characterised phenotypes will empower the 
development of biomarkers to aid diagnosis, inform disease progression trajectories and to allow 
better targeting of treatments to those patients most likely to respond.  
 
INTRODUCTION 
Progress in the field of human genetics has been accelerated by recent technological advances, 
which allow the genome-wide interrogation of individual and population-wide sequence variation. 
This has led to the identification of new variants for Mendelian disorders already impacting clinical 
care; for more common complex diseases, where multiple genetic and environmental effects 
combine to increase disease risk, thousands of genetic susceptibility variants have been identified. 
Translation of these findings into improvements in healthcare will require moving from association 
signal discovery to functional interpretation of that signal, and ultimately to clinical treatment, 
facilitated by large-scale data generation; the development of advanced computational toolkits to 
process the wealth of information; addressing ethical, legal, social and economic considerations; and 
effective integration of genomics into routine clinical practice. 
 
The translation of improvements in genetic understanding to healthcare can be seen for some rare 
monogenic diseases where precision medicine, defined as an approach to allow more accurate 
prediction of the groups of people who will benefit from a specific treatment or prevention strategy 
for a particular disease, is already being used clinically. For example, ivacaftor is a drug that acts at 
the cystic fibrosis transmembrane conductance regulator channel to alter activity, and is licensed for 
use in the 4-5% of cystic fibrosis patients with specific gating mutations in the gene encoding the 
protein (1). Cancer research is using precision medicine to target therapies according to tumour 
mutations and has led the field in translating insights from genomics into a better understanding of 
the mechanisms of disease and novel drug development. For example, genome sequencing coupled 
with multi-omics-based molecular profiling has led to the development of personalised 



interventions, such as CAR-T Immunotherapy (2). For common diseases, which are caused by 
combinations of multiple genetic and environmental factors, progress has been slower. However,  
genetically-driven approaches are now starting to emerge; for example, recent studies have 
identified variants influencing efficacy (3) and tolerance (4) of metformin, a first-line treatment for 
type 2 diabetes,  and have the potential to impact patient care.  
 
In this review, we focus on complex disease genetics and explore how genetic and genomic 
discoveries can fuel the translational pathway to improve human health [Fig. 1].  
  
HOW CAN GENETIC STUDIES TRANSLATE INTO CLINICAL APPLICATION? 
Precision medicine  
One of the immediate clinical applications arising from studies of complex disease genetics is the 
improved targeting of available therapies to those most likely to respond, or avoidance of therapy in 
those likely to develop adverse events. Information on an individual’s genetic makeup can be used to 
estimate their likelihood of developing disease, their likely benefit if targeted for preventative care, or 
aid selection of the best treatment for that individual. Genetic studies to inform precision medicine in 
the context of best treatment include both ‘pharmaco-genomic’ studies (the identification of genetic 
variants that influence drug pharmacokinetics) and genetic studies that strive to define disease 
‘endotypes’ that might reflect different underlying disease aetiopathologies that lie under the same 
diagnostic umbrella but with different optimal treatment strategies. 
 
Most common complex diseases exhibit a variable disease course and response to therapy; of the 10 
best-selling drugs in the US, between 4 and 25 patients are treated in order to achieve one patient 
with a good response (5). This is not only a burden on health resources, but exposes those patients 
who are treated without achieving a clinically significant response to the risk of harm through 
development of adverse events or through delays in switching to alternative treatments that might 
achieve benefit. This illustrates the need to develop better ways to target therapies.  
 
Initiatives in the US (6) and Europe (7) have been established to drive forward the precision medicine 
agenda, but progress has been relatively slow. One limiting factor is the measurement of progression 
or treatment response, often based on clinical end-points rather than biomarkers. Genetic studies 
can identify which components of the outcome measures are heritable and, therefore, predictable, 
which may help in developing outcomes that are more objectively measured (8). A further challenge 
in identifying predictors of drug response is poor drug adherence, which is common in chronic 
complex diseases. As at least 1 in 4 patients do not take medication as prescribed (9), and this 
degree of misclassification impacts the power of genetic and other biomarker studies to identify 
predictors of response. Despite these challenges, some genetic markers of drug response are 
emerging, such as the associations of HLA-C*06:02 with biologic therapy response in psoriasis (10), 
and HLA-DRB1 with severity, mortality and treatment response to biologic drugs in rheumatoid 
arthritis (11). 
 
Future precision medicine studies will consider the impact of non-response and non-adherence in 
the context of both pharmaco-genomic studies and the emerging recognition of disease endotypes 
across most common complex diseases. The use of biomarkers as outcome measures, rather than 
clinical endpoints, will provide objective measures of response that more closely reflect the 
underlying biological processes in each patient. 
 
Functional genomics and novel drug target discovery 
Genome-wide association studies (GWAS) in complex diseases have been successful in identifying 
robust associations between specific sequence variants and the phenotypes of interest. Individually, 
these associations characteristically confer modest to small effects, although there are notable 



exceptions, including the HLA alleles, which tend to exert large effects in autoimmune disease 
susceptibility in particular (12). In addition, rare or population-specific common variants have been 
associated with large effects on complex traits like osteoarthritis (13) and type 2 diabetes (14). 
However, even if the genetic effect is small, it can be informative in terms of drug development 
pipelines; indeed, recent studies suggest that genes with underlying genetic support for an 
association with disease are twice as likely to encode successful drug targets in clinical development 
(15, 16). Whilst the most widely-described examples of drug targets with genetic support arise from 
familial rare disease studies, where rare variants with high penetrance and large effects result in 
disease (for example, PCSK9) (17), GWAS signals increasingly implicate genes which encode known 
drug targets [Figure 2].  This provides retrospective proof-of-concept of the ability of GWAS to 
identify potentially new druggable targets. Furthermore, GWAS have identified drug repurposing 
opportunities, i.e. targets for which there are already approved drugs, for other indications (18, 19), 
which might be effective in treating an alternative disease. 
 
The GWAS catalog currently contains approximately 138,000 genetic association signals with disease 
status or quantitative phenotypes from 4000 studies. Whilst each of these signals can act as a 
signpost to important genes and pathways, making the link between the signal and the specific 
gene(s) underlying the association has remained a major bottleneck. Although some signals very 
clearly implicate a particular gene, for example, via an experimentally-validated functional amino 
acid change or introduction of a stop codon, the majority of genetic signals are either very broad, 
encompassing many variants across multiple genes, or are outside of gene regions entirely, 
suggesting a regulatory effect for which the target gene can be difficult to identify.  
 
Computational (in silico) approaches can be used to map signals to effector genes; the availability of 
increasingly large sample sizes, deeply-sequenced reference panels that allow variants not captured 
by genotype arrays to be imputed, and samples from ethnically diverse populations allow genetic 
association signals to be refined to smaller regions. However, it can still be challenging to determine 
which gene is being regulated and which variant is responsible. A genetic variant regulating gene 
expression may be functional and will likely reside in a region of open chromatin, but this may vary 
according to cell type and stimulatory condition. The increasing availability of multi-omics data, such 
as transcriptomics, proteomics, chromatin accessibility and histone modifications, across multiple 
cell types and tissues, and under different conditions, now facilitates advances in linking genetic 
signals to genes. International efforts such as the Genotype-Tissue Expression (GTEx) project, 
ENCODE, ROADMAP and BLUEPRINT (20-22) have provided publically available resources for 
studying tissue-specific gene expression and regulation, which can be leveraged to identify effector 
transcripts for GWAS signals (23). Interrogation of gene and protein expression data, annotation of 
epigenetic markers indicative of regulatory genomic regions, and chromosome interactions have 
identified potentially causal variants and genes for a large number of GWAS signals [Figure 3]. For 
example, in type 2 diabetes, functional annotation of genetically associated variants in human 
pancreatic islet cells enabled the fine-mapping of 20% of disease loci (24). Whilst these give insight 
into the underlying mechanisms of the genetic signal and inform the design of targeted molecular 
experiments, they are often limited by the range and sample size of molecular data and disease-
relevant tissues that are available, as well as by reproducibility [Figure 2]. The challenge now is to 
extend these efforts to less accessible disease-relevant cell types, at different developmental stages 
and under different stimulatory and disease-relevant conditions to allow integration with large-scale 
genetic discovery efforts. The recently established Human Cell Atlas (HCA) is focused on providing 
greater resolution by generating reference maps of all human cells using both emerging single-cell 
‘omics and whole intact-tissue methodologies (25).  Acceleration of progress in development of 
approaches such as high-throughput screening and genetic manipulation coupled to cellular 
phenotyping is needed.  
 



Access to certain human tissues remains a challenge but the emergence of protocols for in vitro 
differentiation of human induced pluripotent stem cells, iPS cells, which can be differentiated into 
otherwise inaccessible cell types, offers the potential for disease-associated variants to be 
investigated in appropriate cell types. However, these studies are new and we are still learning much 
about how representative these systems will be for population level medical applications.  
Together, these efforts will accelerate translation of GWAS findings to therapeutic interventions 
through increased confidence in target identification.  
 
Prediction, prevention, prognosis 
Common complex disease risk is conferred potentially by up to thousands of variants prompting 
development of polygenic risk scores to capture the likelihood of developing disease. As these 
variants are usually common in frequency with individually small contributions to overall risk, 
combining information from multiple variants, weighted by their effect size, has the potential to 
improve on the predictive value of clinical data alone. Genetic risk scores (GRS) have been developed 
that comprise only signals that pass stringent criteria or that capture a greater proportion of 
genome-wide risk information (often termed polygenic risk scores). The choice of variants to include 
in the score is determined by the intended use of that score (for example, to demonstrate the 
combined effect of specific genetic risk factors to overall disease risk or development of a predictive 
tool for clinical use) and their power is determined by the number of variants included in the score, 
the frequency of those variants in the population, the choice of weighting and the contribution of 
environmental risk factors. 
 
A recent study by Khera et al. (26), demonstrated the power of polygenic risk scores in the context of 
five common disease showing that around 20% of the population had a polygenic three-fold 
increased risk of one or more common diseases; comparable to levels of risk conferred by rare 
disease-causing variants of high penetrance (26). A GRS for chronic obstructive pulmonary disease 
(COPD) demonstrated an almost five-fold relative risk when comparing high vs low genetic risk score 
deciles and, when this was combined with absolute risk estimates for COPD amongst smokers, an 
absolute risk of COPD of 82.4% for smokers in the highest risk score decile (compared to 17.4% for 
those in the lowest decile) (27). GRS for obesity (28) and blood pressure (29), which are common risk 
factors for multiple diseases such as cardiovascular disease and type 2 diabetes, and considered to 
be modifiable, have also demonstrated substantial variation across the population. From a public 
health perspective, the extent to which these risk factors can be modified on a background of high 
genetic predisposition, and the most effective means of implementing such modifications, are 
research areas that should be prioritised to accelerate implementation. 
 
The utility of GRS in population-based genetic screening as a preventive strategy for complex 
diseases depends on the frequency of the disease being investigated as well as the genetic risk 
conferred by the associated variants. It is likely to be useful for highly prevalent complex conditions 
such as coronary artery disease, which affects between 10 and 20% of the population in western 
countries (30). However, for some complex polygenic diseases with a low background prevalence 
(<5% population), even those at the highest genetic risk are more likely not to develop disease than 
to develop it: for example, in a disease with a population prevalence of 1% (such as rheumatoid 
arthritis), even those with a 20-fold increased risk will still have an 80% chance of not developing the 
condition based on genetic risk alone. Additionally, as there are more individuals at lower genetic 
risk in the population, it has been shown that the majority of cases within the population will come 
from people at lower genetic risk for disease (31, 32). Age-related macular degeneration is a case in 
point: it affects 5% of the >75 year-old population and was one of the first conditions in which GWAS 
identified genetic associations, with two genetic susceptibility variants conferring a 50-fold risk of 
disease development. However, only 20% of patients carry high-risk genetic variants, meaning that 
the majority of cases come from those with lower genetic risk and genetic screening is not currently 



included in guidelines (33, 34). Nonetheless, genetic information adds value over and above clinical 
characteristics in predicting progression of macular degeneration, particularly in those with a less 
severe disease stage (35).  
 
As such, implementation of GRS for targeting of disease screening requires careful consideration in 
terms of which thresholds of risk are selected as the basis for screening decisions and the added 
value beyond clinical information alone (36). For common complex diseases such as stroke and 
coronary heart disease, where both genetic and environmental factors contribute to disease risk, 
environmental factors can have a greater influence (37, 38). Modifiable environmental risk factors 
mean that identifying those at high genetic risk of developing disease can still have utility in effecting 
behavioural change. In a randomised control trial in asymptomatic first degree relatives of patients 
with rheumatoid arthritis, disclosure of genetic risk information led to positive behaviour 
modifications including increased smoking cessation and better dental hygiene, both of which are 
environmental risk factors (39). As GRS tests may call for lifestyle adaptations in response to risk of 
individual diseases, further research is required to evaluate how to implement best practices to 
facilitate such changes. 
 
Beyond identifying those at highest risk of developing disease, GRS can also inform development of 
precision medicine approaches for earlier and more effective treatment by identifying those with 
the disease who are at highest risk of rapid progression or of more severe manifestations of disease 
(26, 40). Furthermore, using disease-relevant quantitative traits to define the underlying biological 
processes characterising the disease in an individual holds the promise of assisting with patient 
stratification; for example patients with type 2 diabetes largely due to insulin secretory defects may 
respond better to therapies focused on restoring insulin secretion as opposed to improving the 
action of insulin in target tissues (40). Such studies require large prospective collections of patient 
samples with high-quality phenotype data to define disease trajectories and/or classify disease 
subtypes, and will be essential if GRS are to inform clinical care.  
 
The implications for potential additional burden on clinical services of any genetic testing also 
requires consideration if advances are to translate to the clinical setting.  For example, introducing 
genetic testing for variants that affect Warfarin metabolism in routine clinical care of patients 
receiving Warfarin anticoagulation reported benefits (41). However, the 45 minutes required to 
obtain results affected the clinic workflow and potentially required a re-organisation of service 
delivery (41).  
 
GRS have numerous potential applications in prediction and prevention, but care in their design and 
implementation is warranted, for example with respect to transferability across and within 
populations (42). Most GRS to date have been developed using data from European-ancestry studies 
and although there is support for some generalisability of such scores across ancestries, it is evident 
that predictive power decreases with ancestral divergence and variation in minor allele frequencies 
as well as differences in relevant environmental exposures (27, 43). If GRS are to be incorporated 
into clinical decision-making or public health interventions, development of ancestry and 
population-specific GRS are vital to ensure equity in healthcare and optimal benefit to patients.  
 
HOW CAN THE DISCOVERY PIPELINE BE ACCELERATED? 
Genomics in diverse populations 
The majority of genetic association studies have focused on people of European ancestry. This not 
only leads to a bias in our understanding of genetic disease but also results in a fundamental gap as 
different population characteristics can help identify and fine-map causal variants. At one end of the 
spectrum, isolated (founder) populations demonstrate high levels of genetic similarity (44), while 
African populations are characterised by high levels of genetic diversity (45). Thus, in isolated 



populations, protective or deleterious variants that are rare in the general population may be 
increased in frequency and thus be more easily detected. In contrast, the highly diverse African 
populations can help determine the architecture of complex disease through fine-mapping and 
reveal associations that have been missed due to differences in allele frequency between 
populations (45). For example, a G6PD variant that is common (minor allele frequency 11%) in 
African populations but rare or absent in European populations is associated with decreased HbA1c 
levels independently of blood glucose levels. As raised HbA1c is a diagnostic marker for type 2 
diabetes, a chronic condition that affects over 400 million people globally, this could lead to 
substantial under-diagnosis of type 2 diabetes in African ancestry populations if based on HbA1c 
levels alone (46). Going forward, the next frontier in genomic medicine will require embracing whole 
genome sequencing across all global populations to capture and understand the full spectrum of 
genetic variation and disease associations. 
 
Deep phenotypic characterisation 
Retrospective and prospective longitudinal linkage to electronic health records (EHRs) in cohorts 
with genetic data can lead to better clinical characterisation of the study population and enable 
discovery of new genetic associations with disease, disease subtypes and disease-relevant 
quantitative phenotypes. Several large-scale biobanks and population-based cohorts, such as the UK 
Biobank (500,000 participants), All of US initiative (1,000,000+ participants) and the Million Veterans 
Programme, now include linkage to EHRs (47). There are already successful translational examples of 
coupling genomics to EHRs; for example, identification of loss-of-function mutations in ANGPTL3 
associated with the development of coronary artery disease, and subsequent development of an 
inactivating monoclonal antibody offering promise for disease prevention (48).  
 
Unlike information and measurements collected in a research cohort setting, clinically-derived EHRs 
have not been recorded with research in mind and are, therefore, even more prone to bias, 
inconsistency and noise. Differences in how healthcare is delivered, for example via a universal 
system (like the National Health Service [NHS] in the UK) or via multiple independent providers (as in 
the USA), leads to differences in how the same condition might be recorded across countries, even 
when international coding systems are used. Particularly for fragmented healthcare systems, 
completeness of records is highly variable and this limits their utility to address many research 
questions, including those related to longitudinal measures. Even within a single system such as the 
NHS, regional differences in terms of coding exist and can vary from practice to practice and hospital 
to hospital, and detailed disease-specific records, such as diagnostic scans, are not yet fully captured 
by routine linkage in many healthcare systems. Furthermore, an understanding of the mechanisms 
that drive coding decisions is needed to identify potential sources of bias (for example, the Quality 
and Outcomes Framework in the NHS whereby reward and incentivisation of General Practitioners 
influences coding practice). These variations exist not only across regions but also over time as 
coding systems, such as the World Health Organisation International Classification of Disease, are 
updated.  
  
Deeper phenotyping can also be achieved in research cohort settings through recall of participants. For 

example, imaging is being undertaken in 100,000 participants in UK Biobank and imaging-derived traits 
can serve as markers of biological processes with a genetic underpinning, and boost discovery in 
genetic association studies (49). Many cohorts now have consent to recall participants on the basis 
of either their phenotype (i.e. disease status) or genotype (for example, carriers of a putative high 
risk variant), thereby providing further opportunities to undertake deeper or more specific 
phenotypic characterisation to address specific hypotheses. Recall-by-genotype studies are an 
exciting new tool when investigating causality in disease (50). The establishment of large-scale 
biobanks and registries geared towards genomics (as elegantly exemplified by the Nordic countries 
(51)) also means that previously difficult-to-reach genetic effects, such as gene-environment and 
gene-gene interactions (e.g. (52)) can be further explored.   



The ability to refine phenotypes has clear benefits in our understanding of disease and disease 
endotypes but the temptation to divide participants into smaller and smaller subgroups also runs the 
risk of reducing sample size and consequently, statistical power, for genetic discovery and so a 
balance must be struck. Furthermore, as phenotype definition becomes more nuanced and narrow, 
the potential for the variation in coding practices in EHR described above to impact on interpretation 
becomes more pronounced. Pragmatic definitions that capture the phenotype being studied with 
reasonable precision and minimal misclassification yet at the same time maximise sample size might 
be the optimal strategy for genetic association discovery where statistical power is a major 
consideration, in part due to the large multiple testing burden of genome-wide analyses.  
Stricter phenotyping, such as that appropriate for descriptive classical epidemiological studies and 
clinical practice, could then be applied post hoc to delve deeper into the associations that are 
identified.  
 
In summary, genetic study designs that will be optimal to reap the rewards of deeper phenotyping 
will ideally require multidisciplinary collaboration that includes both genetic and classical 
epidemiology expertise as well as clinical insight. Researchers must be cognizant of subjective 
influences on phenotype definitions in large-scale EHR resources and take an integrative approach 
that also combines measures that might be less prone to bias (or at least, prone to different biases), 
for example, biomarkers. The use of carefully considered sensitivity analyses to test the impact of 
assumptions made and misclassification, will continue to be best practice in these studies. 
 
CONCLUSION 
A better understanding of the genetic aetiology of complex diseases can provide novel insights into 
fundamental biology and translational opportunities. In recognition of this translational potential, 
there is a rising number of high-profile, large-investment initiatives focused on genomics in 
medicine. These traverse public and private funding mechanisms to generate the large-scale clinical 
and biodata resources needed to spur innovation for personalised medicine and population health. 
This new, eagerly-awaited digital health era is now becoming a tangible prospect. To ensure that the 
potential is realised, we recommend focussing on biological outcome measures where possible; 
accounting for non-adherence in studies of treatment response or ascertainment bias in prognostic 
studies; collection of prospectively recruited cohorts across diverse ancestries and with linkage to 
electronic health records so that population-specific PRS can be developed for a range of diseases; 
finally, investment into how to implement genetic testing as a diagnostic test or to effect behaviour 
change is essential. 
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FIGURE LEGENDS 
 
Figure 1: The translational potential of complex disease genomics. 
Improvements to human health (inner circle) are achieved through various enabling milestones at 
different translational axes (outer circle). 
 
Figure 2: Identifying therapeutic targets. 
(A) Effector transcripts identified at genetic signals are genetically manipulated to recapitulate in 
vivo effects on gene expression (e.g. CRIPSR knockdown, over-expression) in human cell lines (e.g. 
IPS cell-derived models) and in animal models, which can be phenotyped. (B) Additional alleles are 
identified using sequence data and assessed for their relationship to disease risk or related-traits. To 
provide insight on the therapeutic window, in vitro functional severity and clinical severity are 
explored to establish the relationship between target perturbation and outcome. Potential adverse 
on-target effects are investigated using genome-wide datasets for other disorders (PheWAS). (C) 
Examples of therapeutic targets confirmed or identified by human GWAS. 
 
Figure 3: Pathway to identifying causal variants. 
Trans-ethnic fine-mapping is used to refine genetic association signals and genomic annotation to 
prioritize likely causal variants. Variants in regulatory elements (e.g. enhancers) are mapped to the 
promoters and transcripts they regulate through conformation capture approaches (e.g. promoter 
Hi-C). Expression QTL mapping can provide additional evidence for the effector transcripts and the 
direction of effect (e.g. increase or decrease in transcript levels). 
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