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Abstract. Most machine learning algorithms require that training data
are identically distributed to ensure effective learning. In biological stud-
ies, however, even small variations in the experimental setup can lead to
substantial deviations. Domain adaptation offers tools to deal with this
problem. It is particularly useful for cases where only a small amount of
training data is available in the domain of interest, while a large amount
of training data is available in a different, but relevant domain.

We investigated to what extent domain adaptation was able to improve
prediction accuracy for complex biological data. To that end, we used
simulated data and time-lapse movies of differentiating blood stem cells
in different cell cycle stages from multiple experiments and compared
three commonly used domain adaptation approaches. Results showed
that FasyAdapt, a simple technique of structured pooling of related data
sets, was able to improve accuracy when classifying the simulated data
and cell cycle stages from microscopic images. Meanwhile, the technique
had minimal negative impact on the classification accuracy, which is
common in other techniques that build models with heterogeneous data.
Despite its implementation simplicity, EasyAdapt consistently produced
more accurate predictions compared to conventional techniques.
Domain adaptation is therefore able to substantially reduce the amount
of work required to create a large amount of annotated training data in
the domain of interest necessary whenever the domain changes even a lit-
tle, which is common not only in biological experiments, but universally
exists in almost all data collection routines.
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1 Introduction

Over the last decade, machine learning, especially supervised learning, has be-
come increasingly important in biological and medical research. Example ap-
plications range from protein structure prediction [1] and the identification of
new disease subgroups from gene expression data [2], to the identification of cell
connectivity [3] and the prediction of phenotypes from time-lapse [1] data and
high throughput imaging [5]. With improving capabilities of data collection and
growing computational resources, machine learning will be playing an even more
important role in understanding of underlying biological processes.

One of the most well-known limitations of supervised learning, however, is the
need for a large amount of annotated data. In biological and medical research,
this requirement is often difficult to meet, as it necessitates expert knowledge
and intensive manual work. With an increase in high-throughput data it becomes
more and more unrealistic to annotate all observations. An appealing alternative
is to combine already-annotated data from one or multiple sources in order to
build a model for a new problem for which there is only little annotated data.

Another limitation of classic supervised learning techniques is the poor per-
formance in dealing with data from multiple sources. A typical problem in bi-
ological research are batch effects. Batch effects describe qualitative changes in
measurements because of experimental changes that are unrelated to the bio-
logical feature under investigation [6]. Typically, differences in the experimental
setup, the use of different protocols, reagents or different machine settings can all
lead to such effects. Conventional machine learning techniques are less effective
in data with batch effects, due to differences in underlying distributions. Even in
the case of an experiment being designed to be a replicate, the classifier trained
with data from one experiment often tends to have lower predictive accuracy
when applied to data from another replicate [7]. While it is possible to build
a new model using only data from one experiment, this would mean wasting
expert knowledge and involve labor-intensive annotation for each separate ex-
periment. Consequently, it is desirable to have a model that can achieve a high
performance with limited additional annotation work.

Domain adaptation describes the case where at least a part of the data used
to train a model follows a different distribution from the data on which the model
is finally applied [38]. It is closely related to the notion of transfer learning and
mutlitask learning [8,9,10]. We follow Pan and Yang [9] and consider transfer
learning as the more general term, with domain adaptation being one special
form of transfer learning. Domain adaptation can be applied where a large num-
ber of annotated data are available in one or more domains that are not of
direct interest (the source domain), while only a limited amount of annotated
data is available in the domain of interest (the target domain) (Fig. 1). The idea
of domain adaptation is to transfer the knowledge from the source to improve
the learning in the target domain. Technically, it can be understood that the
pre-trained decision boundary only requires some 'minor’ tuning from a smaller
amout of data to be applied to the new domain. Domain adaptation techniques
have originally been developed to address text classification problems [11,12,13].
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Domains in this context correspond to different types, styles or topics, e.g., a
model trained with news articles can be adapted to classify a corpus containing
fiction texts [12]. However, the concept is very broad and can be applied to any
variable that is likely to lead to differences in the data distribution, e.g. different
machines, protocols or reagents. Here, we consider domains representing differ-
ent replicates of a biological experiment, where each replicate can be seen as a
different domain.

Source domain Target domain

— Source domain classifier
--+ Target domain classifier
- - Domain adaptation

classifier
- = Training == class 1
e o data - class 2
2 2
© ©
R 2 Data not on class 1
available
— S = class 2
for training
Feature x Feature x

Fig. 1. Illustration of a domain adaptation classifier in the target domain that lever-
ages knowledge from a related, but different problem in the source domain. A direct
application of the source domain (left) classifier (solid line) would lead to a poor clas-
sification in the target domain (right). On the other hand, using only data available
in the target domain to train a target domain classifier (dotted line) would also lead
to poor performance, as the available data is not sufficient to fully learn the deci-
sion boundary. Transferring the knowledge from the source to the target domain using
domain adaptation leads to an enhanced classification performance.

2 Methodology

2.1 Definitions

We define a domain D as a feature space X with the marginal probability distri-
bution P(X) and a label space Y. A function f(-) maps x; to y;, where ; € X
and y; € Y. We consider problems with an arbitrary number of source domains
Dys,,..., Dy, (m > 1) and a single target domain D, . For a multi-class classifica-
tion problem, we convert to a set of binary classification problems in a one-vs-all
manner, i.e. by training a single classifier per class, with the observations of that
class as the positive examples and all other observations as negative examples.
The aim of domain adaptation is to use the knowledge from the source domains
and limited labeling information from the target domain to effectively learn the

objective predictive function f(-) for the target domain.
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2.2 Learning techniques

We compare a particular domain adaptation algorithm, the FasyAdapt tech-
nique [14], with four more conventional techniques of building classifiers. We
refer to these as the 'Source’, *Target’, ’Combined’ and 'Domain’ techniques. In
this study, all domains share the same feature space X. In general, the tech-
niques require a common feature subspace across domains. The details of these
techniques are outlined below and illustrated in Fig. 2. For all techniques, we as-
sume that the number of observations in the source domains is sufficiently large
to estimate a model that will generalize to unseen data from the same distribu-
tion. In the Source technique, we only use labeled data from the source domains
Dg,,...,Ds  to train the model. The model trained on the source domains is
then evaluated on data from the target domain, giving an indirect measure of
proximity between source and target domains. In the Target technique, we only
use labeled data from the target domain D; to train the model, without con-
sidering the data from the source domains. Given enough training data in the
target domain, this model should perform the best. In the Combined technique,
we use labeled data from both the source and the target domains without any
reference to the domain membership when training the models (where every
data point is weighted equally). This is arguably one of the most common ap-
proaches in practice [15,16,17], where a typical scenario consists of a relatively
large amount of labeled data from the source domains and a limited amount of
data from the target domain. In the Domain technique, we slightly adapt the
Combined approach. An additional set of binary variables encoding the domain
membership is added as a new feature set [18]. It is expected to enable the es-
timated function to have a different offset for each domain, while making use
of all the other predictors from all domains to define the shape of the function
in common. The EasyAdapt domain adaptation technique [14,19], uses a simple
transformation to create a representation for the general data structure common
to source and target domains and a separate representation for each domain. In
principle, FasyAdapt can be applied to an arbitrary number m of source do-
mains Dy, ,..., D, and a single target domain D;. However, it is required that
the number of features per domain is not too large, because the feature space is
incereased up to R(™*2)? dimensions with p being the dimension of the shared
feature space. Features only available in the target domain could also be incor-
porated by setting the relevant entries for the other domains to 0. The technique
is simple and flexible and can be used with any supervised classifier.

3 Results

3.1 Simulation study

To test the performance of the different techniques, we created a two dimen-
sional artificial data set with one source domain and one target domain (each
with 200 data points), where the ground truth is known (see Fig. 3A). 15% of
the data in the target domain was used for training. The remainder of data in
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Fig. 2. Schematic overview over the different learning techniques. We denote the feature
matrices with x5, to xs,, for the m source domains and with x; for the target domain.
Label vectors are denoted by ys, and y:, respectively. Single underlined zeros and ones
are column vectors, while double underline indicates matrices of dimensions matching
the dimensions of x;. The Domain technique is adding an additional feature encoding
the domain membership in the form of a one-hot encoding, where the kth domain
is encoded via a 1 at position k. The FasyAdapt technique creates both a unified
representation of the data across all domains (analogously to the Combined technique)
and a separate representation for each domain (diagonal entries).

the target domain was used for performance evaluation. Support Vector Ma-
chine (SVM) [20,21] with a radial basis function (RBF) kernel was chosen as the
basic classifier for all the five learning techniques described in the previous sec-
tion. Parameters were selected using a grid search with 5-fold cross-validation.
From both the contour lines (Fig. 3B-F) and the ROC curves (Fig. 3G) it is
evident that the FasyAdapt technique captured the distribution of the target
domain most accurately (AUC = 0.91), by leveraging information from both the
source domain and the limited amount of training data from the target domain
in building the classifier. Fig. 3B illustrates that due to the limited amount of
training data in the target domain, the Target technique (AUC = 0.86) learned
a decision boundary that was much more complicated than the underlying dis-
tribution. The Source technique (AUC = 0.55, Fig. 3C) directly applied the
decision boundary learned from the source to the target domain, leading to an
evident discrepancy with respect to the target domain distribution. The Com-
bined technique (AUC = 0.64, Fig. 3D), shifts towards the target domain when
building the model. Due to the comparatively large number of source domain
data, however, the model is strongly biased towards the source distribution. The
Domain technique (AUC = 0.89, Fig. 3E) learned a model that describes the
target domain quite well, especially in regions close to the centre. In regions that
were farther away, however, the contour lines were clearly distracted by source
domain information. Compared with these four techniques, the FasyAdapt tech-
nique (Fig. 3F) learned a model that described the target distribution the best,
by successfully integrating the information from the two domains.

3.2 Imaging data set

For a realistic evaluation case, we applied the techniques to a biological data
set [23] consisting of 2888 cells with 186 cell texture and shape features from
time lapse microscopy experiments, where 8 different cell cycle stages have been
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Fig. 3. EasyAdapt separates classes best on simulated data. (A) Distribution of the
two classes in the source (light blue and orange symbols, right) and target domain (blue
and red symbols, left). The target domain was divided into a training set and a test
set. The target training set consisted of 15% randomly sampled data from the target
domain. Classifiers were trained using RBF kernel SVM. (B-F) Classifiers created using
Target (B), Source (C), Combined (D), Domain (E) and EasyAdapt (F). Contour lines
represent different thresholds of the decision boundary of the corresponding classifier.
(G) ROC curves for the different techniques.
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Fig. 4. FasyAdapt outperforms other techniques in particular for small training set
sizes. Performance for (A) linear SVM, (B) radial basis function (RBF) kernel SVM,
and (C) random forest classifiers for learning with experiments 1 and 3 as source
domains and experiment 2 as the target domain. Performance is measured as micro-
averaged AUC (meanzstandard deviation, n=>50 iterations) [22]. We do not plot the
Source technique since it is independent of the training set size.

manually annotated. The data comes from three experiments, with 1468, 726,
and 694 cells, respectively. It is important to note that the experiments differ
regarding the microscope objectives and the magnification factor (10x for ex-
periments 1 and 3, and 20x for experiment 2) used, and were conducted by
different lab technicians [23]. The different techniques were trained and tested
in a one-vs-all manner on the 8 cell cycle stages (where each stage is treated as
a separate class). We always picked two experiments to represent the two source
domains and the remaining experiment as the target domain. All data from the
source domains together with the data from the target train set were centered
and scaled to unit variance. Subsequently, we applied a principal component
analysis (PCA) to the data, (i) keeping only factors explaining 98% of variance
(reducing the number of features to roughly 20-30), and (ii) keeping only the
16 highest loaded principal components. We used 4-fold cross-validation and a
grid search to select parameters and subsequently evaluated performance on a
test set in the target domain. The procedure was repeated 50 times for different
target training set sizes of 100, 120, 150, 200, 250, 300, and 400 samples in order
to obtain robust estimates for variable performance, especially when using small
training set sizes. Independent of the amount of data available in the target do-
main, we used a fixed-sized test set with 240 samples for performance evaluation,
which was randomly chosen for every iteration and for every new training set. In
order to evaluate and compare performance of techniques, we chose the micro-
averaged AUC. Using this metric, class imbalances were taken into account by
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computing cumulative values for true positives, false negatives, true negatives
and false positives for every label and then computing the performance measure

from the aggregated values [22]. We compared three different base classifiers,
namely a linear SVM [21], an RBF kernel SVM [20], and a random forest clas-
sifier [24].
A Linear SVM B RBF kernel SVM C Random forest
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Fig. 5. Relative performance, measured as area under the curve for each of the 50
iterations that were used to generate the average performance lines in Fig. 4. Each data
point shows performance over the range of training set sizes (100-400) for one iteration
of the target domain; each box plot comprises data from 50 iterations. Performance
is shown for (A) linear SVM, (B) radial basis function (RBF) kernel SVM, and (C)
random forest classifiers.

We found that the EasyAdapt technique is particularly robust when working
with a small set of training samples in the target domain and consistently per-
formed among the top techniques in the regime of small training set sizes (Fig. 4).
As expected, with increasing training set size the Target technique catches up
and for 400 training samples (the maximum training set size in the study), the
performance for this technique was among the best performing techniques. In
general performance improved for all techniques with increasing training set size
with exception of the Source technique, which was not trained with any of the
target domain data. Results from all experiments are summarised in Table 1,
showing the performances of the five learning techniques across three different
base classifiers, two different feature selection methods and three different target
domains (each combination of a base classifier, a feature selection method and
a target domain is referred to as a setting below).

To assess performance of the different techniques across training set sizes
Fig. 4, we measured the area under the curve for each of the 50 iterations for a
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given setting. This renders an aggregated performance for each train/test split
across the range of training set sizes we used and gives us an estimate of perfor-
mance for small to medium training set sizes. In contrast to the micro-averaged
AUC across different training set sizes, this measure takes into account the fact
that we tested more smaller training set sizes (in the range of 100-200 sam-
ples) and is a more conservative measure than simple averaging in our case.
This is achieved by weighting performance according to train set size sampling
frequency. Additionally, we normalized performance, so that a perfect classi-
fier would achieve an relative performance of 1, corresponding to an AUC of
1 for all training set sizes in the range from 100 to 400 samples. Fig. 5 shows
the distribution of this performance measure for different techniques, classifiers
and transfer directions. Across all settings, the EasyAdapt technique consistently
showed superior performance over other techniques: Among 18 different settings,
FEasyAdapt ranked 15 times the best or tied for the best and 3 times as the sec-
ond best. This not only demonstrates the effectiveness of knowledge transfer
of EasyAdapt, but also shows its generality with respect to base classifiers and
feature selection methods under different transfer situations. The second best
technique was the Domain technique, with 8 times the best or tied for the best
and 3 times in the second place. This indicated that in many cases the mem-
bership feature used by the Domain technique was also able to leverage some
knowledge from related domains. The technique with the lowest performance
was the Source technique, which ranked last in every setting.

In practice, it is hard to predict whether pooling of data will actually improve
prediction performance or lead to negative transfer, i.e. learning in the target
domain might be negatively affected by the use of additional information, if
domains are too different [9,25]. An example for such negative transfer is the case
of experiment 2 as the target domain. Here, both the Combined and Domain
techniques performed considerably worse compared to the Target technique (see
Table 1). This can probably be explained by stronger differences in distributions
between experiments 1 and 3 on the one hand, and experiment 2 on the other, as
experiment 2 used a different magnification. This difference can also be seen from
the extremely poor performance of the Source technique for experiment 2 as the
target domain. It is worth noting that the negative transfer that affected the
Combined and Domain techniques with experiment 2 as target domain appears
stable across different training set sizes (Fig. 4). Importantly, we do not observe
such negative transfer in the case of the FasyAdapt technique. Performance of
EasyAdapt was comparable or even slightly better than the Target technique
when looking at experiment 2 as the target domain.

4 Discussion

In the present study, we investigated whether accounting for experimental vari-
ation in biological data using a domain adaptation techniques can help improve
prediction performance and reduce the need for labeled data. We show that in-
deed, given only limited training data, the FasyAdapt domain adaptation tech-
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Table 1. Mean micro-averaged AUC for different classification methods, learning tech-
niques, feature sets (see text for explanation), and target domains. The best performing
technique is marked in bold.

number of| Target Domain Target | Combined| Source

Method features | domain EasyAdapt technique | technique | technique | technique
1 0.972 0.970 0.971 0.959 0.952
16 2 0.978 0.949 0.976 0.941 0.803
linear 3 0.987 0.987 0.986 0.983 0.981
SVM 1 0.976 0.974 0.974 0.966 0.958
98% 2 0.982 0.958 0.978 0.951 0.800
3 0.991 0.990 0.988 0.987 0.983
1 0.976 0.976 0.974 0.973 0.956
RBF 16 2 0.982 0.967 0.982 0.963 0.512
Kernel 3 0.991 0.992 0.990 0.990 0.985
SVM 1 0.979 0.979 0.976 0.967 0.955
98% 2 0.984 0.970 0.983 0.966 0.531
3 0.993 0.993 0.991 0.991 0.977
1 0.970 0.970 0.967 0.965 0.943
16 2 0.980 0.976 0.977 0.970 0.693
random 3 0.988 0.989 0.986 0.986 0.979
forest 1 0.972 0.971 0.967 0.968 0.950
98% 2 0.979 0.971 0.975 0.965 0.696
3 0.989 0.990 0.985 0.989 0.982

nique boosts prediction performance both in a simulation study and a data set
of imaged single cells [23] and leads to more robust predictions in the presence
of experimental variation.

Applications of domain adaptation techniques in biological research have so
far been mostly restricted to genomic sequence analysis [26,27]. Widmer et al.
[28,29] used a more general multi-task learning framework in conjunction with
regularization based supervised learning methods, such as SVM and logistic re-
gression for splice-site and binding site prediction and to transfer model parame-
ters learned on 2D images to 3D images in order to enhance learning. In contrast
to [29], we do not learn domain specific differences explicitly. In practice, this
information is also often hard to quantify. Here, we rather focus on the effect
of training set size and the pooling of heterogeneous data without quantitative
knowledge about the relationship between domains. We compare performance of
the EasyAdapt technique across three different machine learning algorithms. Fur-
thermore, we consider a range of common ways of combining information from
different domains, e.g. via explicit encoding of domain membership, a procedure
that is often used in practice. We demonstrate that the FasyAdapt technique is
relatively robust to negative effects of data pooling.

Our results have implications for dealing with biological batch effects in ma-
chine learning tasks and for improving learning in settings with limited training
data, if additional source data is available. The FasyAdapt technique allows
the reuse of existing data sets as source data and avoids cost-intensive manual
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labelling of training data. Results confirm the problem that is one major moti-
vation of this work: a model trained using data from one biological experiment is
likely to have much inferior performance when applied to a different experiment,
despite the experiments sharing similar experimental setups. Importantly, the
FEasyAdapt technique is general in that it does not change the machine learning
method used and can therefore be applied to a wide set of problems. EasyAdapt
strikes a balance between improving performance in cases when additional infor-
mation is available and proofs robust to experimental variations. Compared with
classic techniques such as the Domain and Combined techniques, the EasyAdapt
technique is not affected by negative transfer and for small to medium training
set sizes it can improve learning in the target domain.

The technique is limited by the necessity to identify domains, i.e. it is nec-
essary to have domain knowledge about potential differences in experimental
conditions and fundamental differences in feature distributions that define do-
mains. Furthermore, it requires that the domains have a shared feature subspace
and are distinct [14]. Both requirements are typically fulfilled in biological data.
Further research will be necessary to develop empirical measures of domain re-
lationships that help to identify cases where the use of domain adaptation in
machine learning can be particularly helpful.
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