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ABSTRACT

We describe a Transformer model for a retrosynthetic reaction prediction task. The model is trained
on 45 033 experimental reaction examples extracted from USA patents. It can successfully predict
the reactants set for 42.7% of cases on the external test set. During the training procedure, we applied
different learning rate schedules and snapshot learning. These techniques can prevent overfitting and
thus can be a reason to get rid of internal validation dataset that is advantageous for deep models with
millions of parameters. We thoroughly investigated different approaches to train Transformer models
and found that snapshot learning with averaging weights on learning rates minima works best. While
decoding the model output probabilities there is a strong influence of the temperature that improves
at T=1.3 the accuracy of models up to 1-2%.

Keywords Retrosynthesis prediction · Computer Aided synthesis Planning · Character-based models · Transformer

1 Introduction

New chemical compounds drive technological advances in material, agricultural, environmental, and medical sciences,
thus, embracing all fields of scientific activities which have been bringing social and economic benefits throughout
human history. Design of chemicals with predefined properties is an arena of QSAR/QSPR (Quantitative Structure
Activity/Property Relationships) approaches aimed at finding correlations between molecular structures and their
desired outcomes and then applying these models to optimise activity/property of compounds.

The advent of deep learning [1, 2] gave a new impulse for virtual modeling and also opened a venue for a promising
set of generative methods based on Recurrent Neural Networks [3], Variational Autoencoders [4], and Generative
Adversarial Networks trained with reinforcement learning [5, 6]. These techniques are changing the course of QSAR
studies from the observation to the invention: from a virtual screening of available compounds to direct synthesis of
new candidates. Generative models can produce big sets of promising molecules and impaired with SMILES-based
QSAR methods [7] provide a strong foundation for creating highly optimized focussed libraries, but estimation of
synthetic availability of these compounds is an open question though several approaches based on fragmentation [8] and
machine learning [9] approaches have been developed. To synthesize a molecule, one should have a plan of a multi-step
synthesis and also a set of available reactants. Finding an optimal combination of reactants, reactions, and conditions to
obtain the compound with good yield, sufficient quality, and quantity is not a trivial task even for experts in organic
chemistry. Recent advances in the computer-aided synthesis planning are reviewed in [10, 11, 12].

The retrosynthetic analysis worked out by E. J. Corey [13] tries to account for all factors while deriving the synthetic
route. It iteratively decomposes the molecule on simpler blocks till all of them become available either by purchase or
by synthesis described in the literature. At each step, fig. 1, all possible disconnections (rules) with known reactions
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Figure 1: An example of a retrosynthetic reaction: on the left side of the arrow the target molecule is depicted, and on
the right side the one possible set of reactants that can lead to the target is shown in common chemistry-like scheme and
using SMILES notation. Here two successive amidation reactions result in cyclisation and aromatization.

simplify the target molecule bringing to the scene less complex compounds. Some of them may be already available,
while the others undergo the next step of retrosynthesis decomposition. Due to the recursive nature of the procedure, it
can deal with thousands of putative compounds so computational retrosynthetic approaches can greatly help chemists in
finding the best routes. Managing of the database of such rules is complicated and more critical the models based on it
are not ready to accommodate new reactions and will always be outdated. Unfortunately, almost more than 60 years
of developing rule-based systems ended with no remarkable success in synthesis planning programs [14]. Another
approach to tackle the problem is to use so-called template-free methods inspired by the success of machine-translation.
They don’t require the database of templates and rules due to an inherent possibility to derive this information during
training directly from a database of organic reactions with clearly designated roles of reactants, products, reagents, and
conditions.

The analogy between machine translation and retrosynthesis is evident: each target molecule has its predecessors
from which it can be synthesized as every meaningful sentence one can translate from source language to target one.
If all parts of a reaction are written in SMILES notation, then our source and target sentence are composed of valid
SMILES tokens as words. The main goal of the work is to build a model which could for a given target molecule for
our example2 COC(=O)c1cccc(-c2nc3cccnc3[nH]2)c1 in fig. 1 correctly predict the set of reactants. Namely, it should
predict Nc1cccnc1N.COC(=O)c1cccc(C(=O)O)c1 in this case.

Neural sequence-to-sequence (seq2seq) approach has been recently applied for a direct reaction prediction task [15, 16]
with outstanding statistical parameters of final models – 90.4% of accuracy on test set. Seq2seq modeling has been also
tested on retrosynthesis task [17], but due to the complex nature of retrosynthesis itself and difficulty in estimating the
correct predictions of reactants 3, accuracy on the test set was moderate 37.4% but still comparable to rule-based systems
35.4%. We questioned about the possibility of improvement models for one-step retrosynthesis utilizing modern neural
network architectures and training techniques. Applying the Transformer Model [18], together with cyclical learning
rate schedule [19], resulted in a model with accuracy 42.7%, that is > 5% higher compare to the baseline model [17].

Our main contributions are:

• We show that Transformer can be efficiently used for a retrosynthesis prediction task.

• We show that for this particular task there is no advantage to use a validation dataset for early-stopping or
other parameters optimization. We trained all the parameters directly from the training dataset.

• Applying weights averaging and snapshot learning helped to train the most precise model for one-step
retrosynthesis prediction. We averaged weights on 5 successive cycles of learning rate schedule.

• Increasing the temperature while performing a beam-search procedure improves the accuracy up to 2%.

2 This reaction is in the test set and it was correctly predicted by our model.
3A target molecule usually can be synthesized with different reactions starting from different sets of reactants. The predictions

of the model may be correct from organic chemist point of view but differ from the reactant set in ground truth. This may lead to
underestimation of effectiveness of models.
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2 Approach

2.1 Dataset

In this study we used the same dataset of reactions as in [17]. This dataset was filtered from the USPTO database [20]
originally derived from the USA patents and contains 50 000 reactions classified into 10 reaction types [21]. The authors
[17] further preprocessed the database by splitting multiple products reactions into multiple single products reactions.
The resulting dataset contains 40 029, 5 004, and 5 004 reactions for training, validation, and testing respectively.
Information about the reaction type was discarded as we aimed at building a general model using SMILES of products
and reactants only.

2.2 Model input

The seq2seq models were developed to support machine translation where the input is a sentence in one language,
and the output is a sentence with approximately the same meaning but in another language. String nature of data
implies some tokenization procedures similar to word2vec to be used for preprocessing the input. Most of works in
cheminformatics dealing with SMILES tokenize the input with a regexp equal or similar to [15].

token_regex = "(\[[^\]]+]|Br?|Cl?|N|O|S|P|F|I|b|c|n|o|s|p|\(|\)|
\.|=|#|-|\+|\\\\|\/|:|~|@|\?|>|\*|\$|\%[0-9]{2}|[0-9])".

Though such tokenization is more similar to way chemists think, it also has some drawbacks that confuse network by
putting forward low represented molecular parts. For example, after applying this regexp to the database one can see
some not frequent moieties such as [C@@], [C@@H], [S@@],[C@],[C@H],[N@@+],[se],[C-],[Cl+3]. The thing
in brackets according to SMILES specification can be quite a complex gathering not only the element’s name itself,
but also its isotopic value, stereochemistry configuration, the formal charge, and the number of hydrogens4. Strictly
speaking, to do tokenization right one should also parse the content of brackets just increasing the number of possible
words in the vocabulary what eventually leads to the simplest tokenization only with letters. We tried different schemes
of tokenization in this work but did not see any improvements in using them over simple character-based method.

Our final vocabulary has length of 66 symbols5:

chars = " ^#%()+-.0123456789=@ABCDEFGHIKLMNOPRSTVXYZ[\\]abcdefgilmnoprstuy$"

To convert a token to a dense vector we used a trainable embedding 6 of size 64. It is well known that training neural
networks in batches is more stable, faster, and leads to more accurate models. To facilitate batch training we also used
masks of input strings of shape (batch_size, max_length) with elements equal to 1 for those positions where are valid
SMILES symbols and 0 everywhere else.

2.3 Transformer model

We used a promising Transformer [18] model for this study which is a new generation of encoder-decoder neural
networks family. The architecture is suited for exploration of the internal representation of data by deriving questions
(Q) the data could be asked for, keys for its indexed knowledge (K), and answers written as values (V ) corresponding to
queries and keys. Technically these three entities are simply matrixes learned during the network training. Multiplying
them with the input (X) gives keys (k), questions (q), and values (v) relevant to a current batch. Equipped with these
calculated parameters of the input the self-attention layers transforms it pointing out to some encoding (decoding) parts
based on the attention vector.

The Transformer has wholly got rid of any recurrences or convolutional operations. To tackle distances between
elements of a string a positional encoding matrix was proposed with elements equal to the values of trigonometric
functions depending on the position in a string and also the position in the embedding direction. Summed with learned
embeddings positional encodings do their job linking far located parts of the input together. The output of self-attention

4We do not want to exclude stereochemistry information from our model as well as charges and explicit hydrogens that will lead
to reducing of the dataset. Moreover, work in generative models showed excellent abilities of models to close cycles, for example,
c1cc(COC)cccc1. If the model can capture such a long distance relation why should it be cracked on much simplier substrings
enclosed by brackets?

5This vocabulary derived from the complete USPTO set and is a little bit wider than needed for this study. But for future extending
of the models it is better to fix the input shape to the biggest possible value.

6The encoder and the decoder share embeddings in this study.
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layers is then mixed with original data, layer-wise normalized, and passed position-wise through a couple of ordinary
dense layers to go further either in next level of self-attention layers or to a decoder as an information-rich vector
representing the input. The decoder part of Transformer resembles the encoder but has an additional self-attention layer
which corresponds to encoder’s output.

Transformer model shows the state-of-the-art results in machine translation and reaction prediction outcomes [16]. The
latter work showed that training the Transformer on large and noisy datasets results in a model that can outperform not
only other machine models but also well qualified and experienced organic chemists.

2.4 Model inference

The model estimates the probability of the next symbol over the model’s vocabulary given all previous symbols in the
string. Technically, the Transformer model first calculates logits, zi, and then transforms them to probabilities.

zi = Transformer({x1, x2, x3, ..., xL}, {y1, y2, y3, ..., yi−1}) (1)
Here xi is the input of the models at i position; L – the length of the input string; yi is the decoded output of the model
up to position (i− 1); and zi – logits that are to be converted to probabilities:

qi =
exp(zi/T )∑V
j=0 exp(zj/T )

(2)

where V is the size of the vocabulary (66 in this work) and T stands for the temperature7 usually assigned to 1.0 in
standard softmax layers. With higher T the landscape of the probability distribution becomes more smooth. During the
training the model adapts its weights to better predict qi, so yi = qi.

During the inference however we have several possibilities how to convert qi into yi, namely greedy and beam search.
The first one picks up a symbol with maximum probability whereas the second one at each step holds top−K (K =
beam’s size) suggestions of the model and summarises the overall likelihood for each of K final decodings. The beam
search allows better inference and the probability landscape exploration compared to the greedy search because at a
particular step of decoding it may choose a symbol with less than maximum probability, but the total likelihood of the
result can be higher due to more significant probabilities on the next steps.

2.5 Training heuristics

Training a Transformer model is a challenge, and several heuristics have been proposed [19], some of them were used
in this study:

Using as bigger batch size as possible. Due to our hardware limitations we could not set the batch size more then
648;

Increasing the learning rate at the beginning of training up to warmup steps9. The authors of the original Trans-
former paper [18] used 4 000 steps for warming. The Transformer model for reaction prediction task from [16] used
8 000 steps. We analysed different values for warmup and eventually found that 16 000 works well with our model.

Applying cyclic learning rate schedules. This tips can generally improve any model [22] through better loss
landscape exploration with bigger learning rates after the optimiser felt down to some local minima. For this study we
used the following scheme for learning rate calculation depending on the step:

u(step) =

{
warmup+ (step mod cycle), if step ≥ cycle
step, otherwise

where cycle stands for the number of steps while the learning rate is decreasing before raising to the maximum again.

λ(step) = factor ∗ min(1.0, u(step)/warmup)
max(u(step), warmup)

(3)

where factor is just a constant. Big values of factor introduce numerical instability during training, so after several
trials we set factor = 20.0. The curve for learning rate in this study is shown in fig. 3, plot (4, f).

7Similar to formula of Boltzmann (Gibbs) distribution used in statistical mechanics.
8Our first implementation of the model required a lot of memory to deal with masks of reactants and products. Though later we

improved the code we still remained this size for consistency of the results.
9In our implementation 1 step is equivalent to 1 batch. The number of reactions for training is 40 029 + 5 004, so one epoch is

equal to 704 batches.
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Averaging weights during last steps (usually 10- 20) of training or at minima of learning rates in case of snapshop
learning [23]. Also with cyclic learning rate schedules it is possible to average weights of those models that have
minimum in losses just before increasing of the rate. Such approach leads to more stable and plain region in loss
landscapes [22].

3 Results

3.1 Learning details and evaluation of models for retrosynthesis prediction
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Figure 2: Dependence of the beam search on tempera-
ture. For better exploration, higher temperatures are more
useful. In this study we explored T=1.3. Bigger values
significantly worse for Top-3, and approximately the same
for Top-1 and Top-5. This curve was derived from the
training dataset.

For this study, we implemented The Transformer model
in Tensorflow [24] library to support its integration in our
in-house programs set (https://github.com/bigchem/
retrosynthesis). All values reported are averages for
three repetitive runs, see p. 10 for details. Preliminary
modeling showed that the architecture with 3 layers and
8 attention heads works well for the datasets, though we
tried combinations of 2, 3, 4, 5 layers with 6, 8, 10, 12
heads. So all calculations were performed with these values
fixed. The number of learnable parameters of the model
is 1 882 176, embedding layer common for product and
reactants has size 64.

Following the standard machine learning protocol, we
trained our first models (T1) using three datasets for train-
ing, validation, and external testing (8:1:1) as was done
in [17]. Learning curves for T1 are depicted in fig. 3, (c)
and (d) for training and validation loss, respectively, (a)
shows the original learning rate schedule developed by the
authors of the Transformer but with 16 000 warmup steps.
On reaching cross-entropy loss about 0.1 on the valida-
tion dataset, it stagnates without noticeable fluctuations as
training loss steadily decreases. After warming up phase
the learning rate begins fading and eventually after 1 000
epochs its value reaches 2.8 ∗ 10−5 inevitable causing to stop training because of too small updates.

During the decoding procedure, we explored the influence of the temperature parameter on the final quality of prediction
and found that inferring at higher temperatures gives better result then at T=1. This observation similarly repeated
for all our models. Fig. 2 shows the influence of this parameter on the reactants prediction of the part of the training
set. Clearly, at T=1.3 the model reaches the maximum of chemically-based accuracy. This fact one can explain that at
higher temperatures the landscape of output probabilities of the model is softer letting the beam-search procedure to
find more suitable ways during decoding. Of course, the temperature influences only relative distances between peaks,
so it does not affect the greedy search method.

Table 1: Accuracy (%) of the models on test set when all reactants were correctly predicted.

Model Greedy Top-1 Top-3 Top-5 Description

Seq2Seq 37.4 52.4 57.0 Literature result from [17] based on Seq2Seq architecture.

T1 34.4 37.9 57.3 62.7 Transformer Model trained with validation control set
(early stopping, ~200 epochs).

T11 37.3 39.8 59.1 63.9 The same as T1, but without early stopping (1000 epochs).
T2 39.3 41.8 61.3 67.2 Transformer Model trained on both training and validation

sets for 1000 epochs.
T3 40.6 42.7 63.9 69.8 Transformer Model trained with cyclic learning rate sched-

ule for 1000 epochs. Averaging cycles 6,7,8,9, and 10.
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Figure 3: Summary of learning curves for the Transformer model: a) original learning rate schedule with warmup;
b) cyclic learning rate with warmup; c) cross-entropy loss for training and d) validation; e) cross-entropy loss and f)
character-based accuracy for training a model wit cyclic learning schedule.

If we applied the early stopping technique, the training of a model is stopped around 200 epoch10. Effectiveness of such
a model marked T11 in table 1 resulted in TOP-1 37.9% on the test set. If we chose the last one model obtained at 1 000
epoch, then the model T12 gave us better value – 39.8%. In this case, we did not see any need of the validation dataset
and keeping in mind that our model has almost 2 millions of parameters we decided to combine training and validation
sets and train our next models on both data, e.g., without validation. The model T2 was trained on all data and with the
same learning rate schedule as T1. The results obtained when applying T2 to the test set are better than for T1 model
namely 41.8% vs. 39.8%, respectively.

Then we trained our model with cyclic learning rate schedule, eq. 3, fig. 3 (b) for better exploration of loss landscape.
During training, we also saved the character-based accuracy of the model, fig. 3, (f). This snapshot training regime [23]
produces a set of different weights at each minimum of learning rate. Averaging them is to some extent equivalent to a
consensus of models but within one model [22]. We tried different averaging regimes for T3 and found that averaging
five last cycles gives better results.

Our final T3 model outperforms [17] by 5.3% with beam search and more critical it is also effective with greedy search
40.6%. The latter one is much faster and consequently more suitable for virtual screening campaigns.

It worth to notice that TOP-5 accuracy reaches almost 70%. That means the model can correctly predict reactants but
sometimes scoring is wrong and TOP-1 is much less. We tried to improve TOP-1 scoring with internal confidence
estimation.

10Though we trained our models for 1 000 epochs we also saved their weights after each epoch and for imitating early stopping
technique selected those weights that correspond to minimum in validation loss function.
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3.2 Internal scoring

The beam search calculates the sum of negative logarithms of probabilities of selecting a token at a particu-
lar step, and thus, this value can be a measure of internal confidence. To check this hypothesis, we selected
T3-2 model and estimated its internal performance to distinguish between correct and invalid predictions. The
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Figure 4: Internal classification performance.

parameters of the classifier were: AUC = 0.77, optimal threshold =
0.00678. Then we validated the model with an additional condition:
if the score is less than optimal threshold we selected the answer,
otherwise we went to the next candidate in the possible reactant
sets returned by the beam search. The results were even worse
than without thresholds, 28.45 vs. 42.42. A possible explanation
is that the estimation does not deal with organic chemistry. The
model tries to derive some character-based scoring relying only on
tokens in a string and increasing this value does not influence the
quality of prognosis. The same effect we saw during training when
the character accuracy is 98% whereas chemistry-based metric is
much lower.

Estimation of optimal thresholds on training sets almost always
a bad idea due to the biasing of a model to its source data. The
correct way is to use validation dataset instead. We built the
classifier for the T1-2 with characteristics: AUC = 0.65, optimal
threshold 0.00396, and applied it for testing the model. The results
were again worse, 14.1% vs. 40.85%. There are no significant
differencies of accuracies when using unnormalized or normalized
on the length of the reactants string scores. Fig. 4 shows ROC curves for T1-2 and T3-2 models derived at T=1.3.
Evidently one cannot use this estimation to improve TOP-1 scoring.

4 Discussion

Much attention paid in the scientific literature for rule-based approaches [14, 25]. Since the authors of [26] have
described the algorithm of automatic rule extraction from mapped reaction database several implementations of the
procedure appeared, and then widely accepted by researchers. However, it should be noticed that, first, there is no
algorithm to make atom-mapping [12] if it is absent (the typical situation with laboratory notebooks (ELN) for example).
Second, all available information on synthesis usually contains only positive reactions, so all binary classification
accuracies are inevitable overestimated because of artificial negative sets exploited in studies. Finally, the absence of
commonly accepted dataset for testing makes the results of different groups practically disparate and biased to those
problems the authors tried to solve. The authors of [25] selected 40 molecules from DrugBank database to test their
multiscale models, whereas [17] used database specially prepared for classification [21].

Our model can correctly predict reactant set in TOP-5 with accuracy 69.8%. Internal confidence estimation cannot
guarantee a correct ordering of reactants sets, so different scoring methods should be developed. One of the promising
ways is to use a forward reaction prediction model to estimate whether it is possible to assemble a target molecule from
reactants proposed. The scoring model should have excellent characteristics and probably it is possible to apply the
same cycling learning rate and snapshot averaging to build it.

First work on applying reinforcement learning for the whole retrosynthetic path [14] showed superior performance
compared to the rule-based methods developed before. More important if can deal with several steps of synthesis. But
the policy learned during the training again used extracted rules limiting the method. Thus, the development of models
for direct estimation of reactants is still of prime importance. During the encoding process, the Transformer finds an
internal representation of a reaction which can be useful for multicomponent QSAR [27] for predicting rate constants
[28] and yields of reactions. Embedding such systems in policy networks within reinforcement learning paradigm can
bring forward an entirely data-driven approach to solve challenging organic synthesis problems.

5 Conclusions

We have described a Transformer model for retrosynthesis one-step prediction task. Our final model trained with
cyclic learning rate schedule and its weights were averaged during last five loss minimum. The model outperforms the
previous published retrosynthetic character-based model by 5.3%. It also does not require the extraction of specific rules,
atom mappings, and reaction types in reaction dataset. We believe it is possible to improve the model further applying
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knowledge distillation method [29] for example. The current model can be used as a building block for reinforcement
learning aimed at solving complex organic problems.

All source code and also models built are available online via github

https://github.com/bigchem/retrosynthesis

Acknowledgments

This study has been partially supported by ERA-CVD (httpd://era-cvd.eu) "Cardio-Oncology" project, BMBF
01KL1710 and by European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie
grant agreement No. 676434, "Big Data in Chemistry" ("BIGCHEM", http://bigchem.eu). The authors thank NVIDIA
Corporation for donating Quadro P6000 and Titan Xp graphics cards for this research.

References

[1] Chen, H., Engkvist, O., Wang, Y., Olivecrona, M. & Blaschke, T. The rise of deep learning in drug discovery.
Drug Discovery Today 23, 1241 – 1250 (2018).

[2] Baskin, I. I., Winkler, D. & Tetko, I. V. A renaissance of neural networks in drug discovery. Expert Opinion on
Drug Discovery 11, 785–795 (2016).

[3] Ertl, P., Lewis, R., Martin, E. & Polyakov, V. In silico generation of novel, drug-like chemical matter using the
lstm neural network. arXiv (2017). https://arxiv.org/abs/1712.07449.

[4] Gómez-Bombarelli, R. et al. Automatic chemical design using a data-driven continuous representation of
molecules. ACS Central Science 4, 268–276 (2018).

[5] Guimaraes, G. L., Sanchez-Lengeling, B., Outeiral, C., Farias, P. L. C. & Aspuru-Guzik, A. Objective-reinforced
generative adversarial networks (organ) for sequence generation models. arXiv (2017). https://arxiv.org/
abs/1705.10843v3.

[6] Olivecrona, M., Blaschke, T. & hongming Chen, O. E. Molecular de-novo design through deep reinforcement
learning. J Cheminform. 9, 1758–2946 (2017).

[7] Kimber, T. B., Engelke, S., Tetko, I. V., Bruno, E. & Godin, G. Synergy effect between convolutional neural
networks and the multiplicity of smiles for improvement of molecular prediction. arXiv (2018). https://arxiv.
org/abs/1812.04439v1.

[8] Ertl, P. & Schuffenhauer, A. Estimation of synthetic accessibility score of drug-like molecules based on molecular
complexity and fragment contributions. J. Cheminform. 1, 8 (2009).

[9] Coley, C. W., Rogers, L., Green, W. H. & Jensen, K. F. Scscore: Synthetic complexity learned from a reaction
corpus. Journal of Chemical Information and Modeling 58, 252–261 (2018).

[10] Coley, C. W., Green, W. H. & Jensen, K. F. Machine learning in computer-aided synthesis planning. Accounts of
Chemical Research 51, 1281–1289 (2018).

[11] Engkvist, O. et al. Computational prediction of chemical reactions: current status and outlook. Drug Discovery
Today 23, 1203 – 1218 (2018).

[12] Baskin, I. I., Madzhidov, T. I., Antipin, I. S. & Varnek, A. A. Artificial intelligence in synthetic chemistry:
achievements and prospects. Russ. Chem. Rev. 86, 1127 – 1156 (2017).

[13] Corey, E. J. & Cheng, X.-M. The Logic of Chemical Synthesis (Wiley-Interscience, 1995).

[14] Segler, M. H., Preuss, M. & Waller, M. P. Planning chemical synthesis with deep neural networks and symbolic ai.
Nature 555, 604 – 610 (2018).

[15] Schwaller, P., Gaudin, T., Lanyi, D., Bekas, C. & Laino, T. Found in translation: Predicting outcomes of complex
organic chemistry reactions using neural sequence-to-sequence models. arXiv (2018). https://arxiv.org/
abs/1711.04810v2.

[16] Schwaller, P. et al. Molecular transformer for chemical reaction prediction and uncertainty estimation. arXiv
(2018). https://arxiv.org/abs/1811.02633v1.

[17] Liu, B. et al. Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS Central Science
3, 1103–1113 (2017).

8

https://github.com/bigchem/retrosynthesis
httpd://era-cvd.eu
https://arxiv.org/abs/1712.07449
https://arxiv.org/abs/1705.10843v3
https://arxiv.org/abs/1705.10843v3
https://arxiv.org/abs/1812.04439v1
https://arxiv.org/abs/1812.04439v1
https://arxiv.org/abs/1711.04810v2
https://arxiv.org/abs/1711.04810v2
https://arxiv.org/abs/1811.02633v1


A Transformer Model for Retrosynthesis A PREPRINT

[18] Vaswani, A. et al. Attention is all you need. arXiv (2017). https://arxiv.org/abs/1706.03762.
[19] Popel, M. & Bojar, O. Training tips for the transformer model. arXiv (2018). https://arxiv.org/abs/1804.

00247v2.
[20] Lowe, D. M. Extraction of chemical structures and reactions from the literature. Ph.D. thesis (2012). URL

https://www.repository.cam.ac.uk/handle/1810/244727.
[21] Schneider, N., Stiefl, N. & Landrum, G. A. What’s what: The (nearly) definitive guide to reaction role assignment.

Journal of Chemical Information and Modeling 56, 2336–2346 (2016).
[22] Izmailov, P., Podoprikhin, D., Garipov, T., Vetrov, D. & Wilson, A. G. Averaging weights leads to wider optima

and better generalization. arXiv (2018). https://arxiv.org/abs/1803.05407v3.
[23] Huang, G. et al. Snapshot ensembles: Train 1, get m for free. arXiv (2017). https://arxiv.org/abs/1704.

00109v1.
[24] Abadi, M. et al. TensorFlow: Large-scale machine learning on heterogeneous systems (2015). URL http:

//tensorflow.org/. Software available from tensorflow.org.
[25] Baylon, J. L., Cilfone, N. A., Gulcher, J. R. & Chittenden, T. W. Enhancing retrosynthetic reaction prediction

with deep learning using multiscale reaction classification. Journal of Chemical Information and Modeling 59,
673–688 (2019).

[26] Law, J. et al. Route designer: A retrosynthetic analysis tool utilizing automated retrosynthetic rule generation.
Journal of Chemical Information and Modeling 49, 593–602 (2009).

[27] Kravtsov, A. A., Karpov, P. V., Baskin, I. I., Palyulin, V. A. & Zefirov, N. S. Prediction of rate constants of sn2
reactions by the multicomponent qspr method. Doklady Chemistry 440, 299–301 (2011).

[28] Gimadiev, T. et al. Bimolecular nucleophilic substitution reactions: Predictive models for rate constants and
molecular reaction pairs analysis. Molecular Informatics 37 (2018).

[29] Hinton, G., Vinyals, O. & Dean, J. Distilling the knowledge in a neural network. arXiv (2015). https:
//arxiv.org/abs/1503.02531v1.

9

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1804.00247v2
https://arxiv.org/abs/1804.00247v2
https://www.repository.cam.ac.uk/handle/1810/244727
https://arxiv.org/abs/1803.05407v3
https://arxiv.org/abs/1704.00109v1
https://arxiv.org/abs/1704.00109v1
http://tensorflow.org/
http://tensorflow.org/
https://arxiv.org/abs/1503.02531v1
https://arxiv.org/abs/1503.02531v1


A Transformer Model for Retrosynthesis A PREPRINT

6 Appendix

In this section we report all characteristics of repetitive runs of all models built in this study. Average values based on
this data are summed in table 1. For every run we report learning curves with loss functions and learning rate, then
model relevant information are collected in a table including greedy search decoding accuracies, beam search accuracies
for Top-1, Top-3, and Top-5.

6.1 Model 1
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Figure 5: Learning curves and rate schedule for T1 model. Losses for training and validation datasets on the left, usual
learning rate schedule on the right.

Table 2: Parameters of T11 run.

Parameter Value Top-1 Top-3 Top-5

Early stopping loss (training / validation) 0.09345 / 0.10864
Last training loss (training / validation) 0.05867 / 0.11819
Epoch (early stopping) 208

Greedy search (early stopping, epoch 208) 32.83
Greedy search (last, epoch 999) 34.75
Greedy (last 10 average, epoch, 990 - 999) 35.57

Beam, T = 1.0 (early) 35.57 54.14 59.13
Beam, T = 1.3 (early) 35.93 54.59 59.51

Beam, T = 1.0 (last) 37.15 55.22 60.49
Beam, T = 1.3 (last) 37.67 55.97 61.01

Beam, T = 1.0 (last 10 average) 37.83 56.08 60.63
Beam, T = 1.3 (last 10 average) 38.15 56.71 61.31

https://github.com/bigchem/retrosynthesis/papers/retrosynthesis/models/t1-1-early.h5

https://github.com/bigchem/retrosynthesis/papers/retrosynthesis/models/t1-1-last.h5

https://github.com/bigchem/retrosynthesis/papers/retrosynthesis/models/t1-1-avg.h5
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6.1.2 Model 1 (run-2)
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Figure 6: Learning curves and rate schedule for T1 model. Losses for training and validation datasets on the left, usual
learning rate schedule on the right.

Table 3: Parameters of T12 run.

Parameter Value Top-1 Top-3 Top-5

Early stopping loss (training / validation) 0.08681 / 0.09926
Last training loss (training / validation) 0.04863 / 0.11316
Epoch (early stopping) 162

Greedy search (early stopping, epoch 162) 34.63
Greedy search (last, epoch 990) 38.07
Greedy (last 10 average, epoch, 990 - 999) 38.19

Beam, T = 1.0 (early) 37.45 56.71 62.43
Beam, T = 1.3 (early) 38.31 57.93 63.35

Beam, T = 1.0 (last) 39.83 58.63 64.45
Beam, T = 1.3 (last) 40.67 59.53 64.97

Beam, T = 1.0 (last 10 average) 40.22 59.05 64.91
Beam, T = 1.3 (last 10 average) 40.85 59.85 65.45

https://github.com/bigchem/retrosynthesis/papers/retrosynthesis/models/t1-2-early.h5

https://github.com/bigchem/retrosynthesis/papers/retrosynthesis/models/t1-2-last.h5

https://github.com/bigchem/retrosynthesis/papers/retrosynthesis/models/t1-2-avg.h5
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6.1.3 Model 1 (run-3)
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Figure 7: Learning curves and rate schedule for T1 model. Losses for training and validation datasets on the left, usual
learning rate schedule on the right.

Table 4: Parameters of T13 run.

Parameter Value Top-1 Top-3 Top-5

Early stopping loss (training / validation) 0.07795 / 0.09662
Last training loss (training / validation) 0.04654 / 0.11285
Epoch (early stopping) 193

Greedy search (early stopping, epoch 193) 35.63
Greedy search (last, epoch 998) 38.13
Greedy (last 10 average, epoch, 990 - 999) 38.03

Beam, T = 1.0 (early) 38.75 58.55 64.47
Beam, T = 1.3 (early) 39.53 59.25 65.23

Beam, T = 1.0 (last) 40.05 59.35 64.27
Beam, T = 1.3 (last) 40.41 60.49 64.85

Beam, T = 1.0 (last 10 average) 39.96 59.83 64.46
Beam, T = 1.3 (last 10 average) 40.41 60.81 65.18

https://github.com/bigchem/retrosynthesis/papers/retrosynthesis/models/t1-3-early.h5

https://github.com/bigchem/retrosynthesis/papers/retrosynthesis/models/t1-3-last.h5

https://github.com/bigchem/retrosynthesis/papers/retrosynthesis/models/t1-3-avg.h5
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6.2 Model 2

6.2.1 Model 2 (run-1)
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Figure 8: Learning curves and rate schedule for T2 model. Loss for training on the left, usual learning rate schedule on
the right.

Table 5: Parameters of T21 run.

Parameter Value Top-1 Top-3 Top-5

Last training loss 0.05108

Greedy search (last, epoch 981) 38.85
Greedy (last 10 average, epoch, 990 - 999) 39.25

Beam, T = 1.0 (last) 40.57 60.19 66.77
Beam, T = 1.3 (last) 41.17 60.65 67.28

Beam, T = 1.0 (last 10 average) 40.98 60.29 67.00
Beam, T = 1.3 (last 10 average) 41.61 60.85 67.37

https://github.com/bigchem/retrosynthesis/papers/retrosynthesis/models/t2-1-last.h5

https://github.com/bigchem/retrosynthesis/papers/retrosynthesis/models/t2-1-avg.h5
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6.2.2 Model 2 (run-2)

	0

	0.1

	0.2

	0.3

	0.4

	0.5

	0 	200 	400 	600 	800 	1000

Lo
ss

Epochs

Training

	0

	0.02

	0.04

	0.06

	0.08

	0.1

	0.12

	0.14

	0.16

	200 	400 	600 	800 	1000

Le
ar
ni
ng
	ra
te
	*	
10
0

Epochs

Learning	rate

Figure 9: Learning curves and rate schedule for T2 model. Loss for training on the left, usual learning rate schedule on
the right.

Table 6: Parameters of T22 run.

Parameter Value Top-1 Top-3 Top-5

Last training loss 0.04943

Greedy search (last, epoch 996) 38.79
Greedy (last 10 average, epoch, 990 - 999) 39.11

Beam, T = 1.0 (last) 40.98 60.39 66.38
Beam, T = 1.3 (last) 41.58 61.21 66.94

Beam, T = 1.0 (last 10 average) 41.14 60.59 66.41
Beam, T = 1.3 (last 10 average) 41.87 61.35 67.08

https://github.com/bigchem/retrosynthesis/papers/retrosynthesis/models/t2-2-last.h5

https://github.com/bigchem/retrosynthesis/papers/retrosynthesis/models/t2-2-avg.h5
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6.2.3 Model 2 (run-3)
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Figure 10: Learning curves and rate schedule for T2 model. Loss for training on the left, usual learning rate schedule
on the right.

Table 7: Parameters of T23 run.

Parameter Value Top-1 Top-3 Top-5

Last training loss 0.04826

Greedy search (last, epoch 984) 39.79
Greedy (last 10 average, epoch, 990 - 999) 39.69

Beam, T = 1.0 (last) 41.55 60.79 66.57
Beam, T = 1.3 (last) 41.85 61.63 67.32

Beam, T = 1.0 (last 10 average) 41.45 60.75 66.55
Beam, T = 1.3 (last 10 average) 42.02 61.73 67.19

https://github.com/bigchem/retrosynthesis/papers/retrosynthesis/models/t2-3-last.h5

https://github.com/bigchem/retrosynthesis/papers/retrosynthesis/models/t2-3-avg.h5
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6.3 Model 3

6.3.1 Model 3 (run-1)
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Figure 11: Learning curves and rate schedule for T3 model. Loss for training on the left, usual learning rate schedule
on the right.

Table 8: Parameters of T31 run.

Parameter Value Top-1 Top-3 Top-5

Last training loss 0.05173

Averaging 6-7-8-9-10
Greedy search 40.92
Beam, T = 1.0 42.38 62.77 69.58
Beam, T = 1.3 42.80 63.82 70.28

Averaging 7-8-9-10

Greedy search 40.50
Beam, T = 1.0 42.38 62.91 69.76
Beam, T = 1.3 42.84 63.62 70.06

Averaging 8-9-10

Greedy search 41.04
Beam, T = 1.0 42. 51 63.18 69.84
Beam, T = 1.3 43.19 63.93 70.50

Averaging 9-10

Greedy search 41.06
Beam, T = 1.0 42.66 63.09 69.20
Beam, T = 1.3 43.22 63.71 69.94

Model with weights averaging 6-7-8-9-10:

https://github.com/bigchem/retrosynthesis/papers/retrosynthesis/models/t3-1.h5
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6.3.2 Model 3 (run-2)
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Figure 12: Learning curves and rate schedule for T3 model. Loss for training on the left, usual learning rate schedule
on the right.

Table 9: Parameters of T32 run.

Parameter Value Top-1 Top-3 Top-5

Last training loss 0.04958

Averaging 6-7-8-9-10
Greedy search 40.32
Beam, T = 1.0 41.90 62.70 68.80
Beam, T = 1.3 42.42 63.61 69.66

Averaging 7-8-9-10

Greedy search 40.22
Beam, T = 1.0 41.90 62.72 69.18
Beam, T = 1.3 42.42 63.59 69.92

Averaging 8-9-10

Greedy search 40.56
Beam, T = 1.0 41.96 62.53 69.18
Beam, T = 1.3 42.62 63.14 69.86

Averaging 9-10

Greedy search 40.34
Beam, T = 1.0 41.98 62.43 69.14
Beam, T = 1.3 42.34 63.03 69.70

Model with weights averaging 6-7-8-9-10:

https://github.com/bigchem/retrosynthesis/papers/retrosynthesis/models/t3-2.h5
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6.3.3 Model 3 (run-3)
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Figure 13: Learning curves and rate schedule for T3 model. Loss for training on the left, usual learning rate schedule
on the right.

Table 10: Parameters of T33 run.

Parameter Value Top-1 Top-3 Top-5

Last training loss 0.05491

Averaging 6-7-8-9-10
Greedy search 40.62
Beam, T = 1.0 42.24 63.25 69.38
Beam, T = 1.3 42.96 64.34 69.70

Averaging 7-8-9-10

Greedy search 40.42
Beam, T = 1.0 42.00 63.22 69.40
Beam, T = 1.3 42.76 64.20 69.80

Averaging 8-9-10

Greedy search 40.38
Beam, T = 1.0 41.84 62.96 69.08
Beam, T = 1.3 42.54 63.97 69.64

Averaging 9-10

Greedy search 40.20
Beam, T = 1.0 41.86 62.56 68.30
Beam, T = 1.3 42.62 63.39 69.12

Model with weights averaging 6-7-8-9-10:

https://github.com/bigchem/retrosynthesis/papers/retrosynthesis/models/t3-3.h5
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