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Abstract. G-Protein Coupled Receptors (GPCR) are involved in all the major
signaling pathways. As a result, they often serve as potential target for thera-
peutic drugs. In this study we analyze publicly available assays involving dif-
ferent classes of GPCR to identify false positives. Using the latest developments
in Machine Learning, we then build models that can predict such compounds
with high confidence. Given the ubiquity of GPCR assays, we believe such
models will be very helpful in flagging potential false positives for further
testing.
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1 Introduction

G-Protein Coupled Receptors (GPCR) are the largest family of cell surface receptors
[1]. These plasma membrane bound receptors have evolved to recognize a variety of
extracellular physical and chemical signals and, upon recognition, act as the proximal
stimulus in cell signaling pathways. With over * 800 members [2], GPCRs are
involved in almost every physiological function, from sensation to growth to hormone
responses. Due to their widespread physiological relevance and presence of druggable
sites, GPCRs are one of the major targets of therapeutic drugs. A 2017 study notes that
475 drugs act at 108 unique GPCRs. Approximately 321 agents are currently in clinical
trials, of which *20% target 66 potentially novel GPCR targets. GPCRs also account
for *27% of the global market share of therapeutic drugs, with aggregated sales for
2011–2015 of *US$890 billion.

As promising drug targets, assays involving a member of the GPCR family are
commonly employed in high throughput screening (HTS) campaigns. There are a
plethora of different techniques and a wide range of commercial kits available, many of
which are suitable for High Throughput Screening (HTS) [3]. In such HTS, identifying
false positives is a challenge. False positives may be compounds that interfere with the
assay detection technology in some way, such as inhibiting luciferase in luciferase-
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based system [4], or quenching fluorescence where it is the final readout [5]. There may
also be compounds that are not specific to the target protein, but are promiscuous,
either to a narrow or broad class of proteins [6].

In the previous study we developed a machine learning method to flag potential
frequent hitters for luciferase assays [4]. In this study we investigated whether the
developed methodology can be extended to identify false positives for GPCR assays.

2 Data

2.1 Data Description

Our initial goal was to explore the available data and find suitable assays that we can
then use for further analysis. On PUBCHEM, we identified 92 assays with more than
500 compounds for GPCR agonists and antagonists. We separated the two and decided
to focus on the agonists. This was just to narrow down the scope of the study. From the
list of available agonist screenings we selected the 20 assays with the highest number
of active compounds. This is because as we are looking for false positives. Assays that
have little to no positives are less relevant for us. For further selection particular assays,
we focused on the GPCR subtypes as described below.

2.2 Data Collection

The GPCR family is commonly classified into five different families based on their
structural and sequence similarity. The families are then further classified into a family
tree [7, 8]. Of these five major families, the Rhodopsin class in the largest. For selecting
assays for our analysis, we mapped the target proteins onto this family tree (Fig. 1), and
selected assays with set of representative proteins distant from each other in the family
tree. This ensures that compounds that are frequently active, are not preferential ago-
nists of a subtype of GPCR, but are more likely a result of assay artifact.

Using these criteria we chose a set of 12 assays and looked for compounds that are
frequently active in these assays (see Methods section), i.e. actives across all of the
various different subtypes and assay technologies and thus frequent hitters of the
Rhodopsin class of GPCR. However, only 59 out of 373,131 compounds matched our
definition of being frequently active. Upon closer examination we found that these
compounds were tested only thrice, and therefore are more likely to be an artifact of
selection criteria rather than a GPCR frequent hitter or assay artifact.

To further refine our search, we next focused on different detection technologies
that were used in the assays. We found that half of assays (six) used fluorescence while
other six assays used bioluminescence. Only 71 compounds were frequently active in
the bioluminescence group. In the fluorescence group, although the number of data-
points and active compounds was very similar, 502 compounds were frequently active
(Table 1). This indicates that fluorescence technology contributes many more artifacts
and these 502 compounds were used for further analysis.
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All data were harvested from PUBCHEM [9], manually or by using the
PUBCHEM REST API with Python. All data were obtained and stored locally in the
CSV format to be analyzed later with various python scripts.

Fig. 1. GPCR family tree represented as a tree and dots mapping the protein targets in identified
assays. The colored part of the tree represents the Rhodopsin class of the GPCR family and
various subfamilies of the Rhodopsin class are marked with different colors. (Color figure online)

Table 1. Statistics of compounds for the datasets used in the study.

Inactive Active Frequently active

All assays 352685 20446 59
Fluorescence assays 363459 9605 502
Bioluminiscence assays 358770 10841 71
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2.3 Frequent Hitter Flagging

We defined frequent hitters as compounds that were active according to our criteria in
more than half of the assays they were tested in. Additionally each compound had to be
tested at least in three different assays. Compounds satisfying both criteria were
identified using a Python script and flagged as frequent hitters.

3 Methods

Using the freely accessible platform On-line Chemical and Modeling Environment
(OCHEM) [10], was used to build models for our data. Different descriptors available
in OCHEM include CDK, Dragon 6 and 7, ISHIDA fragmentor, among others. Their
detailed description can be found elsewhere [4]. Associative Neural Networks (ASNN)
[11], Deep Neural Network (DNN) [12], Extreme Gradient Boost (XGBOOST) [13],
and Least Squares Support Vector Machine (LSSVM) [14] algorithms were analyzed
for training the models. The methods were used with default parameters as specified on
the OCHEM web site.

4 Results and Discussion

4.1 Machine Learning

The analyzed methods were used in combination with different descriptors sets.
LSSVM provided on average the highest accuracy amid the chosen algorithms
(Table 2). We selected LSSVM models with the highest accuracy based on their ROC-
AUC score for building a consensus model. The consensus model had ROC-AUC
score of 0.93 with balanced accuracy of 86%.

To test our model, we constructed an independent dataset by looking up GPCR
agonist assays in PUBCHEM that we did not use for the training set. We found five
relevant assays with 4323 active compounds. Our frequent hitter analysis identified 157
compounds from these 5 assays. Our consensus model predicted the molecules from
this set with a balanced accuracy of 76% and an AUC score of 0.85. The consensus
model which was based only subset of 2D descriptors provided a very similar accuracy
of 75% and AUC score of 0.85 thus indicating the importance of only 2D information
for this analysis.
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5 Conclusion

In this study, we analyzed GPCR assays from PUBCHEM with the aim to identify
frequent hitters. We found that fluorescence-based assays are more susceptible to false
positives than bioluminescence. Compounds that were frequent hitters at fluorescence-
based assays did not appear as frequent hitters in bioluminescence assays. A predictive
machine-learning model to identify such compounds for GPCR assays was developed.
The provided analysis can help to interpret HTS screening using GPCR assays.
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Table 2. The performance of models built using the GPCR dataset. The ROC-AUC scores are
calculated using 5-fold stratified cross-validation. Models marked with asterisk were used to
build the consensus model.

Descriptors/methods DNN ASNN XGBOOST LSSVM

ALogPS, OEstate (2D) 0.84 0.84 0.87 0.89*
CDK2 (3D) 0.79 0.85 0.86 0.87*
ChemaxonDescriptors (3D) 0.82 0.82 0.84 0.88*
Dragon6 (2D blocks) 0.83 0.87 0.88 0.91
Dragon6 (3D, all blocks) 0.87 0.85 0.89 0.91*
Fragmentor (2D) 0.85 0.83 0.88 0.89*
GSFrag (2D) 0.81 0.8 0.86 0.85
InductiveDescriptors (3D) 0.79 0.78 0.79 0.83
JPlogP (2D) 0.82 0.79 0.85 0.84
Mera, Mersy (3D) 0.69 0.76 0.8 0.81
PyDescriptor (3D) 0.89 0.86 0.85 0.89*
QNPR (2D) 0.81 0.82 0.87 0.86
RDKIT (2D, all blocks) 0.88 0.88 0.87 0.91*
RDKIT (3D, all blocks) 0.88 0.88 0.87 0.91
SIRMS (2D) 0.86 0.83 0.86 0.87*
Spectrophores (3D) 0.63 0.69 0.72 0.68
StructuralAlerts (2D) 0.79 0.79 0.77 0.78
alvaDesc (2D blocks) 0.86 0.85 0.87 0.91*
alvaDesc (3D, all blocks) 0.88 0.86 0.88 0.91
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International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.
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