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Abstract. Most clustering algorithms have been designed only for pure
numerical or pure categorical data sets while nowadays many applica-
tions generate mixed data. It arises the question how to integrate vari-
ous types of attributes so that one could efficiently group objects without
loss of information. It is already well understood that a simple conversion
of categorical attributes into a numerical domain is not sufficient since
relationships between values such as a certain order are artificially intro-
duced. Leveraging the natural conceptual hierarchy among categorical
information, concept trees summarize the categorical attributes. In this
paper we propose the algorithm ClicoT (CLustering mixed-type data
Including COncept Trees) which is based on the Minimum Description
Length (MDL) principle. Profiting of the conceptual hierarchies, ClicoT
integrates categorical and numerical attributes by means of a MDL based
objective function. The result of ClicoT is well interpretable since con-
cept trees provide insights of categorical data. Extensive experiments
on synthetic and real data set illustrate that ClicoT is noise-robust and
yields well interpretable results in a short runtime.

1 Introduction

Clustering mixed-data is a non-trivial task and typically is not achieved by
well-known clustering algorithms designed for a specific type. It is already well-
understood that converting one type to another one is not sufficient since it
might lead to information loss. Moreover, relations among values (e.g. a certain
order) are artificially introduced. Let Figure 1 show a mixed-type data where
three different clusters are illustrated by different shapes. The data set comprises
of two numerical attributes concerning the position of objects and a categorical
attribute representing the color. We simply converted the color to a numerical
attribute by mapping numbers to various colors. Considering the Normalized
Mutual Information (NMI) [12] as an evaluation measure, Figure 1 depicts the
inefficiency of applying K-means and DBSCAN, two popular clustering algo-
rithms, on the converted data. Therefore, integrating categorical and numerical
attributes without any conversion is required since it preserves the original for-
mat of any attribute.

Utilizing the MDL principle we regard the clustering task as a data com-
pression problem so that the best clustering is linked to the strongest data set
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Fig. 1. Clustering results after converting categorical attribute Color to numerical.

compression. MDL allows integrative clustering by relating the concepts of like-
lihood and data compression while for any attribute a representative model
is required. Although for solely numerical data sets a Probability Distribution
Function (PDF) represents an approximation of data, finding an appropriate
approximation for categorical attributes is not straight-forward. Considering the
natural hierarchy among categorical values we introduce concept hierarchy to
summarize the categorical information. Back to the running example, consider-
ing pink as a higher-level hierarchy for the objects in the cluster consisting of
rose and purple points with the shape ×, more accurately represents the char-
acteristics of the cluster.

Beyond the clustering approaches, detecting the most relevant attributes
during this process improves the quality of clustering. However, considering a
data set with an unknown distribution where only few subgroups in the data
space are actually relevant to characterize a cluster, it is not trivial to recog-
nize the cluster-specific attributes. Thus, we employ an information-theoretic
greedy approach to specify the most relevant attributes. As a result, our novel
parameter-free CLustering algorithm for mixed-type data Including COncept
Tress, shortly ClicoT, provides a natural interpretation avoiding any conversion
which leads to an effective clustering (c.f. Figure 1). Our approach consists of
several contributions:

– Integration: ClicoT integrates two types of information considering data
compression as an optimization goal. ClicoT flexibly learns the relative im-
portance of the two different sources of information for clustering without
requiring the user to specify input parameters which are usually difficult to
estimate.

– Interpretation: In contrast to most clustering algorithms, ClicoT not only
provides information about which objects are assigned to which clusters,
but also gives an answer to the central question why objects are clustered
together. As a result of ClicoT, each cluster is characterized by a signature
of cluster-specific relevant attributes providing appropriate interpretations.

– Robustness: The compression-based objective function ensures that only
the truly relevant attributes are marked as cluster-specific attributes. Thereby,
we avoid over-fitting, enhance the interpretability and guarantee the validity
of the result.

– Usability: ClicoT is convenient to be used in practice since our algorithm
scales well to large data sets. Moreover, our compression-based approach
avoids difficult estimation of input parameters e.g. the number or the size of
clusters.



2 Clustering Mixed Data Types

To design a mixed-type clustering algorithm we need to address three funda-
mental questions: How to model numerical attributes to properly characterize a
cluster? How to model categorical attributes? And finally how to efficiently inte-
grate heterogeneous attributes when the most relevant attributes are specified?
In principle, a PDF summarizes values by approximating meaningful parame-
ters. However, the idea of using a background PDF for categorical attributes is
not intuitive at first, therefore we employ concept hierarchies.

2.1 Concept Hierarchy

As mentioned, concept hierarchies allow us to express conceptual interchange-
able values by selecting an inner node of a concept hierarchy to describe a cluster.
Concept hierarchies not only capture more relevant categories for each cluster
but also help to interpret the clustering result appropriately. Let DB denote a
database consisting of n objects. An object o comprises m categorical attributes
A = {A1, A2, ..., Am} and d numerical attributes X = {x1, x2, ..., xd}. For a cate-

gorical attribute Ai, we denote different categorical values by Ai
(j). An Element

represents a categorical value or a numerical attribute and we denote the number
of all Elements by E. Considering the natural hierarchy between different cate-
gories, for each categorical attribute Ai a concept hierarchy is already available
as follows:

Definition 1. Concept Hierarchy. Let TAi
= (N, E) be a tree with root Ai

denoting the concept hierarchy corresponding to the categorical attribute Ai with
the following properties:

1. TAi
consists of a set of nodes N = {n1, ..., ns} where any node is correspond-

ing to a categorical concept. E is a set of directed edges E = {e1, ..., es−1},
where nj is a parent of nz if there is an edge el ∈ E so that el = (nj , nz).

2. The level l(nj) of a node nj is the height of the descendant sub-tree. If nj
is a leaf, then l(nj) = 0. In a concept tree leaf nodes are categorical values
existing in the dataset. The root node is the attribute Ai which has the highest
level, also called the height of the concept hierarchy.

3. Each node nj ∈ N is associated with a probability p(nj) which is the fre-
quency of the corresponding category in a dataset.

4. Each node nj represents a sub-category of its parent therefore all probabilities
of the children sum up to the probability of the parent node.

2.2 Cluster-specific elements

Beside an efficient clustering approach, finding relevant attributes to capture
the best fitting model is important. Usually the clustering result is disturbed
by irrelevant attributes. To make the model for each cluster more precise we
distinguish between relevant and irrelevant attributes. Each cluster c is associ-
ated with a subset of the numerical and categorical relevant elements denoted



by cluster-specific elements. Categorical cluster-specific elements are represented
by a specific concept hierarchy which diverges from the background hierarchy
(i.e. the concept hierarchy of the entire database).

Definition 2. Cluster. A cluster c is described by:

1. A set of objects Oc ⊂ DB.

2. A cluster-specific subspace I = Xc ∪ Ac, where Xc ⊆ X and Ac ⊆ A.

3. For any categorical attribute Ai ∈ Ac, the corresponding cluster-specific con-
cept hierarchy is a tree T c

Ai
= (Nc, Ec) with nodes and edges as specified in

Definition 1. Nc ⊂ N indicates the cluster-specific nodes. For computing the
probabilities associated with the cluster-specific nodes instead of all n objects,

only the objects Oc in cluster c are applied, i.e. p(nj) =
|nj |
|Oc| .

2.3 Integrative Objective Function

Given the appropriate model corresponding to any attribute, MDL allows a
unified view on mixed data. The better the model matches major characteristics
of the data, the better the result is. Following the MDL principle [11], we encode
not only the data but also the model itself and minimize the overall description
length. Simultaneously we avoid over-fitting since the MDL principle tends to a
natural trade-off between model complexity and goodness-of-fit.

Definition 3. Objective Function. Considering the cluster c the description
length (DL) corresponding to this cluster defined as:

DL(c) = DLc(X ) +DLc(A) +DL(model(c))

The first two terms represent coding costs concerning numerical and categorical
attributes, respectively while the last term is the model encoding cost. Our pro-
posed objective function minimizes the overall description length of the database
which is defined as:

DL(DB) =
∑
c∈C

DL(c)

Coding Numerical Attributes: Considering Huffman coding scheme, the
description length of a numerical value oi is defined by − log2 PDF(oi). We as-
sume the same PDF to encode the objects in various clusters and clusters com-
pete for an object while the description length is computed by means of the
same PDF for evrey cluster. Therefore any PDF would be applicable and using
a specific model is not a restriction [3]. For simplicity we select Gaussian PDF,
N (µ, σ). Moreover, we distinguish between the cluster-specific attributes in any
cluster c, denoted by Xc, and the remaining attributes X \ Xc (Definition 2).
Let µi and σi denote the mean and variance corresponding to the numerical
attribute xi in cluster c. If xi is a cluster-specific element (xi ∈ Xc), we consider



only cluster points to compute the parameters otherwise (xj ∈ X \Xc) the over-
all data points will be considered. Thus, the coding cost for numerical attributes
in cluster c is provided by:

DLc(X ) =
∑
xi∈X

∑
oi∈Oc

− log2

(
N (µi, σi)

)
Coding Categorical Attributes: Analogously, we employ Huffman coding

scheme for categorical attributes. The associated probability to a category is
its frequency w.r.t. either the specific or the background hierarchy (Definition
1). Similar to numerical attributes, we assume Ac as the set of cluster-specific
categorical attributes and A\Ac for the rest. Let oj denote a categorical object
value corresponding to the attribute Aj . We define f(Aj , oj) as a function which
maps oj to a node in either a specific or a background hierarchy depending on
Aj . Thus, the categorical coding cost for a cluster c is given by:

DLc(A) =
∑

Aj∈A

∑
oj∈Oc

− log2

(
p(f(Aj , oj)

)
)

Model Complexity: Without taking the model complexity into account, the
best result will be a clustering consisting of singleton clusters. This result is
completely useless in terms of the interpretation. Focusing on cluster c, the
model complexity is defined as:

DL(model(c)) = idCosts(c) + SpecificIdCosts(c) + paramCosts(c)

The idCosts are required to specify which cluster is assigned to a object while
balancing the size of clusters. Employing the Huffman coding scheme, idCosts
are defined by |Oc| · log2 n

|Oc| where |Oc| denotes the number of objects assigned

to cluster c. Moreover, in order to avoid information loss we need to specify
whether an attribute is a cluster-specific attribute or not. That is, given the
number of specific elements s in cluster c, the coding costs corresponding to
these elements, SpecificIdCosts, is defined as:

SpecificIdCosts(c) = s · log2

E

s
+ (E − s) · log2

E

(E − s)

Following fundamental results from information theory [11], the costs for encod-
ing the model parameters is reliably estimated by:

paramCosts(c) =
numParams(c)

2
· log2 |Oc|

For any numerical cluster-specific attribute we need to encode its mean and
variance while for a categorical one the probability deviations to the default
concept hierarchy need to be encoded, i.e. numParams(c) = |X |·2+

∑
Ai∈A |Nc|.

Moreover, we need to encode the probabilities associated with the default concept
hierarchy, as well as the default (global) means and variances for all numerical
attributes. However, these costs are summarized to a constant term which does
not influence our subspace selection and clustering technique.
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Fig. 2. Update concept hierarchies considering pink as a cluster-specific node.

3 Algorithm

Together with the main building blocks of ClicoT, two other steps are required
to achieve an appropriate parameter free clustering: (1) recognizing the cluster-
specific elements and (2) probability adjustments.

Cluster-specific Elements: Let the specific coding cost denote the cost
where an element is marked as specific and the non-specific coding cost indicate
the cost otherwise. Consulting the idea that cluster-specific elements have the
most deviation of specific and non-specific cost and therefore saves more coding
costs, we introduce a greedy method to recognize them. We iteratively sort the
elements according to their deviations and specify the first element as a cluster-
specific element. We continue marking elements until marking more elements
does not pay off in terms of the coding cost. Note that different nodes of a
concept hierarchy have the same opportunity to be specific.

Probability Adjustment: To adjust the probabilities for a numerical cluster-
specific attribute we can safely use mean and variance corresponding to the
cluster. In contrast, learning the cluster-specific concept hierarchy is more chal-
lenging since we need to maintain the integrity of a hierarchy. According to
Definition 1 we assure that node probabilities of siblings in each level sum up
to the probability of the parent node. Moreover node probabilities should sum
up to one for each level. we provide a pseudocode concerning this procedure in
appendix. To clarify, let Figure 2 show the procedure on the concept hierarchy
corresponding to the running example (Figure 1) where labels denote the fre-
quencies. Moreover, let pink be a cluster-specific node for the cluster with the
shape ×. The adjustment starts with the root node and processes its children.
Then it continues computing the relative probabilities for the specific concept
hierarchy rather by background probability fraction (Figure 2a). 80% relative
probability should be distributed between two children, rose and purple, based
on the computed propagation factor. During the next step the remaining 20%
probability is assigned level-wise to blue and green to assure that probabilities in
each level sum up to 1 (Figure 2b). Again each parent propagates down its prob-
ability (Figure 2c). The result is a concept hierarchy best fitting to the objects
when the background distributions are preserved.

ClicoT Algorithm: ClicoT is a top-down parameter-free clustering algo-
rithm. That is, we start from a cluster consisting of all objects and iteratively
split down the most expensive cluster c in terms of the coding cost to two new
clusters {c′a, c′b}. Then, we apply a k-Means-like strategy and assign every point
to closest cluster which is nothing else than the cluster with the lowest increase



Algorithm 1 ClicoT

input DB
learn background distributions of each attribute
C′ = {C0} with C′0 = Oi ∈ DB
repeat

// try to split until convergence
C = C′

cost = DL(DB|C) // current cost
C′ = {C′1 . . . C′k−1} split worst Ci ∈ C to {C′i, C′k}
while clustering C′ changes do

C′i = {Oj : mini DL(Oj |C′i)} // assign objects
Select cluster-specific elements by a greedy method for each cluster and compute
costs
Update each attribute of C′i

end while
cost’ = DL(DB|C′) // split cost

until cost > cost’
k = |C|
return C, k

in the coding cost. Employing the greedy algorithm, we determine the cluster-
specific elements and finally we compute the compression cost for clustering
results in two cases, before and after splitting (Definition 1). If the compres-
sion cost after splitting, i.e. C′ with |C′| = k + 1, is cheaper than the cost of
already accepted clustering C with |C| = k then we continue splitting the clus-
ters. Otherwise the termination condition is reached and the algorithm will be
stopped.

4 Related Work

Driven by the need of real applications, the topic of clustering mixed-type data
represented by numerical and categorical attributes has attracted attentions,
e.g. CFIKP [13], CAVE [7], CEBMDC [5]. In between, most of the algorithms
are designed based on the algorithmic paradigm of k-Means, K-means-mixed
(KMM) [1], k-Prototypes [8]. Often in this category not only the number of
clusters k but also the weighting between numerical and categorical attributes
in clustering has to be specified by the user. Among them, KMM avoids weight-
ing parameters by an optimization scheme learning the relative importance of
the single attributes during runtime, although it needs the number of clusters k
as input parameter. Following a mixture of Gaussian distributions, model based
clustering algorithms have been also proposed for mixed-type data. In between,
clustMD [9] is developed using a latent variable model and employing an expec-
tation maximisation (EM) algorithm to estimate the mixture model. However
this algorithm has a certain Gaussian assumption which does not have to be
necessarily fulfilled. Some of the approaches utiliz the unique characteristics of
any data type to avoid the drawbacks of converting a data type to another



one. Profiting of the concept hierarchy, these algorithms introduce an integra-
tive distance measure applicable for both numerical and categorical attributes.
The algorithm DH [6] proposes a hierarchical clustering algorithm using a dis-
tance hierarchy which facilitates expressing the similarity between categorical
and numerical values. As another method, MDBSCAN [2] employs a hierarchi-
cal distance measure to introduce a general integrative framework applicable for
the algorithms which require a distance measure .e.g. DBSCAN. On the other
hand, information-theoretic approaches have been proposed to avoid the diffi-
culty of estimating input parameters. These algorithms regard the clustering as a
data compression problem by hiering the Minimum Description Length (MDL).
The cluster model of these algorithms comprises joint coding schemes support-
ing numerical and categorical data. The MDL principle allows balancing model
complexity and goodness-of-fit. INCONCO [10] and Integrate [4] are two rep-
resentative for mixed-type clustering algorithms in this family. While Integrate
has been designed for general integrative clustering, INCONCO also supports
detecting mixed-type attribute dependency patterns.

5 Evaluation

In this section we assess the performance of ClicoT comparing to other clustering
algorithms in terms of NMI which is a common evaluation measure for clustering
results. NMI numerically evaluates pairwise mutual information between ground
truth and resulted clusters scaling between zero and one. We conducted several
experiments evaluating ClicoT in comparison to KMM [1], INCONCO [10], DH
[6], ClustMD [9], Integrate [4] and MDBSCAN [2]. In order to be fair in any ex-
periment, we input the corresponding concept hierarchy to the algorithms which
are not designed for dealing with it. That is, we encode the concept hierarchy
as an extra attribute so that categorical values belonging to the same category
have the same value in this extra attribute. Our algorithm is implemented in
Java and the source code as well as the data sets are publicly available5.

5.1 Mixed-type Clustering of Synthetic Data

In order to cover all aspects of ClicoT we first consider a synthetic data set.
Then we continue experiments by comparing all algorithms in terms of the noise-
robustness. Finally we will discuss the runtime efficiency.

Clustering Results: In this experiment we evaluate the performance of all
the algorithms on the running example (Figure 1) while all parametric algo-
rithms are set up with the right number of clusters. The data has two numerical
attributes concerning the position of any data point and a categorical attribute
showing the color of the points. Figure 3 shows the result of applying the algo-
rithms where different clusters are illustrated by different colors. As it is explic-
itly shown in this figure ClicoT, with NMI 1, appropriately finds the initially

5 https://bit.ly/2FkUB3Q
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Fig. 3. Clustering results on the running example.

sampled three clusters where green, pink and blue are cluster-specific elements.
Setting the correct number of cluster and trying various Gaussian mixture mod-
els, ClustMD results the next accurate clustering. Although MDBSCAN utilizes
the distance hierarchy, but it is not able to capture the pink and green clusters.
KMM can not distinguish among various colors. Since two clusters pink and
green are heavily overlapped, Integrate can not distinguish among them. DH
and INCONCO poorly result on this data set and they found almost only one
cluster.

Noise-robustness: In this section we benchmark noise-robustness of ClicoT
w.r.t the other algorithms in terms of NMI by increasing the noise factor. To
address this issue we generate a data set with the same structure as the running
example and we add another category, brown, to the categorical attribute color
as noise. Regarding numerical attributes we increase the variance of any cluster.
We start from 5 percent noise (noise factor = 1) and iteratively increase the
noise factor ranging to 5. Figure 4 clearly illustrates noise-robustness of ClicoT
comparing to others.
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Fig. 4. Comparing noise-robustness of ClicoT to other algorithms.

Scalability: To evaluate the efficiency of ClicoT w.r.t the other algorithms,
we generated a 10 dimensional data set (5 numerical and 5 categorical attributes)
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Fig. 5. Runtime experiment.

with three Gaussian clusters. Then respectively we increased the number of
objects ranging from 2,000 to 10,000. In the other case we generated different
data sets of various dimensionality ranging from 10 to 50 where the number of
objects is fixed. Figure 5 depicts the efficiency of all algorithms in terms of the
runtime complexity. Regarding the first experiment on the number of objects,
ClicoT is slightly faster than others while increasing the dimensionality Integrate
performs faster. However, the runtime of this algorithm highly depends on the
number of clusters k initialized in the beginning (we set k = 20). That is, this
algorithm tries a rang of k and outputs the best results. Therefore, by increasing
k the runtime is also increasing.

5.2 Real Experiments

Finally, we evaluate clustering quality and interpretability of ClicoT on real
world data sets. We used MPG, Automobile and Adult data sets from the UCI
Repository as well as Airport data set from the public project Open Flights6.

MPG: MPG is a slightly modified version of the data set provided in the
StatLib library. The data concerns city-cycle fuel consumption in miles per gal-
lon (MPG) in terms of 3 categorical and 5 numerical attributes consisting of
different characteristics of 397 cars. We consider MPG ranging from 10 to 46.6
as the ground truth and divide the range to 7 intervals of the same length. The
information about the concept hierarchy is provided in the appendix. Compar-
ing ClicoT (NMI = 0.4) to the other algorithms INCONCO(0.17), KMM(0.37),
DH(0.14), MDBSCAN(0.02), ClustMD(0.33) and Integrate(0). ClicoT correctly
finds 7 clusters each of which compatible with one of the MPG groups. Cluster
2, for instance, is compatible with the first group of MPGs since the frequency
of the first group in this cluster is 0.9. In this cluster American cars with the fre-
quency of 1.0, cars with 8 cylinders with the frequency of 1 and model year in first
group (70-74) with the frequency of 0.88 are selected as cluster-specific elements.

Automobile: This data set provides 205 instances with 26 categorical and
numerical attributes. The first attribute defining the risk factor of an automo-
bile has been used as class label. Altogether there are 6 different classes. Due
to many missing values we used only 17 attributes. Comparing the best NMI

6 http://openflights.org/data.html
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Fig. 6. Result of ClicoT on Open Flight data set.

captured by every algorithm, ClicoT (NMI = 0.38) outperforms kMM(0.23), IN-
CONCO(0.20), Integrate(0.17), DH(0.04), ClusterMD(0.16) and MDBSCAN(0.02).
Furthermore, ClicoT gives an insight in the interpretability of the clusters where
Cluster 12, for instance, is characterized mostly by the fuel system of 2bbl, but
also by 1bbl and 4bbl. Also we see that Cluster 26 is consisting of both mpfi and
slightly of mfi, too. Concerning the risk analysis this clustering serves, ClicoT
allows to recognize which fuel systems share the same insurance risk.

Adult Data Set: Adult data set without missing values, extracted from the
census bureau database, consists of 48,842 instances of 11 attributes. The class
attribute Salary indicates whether the salary is over 50K or lower. Categorical
attributes consist of different information e.g. work-class, education, occupation.
A detailed concept hierarchy is provided in appendix. Although comparing to IN-
CONCO(0.05), ClustMD(0.0003), MDBSCAN(0.004), DH(0) and Integrate(0),
our algorithm ClicoT(0.15) outperforms all other algorithms except KMM(0.16)
which is slightly better. But it seems that NMI does not sound a reasonable
evaluation measure for this data set since there are only two classes in ground
truth. ClicoT found 4 clusters in which Cluster 2, the biggest cluster consisting
of almost 56% of objects, specifies Husband as the cluster-specific element, since
it has the most deviation, but negative. The probability of instances having Hus-
band as categorical value and the salary <= 50K is zero in this cluster.Therefore
along with the negative deviation this means that in Cluster 2 persons with the
role as husband in a family earn more than 50K.

Open Flights Data Set: The public project Open Flights provides world
wide information about airports, flights and airlines. Here we consider instances
of airports in order to carry out a cluster analysis. The data set consists of 8107
instances each of which represents an airport. The numeric attributes show the
longitude and latitude , the sea height in meters and the time zone. Categorical
attributes consist of the country, where the airport is located and the day light
saving time. We constructed the concept hierarchy of the country attribute so
that each country belongs to a continent. Since there is no ground truth provided
for this data set we interpret the result of ClicoT (Figure 6) and we refer the
reader to the appendix for more results regarding other algorithms.

Clustering results illustrated in Figure 6 consists of 15 clusters and shows
that ClicoT appropriately grouped almost geographically similar regions in the



clusters. Starting from west to east, North American continent divided into five
clusters. Obviously here the attribute of the time zone was chosen as specific
because the clusters are uniquely made according to this attribute. Moving to the
south, ClicoT pulled a plausible separation between South and North America.
Considering South America as cluster-specific element and due to the rather low
remaining airport density of South America ClicoT combined almost all of the
airports to a cluster (red). In Western Europe there are some clusters, which
can be distinguished by their geographic location. Additionally many airports
around and in Germany are be grouped together.

6 Conclusion

To conclude, we have developed and demonstrated that ClicoT is not only able
to cluster mixed-typed data in a noise-robust manner, but also yields most inter-
pretable cluster descriptions. By using data compression as the general principle
ClicoT automatically detects the number of clusters within any data set with-
out any prior knowledge. Moreover, the experiments impressively demonstrated
that clustering can greatly benefit from a concept hierarchy. Therefore, ClicoT
excellently complements the approaches for mining mixed-type data.
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