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Abstract 

Several studies have analyzed biogeographic distribution patterns of microbial communities across 

broad spatial scales. However, it is often unclear to what extent differences in community composition 

across different regions are caused by dispersal limitation or selection, and if selection is caused by 

local environmental conditions alone or additional broad-scale region-specific factors. This is 

especially true for groundwater environments, which have been understudied in this context relative to 

other non-subsurface habitats. Here, we analyzed microbial community composition based on exact 

16S rRNA amplicon sequence variants (ASVs) from four geographically separated aquifers located in 

different regions along a latitudinal transect of ~700 km across Germany. Using a combination of 

variation partitioning and ecological null models revealed that differences in microbial community 

composition were mainly the product of selection imposed by local environmental conditions, and to a 

smaller but still significant extent dispersal limitation and drift across regions. Only ~23% of the total 

variation in microbial community composition remained unexplained, possibly due to underestimated 

effects of dispersal limitation among local communities within regions and temporal drift. No 

evidence was found for selection due to region-specific factors independent of local environmental 

conditions. 
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1.0 Introduction 

The elucidation of processes that determine the biogeographic distribution of species is a central goal 

in community ecology and has further moved into the focus of microbial ecology over the past decade 

(Langenheder and Lindström 2019; Martiny et al. 2006; Meyer et al. 2018; Nemergut et al. 2013). 

Different theoretical concepts have been developed which share overlapping perspectives on the 

processes that cause differences in community composition across space (Chase and Myers 2011; 

Leibold and Chase 2018; Vellend 2010). In essence, these processes can be broadly categorized as 

processes related to species sorting (selection), dispersal, and random ecological and evolutionary drift 

due to stochastic migration, extinction, and speciation events. These processes can act simultaneously 

and to varying degrees depending on the spatial scale at which communities are being investigated 

(Chase and Myers 2011). Within regions, sets of local communities that are linked by dispersal, and 

hence share a common regional species pool, have been defined as metacommunities (Leibold et al. 

2004). Local communities may differ from each other as a result of species sorting caused by 

differences in local environmental conditions that select for distinct sets of species that are able to 

thrive under these conditions, provided that a certain degree of dispersal exists between communities 

to allow species to track environmental gradients. In such a case, differences in community 

composition would be strongly linked to differences in environmental conditions, while spatial 

distance between locations would have little effect (Leibold et al. 2004). However, community 

composition can be uncoupled from environmental conditions by processes that affect species 

dispersal. Apart from species sorting, differences between local communities can also arise due to 

dispersal limitation, in which case the impeded exchange of species in combination with random drift 

causes communities to diverge over time (Chase and Myers 2011). Additionally, dispersal limitation 

no longer allows species to track environmental differences and reach locations with their preferred 

environmental conditions, causing differences in community composition to be predominantly 

associated with spatial distance between locations rather than differences in environmental conditions. 

On the other hand, high similarities between communities can arise, and species sorting be overruled, 

under conditions with high dispersal rates. Strong dispersal can homogenize local communities and 
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allow species to occur even under unfavorable environmental conditions, if dispersal rates are 

sufficient to outpace species extinction caused by the unfavorable conditions. Also in this case, 

differences in community composition would be less well predicted by differences in environmental 

conditions (Leibold et al. 2004). 

 Since local communities are subsets of a regional metacommunity, they are not independent of 

the regional species pool from which they are assembled. Understanding the processes that structure 

these metacommunities might therefore be an important step towards explaining local community 

diversity and biogeographic distribution patterns (Lindström and Langenheder 2012; Ricklefs 2008). 

Broad-scale region-specific factors like climate, geology, land use, and historical events can leave a 

lasting imprint on community structure and thus may add to or even override the effect of local 

contemporary environmental conditions (Andersson et al. 2014; Fukami 2015; Martiny et al. 2006; 

Rummens et al. 2018; Stegen et al. 2016b; Svoboda et al. 2018; Vass and Langenheder 2017). 

However, a common problem with studies that have investigated differences in community 

composition over large spatial scales is that distance decay relationships or the contribution of spatial 

distance in variation partitioning models can potentially be caused both by dispersal limitation over 

large spatial distances as well as by selection due to broad-scale regional factors (Hanson et al. 2012; 

Leibold et al. 2010; Wang et al. 2013). Therefore, it is often unclear to what extent adaptation to these 

broad-scale factors, relative to dispersal limitation and drift, contribute to differences between 

communities across regions. Moreover, their effect on local community composition within regions, 

on top of dispersal, drift, and selection imposed by the local environment, which may shape these 

communities as discussed above, is not well understood (Heino et al. 2017).  

Several studies have investigated patterns of microbial biogeography over different spatial scales 

in various habitats, including soil, marine environments, and surface freshwater systems like ponds, 

streams, and lakes (for reviews see Hanson et al. 2012; Langenheder and Lindström 2019; Lindström 

and Langenheder 2012). However, the majority of studies so far have focused on local communities 

within a region, while only a few studies have explicitly investigated communities at larger spatial 

scales across regions (e.g. Almasia et al. 2016; Comte et al. 2016; Hassell et al. 2018; Ma et al. 2017; 

Martiny et al. 2011; O'Brien et al. 2016; Power et al. 2018; Shi et al. 2018). Moreover, a common 
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conclusion from the reviews cited above is that the importance of selection relative to dispersal and 

drift not only changes depending on spatial scale, but also varies among habitat types (see also Wang 

et al. 2013). Strikingly, studies on groundwater ecosystems and related subsurface habitats are largely 

underrepresented in this context compared to studies on surface habitats. Although recent studies have 

investigated the impacts of environmental conditions and selection processes on microbial community 

composition in subsurface environments (Beaton et al. 2016; Graham et al. 2016a, 2017; Savio et al. 

2019; Shabarova et al. 2014; Stegen et al. 2016a; Stegen et al. 2018; Stegen et al. 2016b; Stegen et al. 

2015), they mainly focused on local communities within a single aquifer, whereas studies that 

compared communities across aquifers from different regions are scarce (Ben Maamar et al. 2015; 

Danczak et al. 2018). Considering that groundwater-saturated zones of the terrestrial subsurface 

constitute the largest inland aquatic habitat for microorganisms on Earth, and are estimated to harbor a 

significant fraction of the global microbial biomass (Griebler and Lueders 2009; Magnabosco et al. 

2018; McMahon and Parnell 2013), the limited understanding of processes that shape microbial 

communities in these environments is a critical knowledge gap in microbial ecology. 

In this study, we analyzed microbial community composition based on exact 16S rRNA amplicon 

sequence variants (ASVs; Callahan et al. 2016a) from four distinct shallow porous aquifers located in 

different catchment areas along a latitudinal transect of ~700 km across Germany. We used a 

combined approach of variation partitioning and ecological null models to determine, first, the 

individual effects of local environmental conditions, spatial distance within regions, and region 

identity on microbial community composition; second, the contributions of selection, dispersal, and 

drift to community turnover within as well as across regions; and third, the extent to which differences 

in community composition across regions were the result of dispersal limitation and selection caused 

by either broad-scale region-specific factors or local environmental conditions.  

 

2.0 Materials and methods 

2.1 Sample collection 

A total of 45 samples were collected on single sampling campaigns between spring 2016 and summer 

2018 from four distinct unconfined, shallow, porous aquifers, mainly consisting of unconsolidated 
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gravel and sand, located in four different regions across Germany (Fig. 1). Region NOR (n=12; 

September 2018; 53.72°N, 10.01°E) was located in Norderstedt near the city of Hamburg in the 

catchment of the Elbe River; region WUR (n=13; May 2016; 49.77°N, 9.93°E) was located in 

Würzburg in the Main River catchment; region AUG (n=12; June 2016; 48.25°N, 10.90°E) was 

located near Augsburg in the Lech River catchment; region MIT (n=8; July 2018; 47.41°N, 11.26°E) 

was located near Mittenwald at the foothills of the German Alps in the Isar River catchment. 

Groundwater from the sampled areas of all aquifers was classified as non-contaminated and is used for 

drinking water production in their respective regions. Prevalent types of land use in each region were 

forests, grasslands, and fallow agricultural land. 

Groundwater samples were collected from fully screened monitoring wells using a 

submersible pump (MP1; Eijkelkamp Soil & Water, Giesbeek, The Netherlands) that was submerged 

at about half the depth of the water column in the well. Stagnant well water was purged prior to 

sample collection by pre-pumping to allow for approximately two volume exchanges and until 

physicochemical parameters (electrical conductivity, pH, temperature, dissolved oxygen 

concentration) had stabilized. All sample containers were sterilized prior to sampling and rinsed with 

sample water three times before sample collection. All samples were kept in the dark at 4°C for 

transport to the lab and until processing. Samples for dissolved organic carbon (DOC) measurements 

were collected in glass bottles that were baked at 450°C for 4 h or soaked in 10% w/v sodium 

persulfate overnight. DOC samples were passed through a 0.45 µm filter (Millex-HV; Merck-

Millipore, Carrigtwohill, Ireland) rinsed once with sample water prior to sample collection, and were 

acidified on-site to a final pH ≤ 2 with HCl. Samples for total prokaryotic cell counts were collected in 

Falcon tubes and fixed with 2.5% v/v glutardialdehyde (final concentration) immediately after 

sampling. Samples for DNA extraction (5 L) were collected in autoclaved glass bottles or plastic 

containers rinsed three times with 1 M HCl followed by three washing steps with 80% v/v ethanol 

(residual ethanol was allowed to evaporate overnight). Cells were collected on a 0.2 µm polycarbonate 

filter membrane (Merck-Millipore) within 48 h after sample collection and stored at -20°C until DNA 

extraction using the protocol by Pilloni et al. (2012). 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/fem

sec/advance-article-abstract/doi/10.1093/fem
sec/fiz160/5584335 by H

elm
holtz Zentrum

 M
uenchen user on 16 O

ctober 2019



 

 

2.2 Measurements of environmental variables 

To estimate local environmental conditions, we measured 13 physicochemical parameters for each 

groundwater sample in addition to total prokaryotic cell counts. Electrical conductivity, pH, 

temperature, and dissolved oxygen concentrations were measured on-site using field sensors (WTW, 

Weilheim, Germany). DOC concentrations were measured as non-purgeable organic carbon using 

high-temperature combustion (680°C) and infrared detection of CO2 on a TOC-V CPH Analyzer 

coupled to an ASI-V autosampler (Shimadzu, Kyoto, Japan). Inductively coupled plasma atomic 

emission spectrometry (ARCOS; Ametec-Spectro, Kleve, Germany) was used for the determination of 

cations (calcium (measured spectral element line: 183.801 nm), magnesium (279.079 nm), potassium 

(766.491 nm), and sodium (589.592 nm)) with radio frequency power set to 1,400 W and argon as 

plasma gas at a flow rate of 15 L min
-1

. Samples were introduced by a peristaltic pump connected to a 

micromist nebulizer with a cyclon spray chamber. Anion concentrations (chloride, nitrate, 

orthophosphate, sulfate) were determined by ion chromatography (Dionex ICS-1500; pre-column: 

Dionex AG4; analytical column: Dionex AS4; Thermo Scientific, Idstein, Germany) with Na2CO3 (1.8 

mM ) + NaHCO3 (1.7 mM) as eluent at a flow rate of 1 mL min
-1

. Total prokaryotic cell counts were 

determined by flow cytometry (FC500 CYTOMICS; Beckman Coulter, Brea, CA, USA) with 

instrument settings as in Bayer et al. (2016). Cells were fluorescently stained in a 500 µL sample 

aliquot with SYBR Green I (Invitrogen, Darmstadt, Germany) at a ratio of 1:10,000 and incubated in 

the dark at 37°C for 13 min. 100 µL suspension of fluorescent beads (Trucount Tubes; BD 

Biosciences, San Jose, CA, USA) was added to each sample as internal standard for quantification. 

Measurements were done in biological and technical duplicates. 

 

2.3 16S rRNA amplicon sequencing and data processing 

DNA concentrations in raw extracts were determined using the Quant-iT PicoGreen dsDNA Assay Kit 

(Invitrogen, Paisley, UK). DNA extracts were diluted to 1 ng µL
-1

 with EB buffer (Qiagen, Hilden, 

Germany) and used as template (1 µL) for amplification of the V4 region of 16S rRNA genes using 

the primer pair 515FB (5’-GTGYCAGCMGCCGCGGTAA) (Parada et al. 2016) and 806RB (5’-

GGACTACNVGGGTWTCTAAT) (Apprill et al. 2015) extended with Illumina adapters. Each 
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reaction (25 µL) contained 12.5 µL NEBNext High-Fidelity 2X PCR Master Mix (New England 

Biolabs, Ipswich, MA, USA), 3.75 µL 2% w/v BSA (Roche Diagnostics, Mannheim, Germany), 0.5 

µL of each primer (10 µM), and 6.75 µL nuclease-free water. Initial denaturation was achieved at 

98°C for 30 sec followed by 25 amplification cycles (98°C, 10 sec; 50°C, 30 sec; 72°C, 30 sec) and 

final elongation at 72°C for 5 min. Each sample was amplified in independent triplicate reactions; 

triplicates were pooled after amplification. Pooled amplicons were purified using magnetic beads 

(AMPure-XP; Beckman Coulter) at a bead:sample ratio of 0.8 and an incubation time of 5 min at 

room temperature. After washing (twice; 200 µL 80% v/v ethanol) and air-drying (10 min, room 

temperature), amplicons were eluted from the beads with 30 µL EB buffer. Amplicon size and 

concentration were determined by capillary gel electrophoresis (Fragment Analyzer; Agilent 

Technologies, Santa Clara, CA, USA) using the DNF-473 Standard Sensitivity NGS Fragment 

Analysis Kit (Agilent Technologies). 10 ng amplicons were used as template for index PCR using 

Illumina Nextera XT Index Kit v2 primers (Illumina, San Diego, CA, USA) according to the 

manufacturer’s specifications and with the same polymerase as above. After purification and 

electrophoresis as above, barcoded amplicons were pooled in equimolar concentrations (4 nM) and 

used for paired-end sequencing (2×300 bp) on an Illumina MiSeq platform. 

 Sequence data were processed in R (version 3.5.0) (R Core Team 2018) using DADA2 

(version 1.10.1) (Callahan et al. 2016a) for quality filtering, merging of paired reads, inference of 

ASVs, and chimera removal, according to the workflow by Callahan et al. (2016b) with slight 

modifications as described in the following. Truncation length during quality trimming was set to 280 

and 200 bp for forward and reverse reads, respectively, after primer trimming. Negative controls were 

excluded from the model building step to infer error rates from the sequence data. ASVs were inferred 

across all samples using pseudo-pooling, which prevents discarding ASVs as singletons based on the 

occurrence in a single sample, if it is represented by at least two error-free reads in at least two 

samples in the full dataset. ASVs found in negative controls or with sequence lengths < 261 bp were 

discarded. In addition, to facilitate downstream processing and reduce sparsity of the data, ASVs with 

an abundance < 0.001% across all samples were removed. Taxonomic assignment was done using the 

online implementation of IDTAXA (Murali et al. 2018) by mapping ASV sequences against the 
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SILVA SSU reference database (release 132) (Quast et al. 2013) with a 50% confidence threshold. 

ASVs that were classified as mitochondria or chloroplasts were discarded, as well as ASVs that could 

neither be classified as bacteria nor archaea. To infer phylogenetic relationships, ASV sequence 

alignments were obtained using the ‘DECIPHER’ package (version 2.10.1) (Wright 2015) and passed 

on to FastTree (Price et al. 2009) for building a midpoint-rooted phylogenetic tree. The final ASV 

table contained 9,153 ASVs; abundances were rarefied to 6,281 reads per sample, which was the 

lowest number observed in a single sample. For a number of samples rarefaction curves did not reach 

saturation at this depth, which led to an underestimation of ASV richness by ~30% on average 

compared to the total expected richness in the communities based on estimated asymptotes obtained 

from extrapolating rarefaction curves according to Chao et al. (2014) using the ‘iNEXT’ package 

(version 2.0.19) (Hsieh et al. 2016). However, comparing the ASV richness after rarefaction to the 

estimated asymptotic richness by linear regression showed that this underestimation was uniform 

across samples, and furthermore that Shannon diversity was almost unaffected by the rarefaction. 

Additionally, differences in community composition based on all three beta diversity metrics relevant 

to this study (Bray-Curtis dissimilarity, β-mean nearest taxon distance, and β-mean pairwise distance; 

see below) were well maintained in the rarefied dataset compared to the original unrarefied data. 

Therefore, we can assume that rarefaction did not distort the overall structure of the data and still 

allowed meaningful comparisons between samples within our dataset (Fig. S1). Sequence data are 

publicly available at the NCBI Sequence Read Archive (accession no. SRP191753). 

 

2.4 Data analysis 

All analyses were done in R. ASV richness and Faith’s phylogenetic diversity (PD) were calculated 

using the ‘picante’ package (version 1.7) (Kembel et al. 2010). Differences in microbial community 

composition were analyzed based on β-mean nearest taxon distance (β-MNTD), which is the mean 

phylogenetic distance of species in one community to their closest relatives in another community and 

thus focuses on short phylogenetic distances, i.e. the tips of a phylogenetic tree, indicating turnover of 

lineages that have diverged relatively recently in evolutionary history. We additionally used β-mean 

pairwise distance (β-MPD), which is the overall mean phylogenetic distance between species in two 
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communities and thus also captures deeper phylogenetic distances, indicating turnover of deeper 

branching phylogenetic lineages (Fine and Kembel 2011; Liu et al. 2017). β-MNTD and β-MPD were 

calculated with abundance weighting using the functions ‘comdistnt’ and ‘comdist’, respectively, of 

the ‘picante’ package. Differences in microbial community composition were illustrated by non-metric 

multidimensional scaling (NMDS) using the ‘metaMDS’ function of the ‘vegan’ package (version 

2.5.3) (Oksanen et al. 2018). Environmental variables were standardized to z-scores for all analyses. 

Variables containing censored data, i.e. values below the detection limit (nitrate: < 0.131 mg L
-1

; 

orthophosphate: < 22.2 µg L
-1

), were handled according to Helsel (2011) using rank-transformation 

with tied ranks for values below the detection limit. Overall environmental differences were calculated 

as standardized Euclidean distances between samples considering all measured variables. 

Permutational analysis of multivariate dispersion (PERMDISP; Anderson 2006) was used for pairwise 

tests of differences between regions in microbial community beta diversity, environmental differences, 

and spatial distance between sampling locations, respectively, using the ‘betadisper’ function 

(‘vegan’) with 10,000 permutations. Differences in ASV richness were assessed using Kruskal-Wallis 

non-parametric analysis of variance with Dunn’s mean rank sum tests for pairwise comparisons and 

Holm correction for multiple testing. 

We applied the null model approach by Stegen et al. (2013; 2012) to study the contributions of 

selection and dispersal processes on community turnover within as well as across regions. This 

approach is based on a two step procedure: first, under the assumption that phylogenetic similarity 

between closely related taxa approximates ecological similarity, and that dispersal between 

communities exists at least to a minimal degree over evolutionary time scales to allow species sorting 

to act and outpace the evolution of distinct communities in situ (Stegen et al. 2013), the strength of 

species sorting is evaluated in the first step based on the β-nearest taxon index (β-NTI). β-NTI is the 

standardized effect size of β-MNTD, which indicates how much the observed difference between a 

pair of communities differs from a null distribution of β-MNTD calculated with randomized 

phylogenetic relationships for which species labels and abundances are repeatedly shuffled across the 

tips of the phylogenetic tree. β-NTI < -2 (β-NTI > +2) indicates that species in two communities are 

phylogenetically significantly more (less) closely related than expected by chance, suggesting 
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selection of similar (different) species in both communities (referred to as homogeneous and variable 

selection, respectively, sensu Dini-Andreote et al. (2015) and Stegen et al. (2015)). |β-NTI| < 2 

indicates no significant deviation from the null distribution, suggesting that processes other than 

selection are responsible for the observed differences in community composition, i.e. dispersal, 

dispersal limitation, and drift. In this case, the RCbray index is used in the second step to identify these 

alternative processes. Because phylogeny is assumed to be irrelevant to the chance of species being 

subject to dispersal, dispersal limitation, or random drift, RCbray does not consider phylogenetic 

relationships to calculate differences between communities, but only uses information on species 

occurrence and abundance. RCbray is a measure for the departure of the observed Bray-Curtis 

dissimilarity between two communities from a null distribution of dissimilarities between 

probabilistically assembled communities, which include species proportional to their respective 

abundances in the two compared communities and their occurrence frequencies in the dataset, while 

maintaining local species richness and the number of individuals. RCbray < -0.95 (RCbray > +0.95) 

indicates that two communities share significantly more (less) species than expected by chance, which 

is interpreted as homogenizing dispersal (dispersal limitation and drift) being responsible for the 

observed differences between a pair of communities. |RCbray| < 0.95 indicates that two communities 

share as many species as expected by chance, indicating drift acting alone. β-NTI and RCbray were 

calculated as in Stegen et al. (2013; 2012) with 999 randomizations. For the analyses within regions, 

β-NTI and RCbray were calculated for each region separately based on null distributions that only 

considered ASVs found within a given region. For the analysis across regions, β-NTI and RCbray were 

calculated across all samples with ASVs found in the full dataset. 

As mentioned above, the ecological inference drawn from β-NTI regarding the influence of 

selection on differences between communities is based on the assumption that phylogenetic similarity 

between species across short phylogenetic distances approximates ecological similarity. This requires 

that phylogenetic distance between species correlates positively with differences in environmental 

optima (i.e. environmental optima have a phylogenetic signal). We tested this assumption for our 

dataset using Mantel correlograms as done by others (Dini-Andreote et al. 2015; Wang et al. 2013). 

Differences in environmental optima between ASVs were estimated as standardized Euclidean 
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distances between relative abundance-weighted means for environmental variables that were shown to 

have a significant effect on microbial community composition by distance-based redundancy analysis 

(db-RDA; see below) (Dini-Andreote et al. 2015; Stegen et al. 2012). The phylogenetic signal was 

evaluated at phylogenetic distance steps of 2% of the maximum phylogenetic distance with Mantel 

correlograms using Pearson correlation and 999 permutations for significance testing; p-values were 

adjusted for multiple testing using progressive Holm correction (‘mantel.correlog’; ‘vegan’). The 

analysis was done for each region separately only considering ASVs found within a given region, as 

well as with ASVs found across regions in the full dataset. For the latter, we randomly selected 4,500 

ASVs similar to Dini-Andreote et al. (2015) since an analysis comprising all 9,153 ASVs was 

computationally unfeasible. In all cases significant positive correlations were found mainly over short 

phylogenetic distances (12%-18% of the maximum phylogenetic distance) confirming that the 

assumption of a phylogenetic signal was met for our dataset (Fig. S2). 

We used variation partitioning based on db-RDA to examine the relative importance of local 

environmental conditions, spatial distance with regions, and region identity on differences in microbial 

community composition, and the degree to which these components were responsible for species 

sorting (Legendre 2007; Legendre and Anderson 1999). To study the effect on differences in 

community composition, abundance-weighted β-MNTD and β-MPD were used as response matrices 

in the db-RDA models, respectively. Local environmental conditions were represented by 

standardized environmental variables. To reduce variance inflation, collinear environmental variables 

(electrical conductivity, sodium, calcium, magnesium, chloride, and sulfate concentrations) were 

replaced by the first principal component resulting from a PCA of these six variables (referred to as 

ionPC1). IonPC1 was significantly positively correlated with all six variables and explained 74% of 

the variance. Environmental variables were selected by forward selection using the adjusted R
2
 of a 

full db-RDA model containing all environmental variables as stopping criterion (Blanchet et al. 2008) 

(function ‘ordiR2step’ with 10,000 permutations; ‘vegan’). Calculation of variance inflation factors 

(VIF) (function ‘vif.cca’; ‘vegan’) confirmed low degrees of redundancy among the selected variables 

in all models (all VIF < 2). The marginal significance of each selected environmental variable was 

assessed using permutation tests (function ‘anova.cca’ with 10,000 permutations; ‘vegan’). Spatial 

D
ow

nloaded from
 https://academ

ic.oup.com
/fem

sec/advance-article-abstract/doi/10.1093/fem
sec/fiz160/5584335 by H

elm
holtz Zentrum

 M
uenchen user on 16 O

ctober 2019



 

 

distance within regions and region identity were included as independent components in the db-RDA 

models following the approach used by Declerck et al. (2011). Region identity representing spatial 

distance across regions was included as a dummy-coded variable matrix. Spatial distance between 

sampling locations within regions were represented by a staggered matrix of Moran’s eigenvector 

maps (MEMs) as described by Declerck et al. (2011), where MEM vectors were arranged in blocks 

such that each block represents the spatial variation between locations within a given region, while 

locations from different regions are assigned a value of 0. MEMs are sets of orthogonal vectors 

derived from principal coordinate analysis on Euclidean geographic distances between connected sites, 

where individual vectors represent distances between sites at different spatial scales (Dray et al. 2006). 

The MEM matrix was constructed using the ‘create.dbMEM.model’ function in the ‘adespatial’ 

package (version 0.3-2) (Dray et al. 2018). Permutation tests were used as above to assess the overall 

significance of each component (i.e. region identity, MEM matrix, and the set of selected 

environmental variables) in individual db-RDA models and only significant components were 

subsequently used for variation partitioning (function ‘varpart’; ‘vegan’). 

To study the effect on selection processes, we repeated the db-RDA including the same three 

explanatory components as above, but this time using the β-NTI matrix calculated across all samples 

as response matrix. The rationale behind this approach is that changes in β-NTI should only result 

from selection since the effects dispersal, dispersal limitation, and drift are accounted for in the null 

distribution by maintaining species abundances within samples during the randomization of 

phylogenetic relationships (Stegen et al. 2013; Wang et al. 2013). Accordingly, the fraction of 

variation in β-NTI explained by variables used to estimate local environmental conditions indicates 

that these variables impose selection, whereas a significant effect of spatial distance or region identity 

would indicate selection by spatially structured unmeasured environmental variables or broad-scale 

region-specific factors, respectively, rather than dispersal limitation. Since db-RDA requires only 

positive distance values, β-NTI was scaled to range between 0 and 1 as in Stegen et al. (2013).  
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3.0 Results 

3.1 Differences in microbial community composition and environmental conditions within and 

across regions 

Analyses of differences in environmental conditions and microbial community composition by PCA 

and NMDS based on β-MNTD, respectively, revealed distinct clustering of samples by region with 

little overlap of samples from different regions (Fig. 2). In terms of environmental conditions, regions 

along the North-South transect were mainly separated along the second PCA axis, mostly influenced 

by differences in pH and concentrations of oxygen, potassium, and DOC. Samples from the WUR 

region additionally separated from the other three regions along the first PCA axis, mostly influenced 

by temperature, electrical conductivity, and concentrations of various ions (summary statistics of 

individual environmental variables are listed in Table S1). In contrast to the turnover of closely related 

ASVs across regions indicated by β-MNTD, clustering of communities was weaker when differences 

in community composition were assessed across broader phylogenetic scales based on β-MPD (Fig. 

S3). Congruently, while > 65% of the ASVs were exclusively detected within a single region, the 

majority of higher taxonomic groups from phylum to genus level (~69-73%) were observed across 

more than one region, further corroborating that differences between regions were mainly caused by 

turnover of related ASVs within broader clades such as genus or family. Regardless of the taxonomic 

level, taxa that occurred in more than one region also showed higher average relative abundances 

suggesting that local communities were dominated by more widespread taxa (Fig. S4). The most 

dominant taxonomic groups in all four regions were Alpha-, Delta-, and Gammaproteobacteria, in 

addition to Bacteroidia, Actinobacteria, and taxonomically unclassified bacteria (Fig. S5). Despite the 

dominance of these classes, community evenness calculated at the ASV level was high in all regions 

with Pielou’s index values ranging between 0.8-0.9 on average (Fig. S6). Accordingly, average 

relative abundances of the most dominant individual ASVs within a single region were relatively low 

ranging between 0.6%-6%. These dominant ASVs were predominantly found within the families 

Burkholderiaceae, Caulobacteraceae, Pseudomonadaceae, and Rhodocyclaceae in the WUR, AUG, 
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and MIT regions, and Thiovulaceae, Gallionellaceae as well as members of the Thaumarchaeota in 

the NOR region (Table S2).   

Comparing the dispersion of samples in the PCA and NMDS analyses shown in Figure 2 

suggested that regions with larger differences in environmental conditions also displayed larger 

differences in microbial community composition. This was confirmed by significant differences of 

within-region environmental heterogeneity and differences in community composition, respectively, 

revealed by pairwise PERMDISP tests (Fig. 3). Also in this case, patterns of observed differences in 

community composition based on β-MNTD matched the patterns of differences in environmental 

conditions better than β-MPD (Fig. S7). 

Since we had to rely on access to pre-installed monitoring wells during the sampling 

campaigns, it was unfortunately not possible to obtain samples from each region with the same spatial 

coverage. However, these differences in spatial coverage did not seem to have biased the estimates of 

ASV richness (Faith’s PD showed the same pattern as richness, Fig. S8), differences in microbial 

community composition, or environmental differences. For example, even though region WUR had 

the smallest spatial coverage, it displayed the second highest alpha and beta diversity estimates as well 

as the second largest environmental differences (Fig. 3).   

 

3.2 Effect of selection and dispersal processes on community turnover inferred from null models 

When evaluated within the individual regions as well as for pairwise comparisons of communities 

across regions, median β-NTI values were not significantly different from the null expectation, except 

for the NOR region, thus indicating no significant effect of selection on community assembly on 

average. However, the distributions of β-NTI in all regions as well as for comparisons across regions 

were strongly positively skewed (Fig. 4). Calculations of the fractions of pairwise community 

comparisons indicative of the different turnover processes showed that the contribution of selection to 

the observed differences between communities varied for each region between 32% (WUR) and 75% 

(NOR) (Fig. 4). In most cases, variable selection was the dominating process, indicating that 

communities were more different than expected by chance, except for the AUG region, where 

homogenous selection was the dominating selection process, suggesting that communities were more 
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similar than expected. The fractions not accounted for by selection processes were largely dominated 

by dispersal limitation and drift in most cases, or drift acting alone in the MIT region. Across regions, 

variable selection was the dominating process, accounting for 69% of the observed differences 

between communities while the remaining fraction was indicated to result from dispersal limitation 

and drift. 

 

3.3 Variation partitioning of differences in microbial community composition and changes in 

selection  

We applied db-RDA and variation partitioning to identify environmental variables that shaped 

microbial community composition (β-MNTD), and to dissect the individual contributions of these 

variables relative to spatial distance within regions and region identity (Table 1). Contradictory to the 

null model results for the individual regions that hinted at dispersal limitation, spatial distance between 

sites within regions represented by MEMs did not have a significant effect on differences in microbial 

community composition in an individual db-RDA model (adjusted R
2
 = -0.03; p = 0.916) and were 

therefore not considered for variation partitioning. In contrast, region identity and variables 

representing local environmental conditions (pH, ionPC1, and concentrations of dissolved oxygen, 

orthophosphate, and DOC) together explained ~77% of the variation in community composition, of 

which the majority (i.e. ~41%) was shared between both components. The effect of environmental 

variables alone was still significant after controlling for region identity (pH, dissolved oxygen) and 

explained ~27% of the variation, whereas region identity alone explained only ~9% after controlling 

for the effect of environmental variables. In contrast to the results obtained for β-MNTD, < 7% of the 

total variation could be explained for β-MPD, and the individual fractions explained by local 

environmental conditions and region identity were almost equally low (~2%) (Table S3). Hence, 

together with the results described above, differences in community composition both in response to 

local environmental and regional differences were best reflected by turnover across short phylogenetic 

distances represented by β-MNTD compared to turnover across broader phylogenetic scales captured 

by β-MPD. 
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 Given that region identity alone explained a significant amount of the variation in community 

composition, we further explored to which extent this variation was due to dispersal limitation or 

caused by selection either by local environmental conditions or region-specific factors. To this end, we 

used variation partitioning as above, only this time using the β-NTI matrix calculated for the full 

dataset as response matrix in the db-RDA (Table 1). As in the analysis above, spatial distance between 

sites within regions, which would reflect the contribution of spatially-structured unmeasured 

environmental variables, did not have a significant effect (adjusted R
2
 = -0.04; p = 0.996), whereas 

region identity together with local environmental conditions (pH and concentrations of dissolved 

oxygen, orthophosphate, nitrate, and DOC) explained ~62% of the variation in β-NTI. However, the 

effect of region identity was strongly tied to the effect of local environmental conditions, such that the 

variation explained by region identity alone dropped to zero after controlling for the effect of 

environmental variables (note that negative adjusted R
2
 although significant is interpreted as zero 

(Legendre 2007)). In contrast, environmental variables alone were still significant (pH, dissolved 

oxygen, DOC) and explained almost 25% of the variation in β-NTI after controlling for region 

identity. About 38% of the variation was unexplained, representing regionally and spatially 

unstructured, unmeasured environmental variables that imposed selection. 

 

4.0 Discussion 

The aim of our study was to establish the relative contributions of processes that cause variation in 

microbial community composition in groundwater environments across distinct aquifers located in 

different regions. We hypothesized that variation in community composition can be due to species 

sorting imposed by local environmental conditions measured at the time of sampling, and potential 

broad-scale region-specific factors like climate, geology or historical events, in addition to processes 

related to dispersal and drift within as well as across regions. Our analyses showed that differences in 

local environmental conditions were well reflected by differences in microbial community 

composition within regions. This observation points towards the influence of species sorting, where 

stronger environmental gradients within a region are predicted to increase niche diversity in a 
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metacommunity, and hence cause different species to sort into local communities along these 

environmental gradients (Langenheder and Lindström 2019). 

 The results obtained from the null models only partially agreed with this observation. On the 

one hand, the different degrees to which selection was indicated to be responsible for the differences 

in community composition in the NOR region compared to the AUG and MIT region did match the 

observed differences in environmental heterogeneity for these regions. This would support the 

hypothesis outlined above that stronger environmental gradients increase the influence of species 

sorting. On the other hand, contradictory results were found for the WUR region, which showed the 

second largest environmental differences, but exhibited the lowest contribution of selection. However, 

we have to mention that parts of the aquifer in the WUR region are artificially recharged with treated 

river water during the summer months (i.e. May to October) but not during the rest of the year. The 

samples for this study were collected at the early stage about two weeks after the start of the annual 

infiltration period, which may have constituted a perturbation to the microbial communities. It has 

been shown that random colonization through dispersal and drift can gain importance on community 

assembly in disturbed environments (Ferrenberg et al. 2013; Fukami 2015; Langenheder and 

Lindström 2019; Zhou et al. 2014), which could explain the relatively low contribution of species 

sorting in the WUR region. Furthermore, the null models indicated relatively strong contributions of 

dispersal limitation acting alongside drift, especially in the WUR and AUG region. Although 

comparable results have been obtained in previous studies on microbial community assembly in 

groundwater environments (Beaton et al. 2016; Graham et al. 2017; Stegen et al. 2013), this is at odds 

with our observation that spatial distance within regions did not have a significant effect on 

differences in community composition in the db-RDA. 

Such apparently conflicting results between distance-based regression approaches and 

ecological null models have previously been reported by Langenheder et al. (2017) in a study on 

community assembly in lake biofilms. There are two possible explanations for these observations. One 

is that the inferences drawn from the null models might be an oversimplification of the actual 

ecological processes that shape microbial communities. The null model approach assumes that 

selection should mainly manifest itself in stronger or weaker phylogenetic community turnover than 
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expected by chance (i.e. significant values for β-NTI). The basic underlying assumption that 

phylogenetic relatedness tends to approximate ecological similarity between microbial taxa has been 

confirmed by previous studies (Dini-Andreote et al. 2015; Liu et al. 2017; Martiny et al. 2015; Stegen 

et al. 2012; Wang et al. 2013), and was further suggested by a significant phylogenetic signal of 

environmental differences between ASVs in our dataset (Fig. S2). In the light of these findings, 

inferring the effect of selection from phylogenetic community turnover seems valid. However, it is 

also known that certain microbial traits are phylogenetically not well conserved (Martiny et al. 2015), 

as we will further discuss below, and therefore selection involving such traits would not be reflected 

by phylogenetic turnover metrics like β-NTI, but could still result in higher than expected taxonomic 

community turnover reflected by RCbray, which does not consider phylogenetic relationships. Thus, a 

significant deviation from the null expectation of RCbray could still be the result of selection processes 

even if phylogenetic community turnover does not deviate from the null expectation of β-NTI 

(Langenheder et al. 2017). Alternatively, it is possible that mere spatial distance does not appropriately 

reflect actual groundwater flow paths via which microorganisms may disperse in porous aquifers 

(Freimann et al. 2015; Schmidt et al. 2017; Smith et al. 2018). In this case, differences in community 

composition would not necessarily correlate with spatial distance even if dispersal was limited 

between local communities. For our study, this seems to be the more likely explanation, as we did not 

find significant correlations between changes in RCbray and differences in environmental conditions 

within the individual regions (based on Mantel correlation tests with 10,000 permutations; all p > 0.05; 

data not shown). This suggests that we may have underestimated the effect of dispersal limitation 

between local communities in the db-RDA, although we cannot fully rule out that selection involving 

phylogenetically non-conserved traits may have played a role as well. 

In this context, we further have to point out that the ability to detect effects of species sorting 

and dispersal in our study was limited to differences in community composition that could be resolved 

based on 16S rRNA sequences. It has been shown that even closely related strains of the same species 

with near identical 16S rRNA genes can differ significantly in their ecological preferences and show 

distinct biogeographic distributions (Chase et al. 2018; Choudoir and Buckley 2018; Hahn et al. 2016; 

Larkin and Martiny 2017). Therefore, our results need to be interpreted with the necessary caution, 
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bearing in mind that the high degree of conservation of 16S rRNA genes did not allow complete 

differentiation between microbial ecotypes beyond the level of ASVs in our study. 

Even though we might have missed the variation in community composition caused by 

dispersal limitation between local communities, the majority of the total variation in community 

composition evaluated across all regions (> 75%) could still be explained by local environmental 

conditions and region identity. Variation partitioning of β-MNTD revealed a larger marginal effect of 

local environmental conditions (27%) compared to the effect of region identity (9%). This strongly 

indicates that microbial communities were shaped by these local environmental conditions, whereas 

region-specific factors and dispersal limitation between regions only played a secondary albeit still 

significant role. This was furthermore supported by the large contribution of selection to differences in 

community composition across regions inferred from the null models, similar to findings reported by 

Danczak et al. (2018). It is worth noting that the four different regions in our study were sampled at 

different time points due to logistic constraints, although all sampling campaigns were conducted 

roughly in the same season, i.e. late spring and summer. Still, the variation in community composition 

possibly caused by temporal drift independent of environmental conditions, in addition to possibly 

undetected effects of dispersal limitation within regions, which both would be represented by the 

residual fraction of unexplained variation, was comparatively small (~23%). 

Interestingly, the effect of environmental conditions and region identity were mainly reflected 

by turnover of closest relatives between communities, i.e. turnover over short phylogenetic distances 

measured as β-MNTD, but not by turnover of deeper branching phylogenetic lineages measured as β-

MPD. Responses of microbial communities to environmental conditions have previously been shown 

to affect turnover across short phylogenetic distances, which indicate evolutionary relatively recent 

adaptations (Liu et al. 2017; Wang et al. 2013). Deep phylogenetic distances on the other hand capture 

more distant evolutionary events (Fine and Kembel 2011), which we hypothesized may include 

region-specific adaptations or evolutionary origins of phylogenetic clades within regions (Ricklefs 

2006). This, however, was not the case as > 93% of the variation in β-MPD could not be explained by 

region identity and local environmental conditions, which both had equally miniscule individual 

effects.  
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The dominance of species sorting by local environmental conditions is in line with the meta-

analysis by Hanson et al. (2012), who compared studies on microbial communities across various 

habitats and spatial scales and found that environmental conditions explained most of the variation in 

microbial community composition in the majority of analyzed studies. Similar conclusions were 

drawn from a literature review by Lindström and Langenheder (2012). Additional evidence for the 

importance of local environmental conditions on microbial community structure in groundwater 

environments in particular was provided by Ben Maamar et al. (2015) who reported similarities in 

microbial community composition in relation to similar environmental conditions across three 

unconnected fractured groundwater aquifers, as well as by other studies on single aquifers within a 

region (Beaton et al. 2016; Graham et al. 2017; Stegen et al. 2013).  Nevertheless, region identity still 

explained a significant fraction of the variation in community composition after controlling for local 

environmental conditions in our study, comparable to previous studies that compared microbial 

community composition over broad spatial scales in various aquatic and terrestrial habitats (Plassart et 

al. 2019; Power et al. 2018; Souffreau et al. 2015), or similar examples from studies on larger 

organisms (Declerck et al. 2011; Heino et al. 2017; Viana et al. 2016). However, in these studies it 

largely remained unclear whether such large-scale distance decay relationships were the result of 

dispersal limitation across regions or selection by regionally structured factors. Using the standardized 

effect size of differences in community composition obtained from null models like β-NTI in addition 

to raw metrics like β-MNTD allows making such a distinction, because β-NTI quantifies the degree to 

which the phylogenetic turnover between two communities is stronger (or weaker) than expected 

given the observed differences in species richness, occupancy and abundance caused by dispersal and 

drift (Stegen et al. 2013; Wang et al. 2013). By partitioning the variation in β-NTI between region 

identity and local environmental conditions, we could show that local environmental conditions, both 

explained by measured variables and by unmeasured, spatially unstructured variables represented by 

the residual fraction, explained most of the variation in selection, whereas region identity alone did not 

have a significant effect. Combined with the results obtained for β-MNTD, this leads to the conclusion 

that the variation in β-MNTD explained by region identity was mainly due to dispersal limitation and 

drift across regions rather than species sorting imposed by broad-scale regional factors.  
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5.0 Conclusion 

Our study showed that differences in microbial community composition across distinct aquifers from 

different geographic regions were mainly the product of species sorting imposed by local 

environmental conditions, with a relatively smaller but still significant contribution of dispersal 

limitation and drift across regions. However, we did not find evidence for significant selection effects 

caused by region-specific factors independent of local environmental conditions (represented by both 

measured and unmeasured variables). Although species sorting also played a determining role in 

structuring local microbial communities within the individual regions, we found partially inconsistent 

results between distance-based analyses and ecological null models regarding the contribution of 

dispersal limitation and drift within regions. Hence, combining microbial community analyses with 

hydrological models to map groundwater flow paths and identify possible dispersal routes for 

microorganisms will be important for future research to allow for more accurate estimates of the 

contribution of dispersal to microbial community assembly in groundwater environments. This in turn 

would be an important step towards a better understanding of the link between microbial community 

composition and biogeochemical functions in these ecosystems (Graham and Stegen 2017; Graham et 

al. 2016b). 
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Figure 1: Schematic map of Germany. Locations of the investigated regions are shown as black 

squares; rivers are shown in grey. 
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Figure 2: (A) PCA showing differences in local environmental conditions (O2: dissolved oxygen; 

DOC: dissolved organic carbon; K
+
: potassium; TCC: total prokaryotic cell counts; PO4

3-
: 

orthophosphate; Na
+
: sodium; Temp: temperature; Cl

-
: chloride; SO4

2-
: sulfate; EC: electrical 

conductivity; Ca
2+

: calcium; NO3

-
: nitrate; Mg

2+
: magnesium). (B) NMDS showing differences in 

community composition based on abundance-weighted β-MNTD. 
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Figure 3: (A) Spatial distance between sites within regions. (B) ASV richness within regions (total 

number of ASVs within each region is given in parentheses). (C) Differences in local environmental 

conditions (standardized Euclidean distance considering all environmental variables) within regions. 

(D) Differences in microbial community composition (abundance-weighted β-MNTD) within regions. 

Asterisks indicate significant differences inferred from PERMDISP tests (10,000 permutations) (A, C, 

D) and Dunn’s rank sum tests (B) (*p < 0.05; **p < 0.01; ***p < 0.001). Note: we chose to display 

distances on their original scales as distances to group centroids obtained from PERMDISP revealed 

the same patterns as shown in A, C, and D. 
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Figure 4: (A) Distribution of β-NTI values for pairwise community comparisons. Dashed lines 

indicate the range of β-NTI under the null expectation of no significant effects of selection (< |2|). 

Solid lines within violins represent quartiles (1
st
, median, 3

rd
). (B) Contribution of individual turnover 

processes to observed differences in microbial community composition derived from null models as 

classified by Dini-Andreote et al. (2015) and Stegen et al. (2015). Null models were run for each 

region separately; for the analysis across regions, null models were run on the full dataset, and only 

results for pairs of communities from different regions are shown. 
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Table 1: Partition of variation in microbial community composition (abundance-weighted β-MNTD) 

and selection (β-NTI) between local environmental conditions (Env; significant environmental 

variables are listed in the rightmost column) and region identity (Reg). Env+Reg represents the total 

variation explained by both components; Env|Reg (Reg|Env) represents the marginal fraction of 

variation explained by each component after controlling for the other; Env∩Reg represents the fraction 

of explained variation shared between both components. The explained variation is given as adjusted 

R
2
. Significance of each component and individual variables was tested using 10,000 permutations 

(note: significance of Env∩Reg cannot be tested). Spatial distance between sites within regions 

represented by MEMs was not significant in either case (adj. R
2
 = 0, p > 0.9) and was therefore not 

included in the analyses. 
 

Response matrix Component df Adj. R
2
 p 

Significant variables (p 

<0.05) 

β-MNTD Env 5 0.6772 0.0001 

pH, O2, ionPC1*, PO4
3-

, 

DOC 

 

Reg 3 0.4972 0.0001 

Dummy-coded region 

identity 

 

Env+Reg 8 0.7691 0.0001 

  Env∩Reg 0 0.4053   

 

Env|Reg 5 0.2719 0.0001 pH, O2 

 

Reg|Env 3 0.0919 0.0001 

 

 

Residuals 36 0.2309 

  

β-NTI Env 5 0.6618 0.0001 

pH, O2, PO4
3-

, NO3
-
, 

DOC 

 

Reg 3 0.3747 0.0001 

Dummy-coded region 

identity 

 

Env+Reg 8 0.6238 0.0001 

 

 

Env∩Reg 0 0.4127 

  

 

Env|Reg 5 0.2492 0.0001 pH, O2, DOC 

 

Reg|Env 3 -0.0380 0.0022 

 

 

Residuals 36 0.3762 

      

*Principal component representing 74% of the variance in electrical conductivity and concentrations 

of sodium, calcium, magnesium, chloride, and sulfate (all positively correlated with ionPC1). 
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