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Abstract
Wilson’s disease is an autosomal recessive disorder resulting from copper excess.

Some patients with clinical Wilson’s disease symptoms exhibit no or only heterozy-

gous pathogenic variants in the coding region of the disease-causing ATP7B gene.

Therefore, the ATP7B promoter region is of special interest. Metal-responsive ele-

ments (MREs) located in the ATP7B promoter are promising motifs in modulating

the ATP7B expression. We studied protein interaction of MREe, MREc, and MREd by

electrophoretic mobility shift assays and revealed specific interactions for all MREs.

We further narrowed down the specific binding site. Proteins potentially binding to

the three MREs were identified by MatInspector analyses. Metal regulatory transcrip-

tion factor 1 (MTF1) could be validated to bind to MREe by electrophoretic mobil-

ity shift assays. ATP7B promoter-driven reporter gene expression was significantly

increased because of this interaction. MTF1 is a strong candidate in regulating the

ATP7B expression through MREe binding.

K E Y W O R D S
metal regulatory transcription factor 1 (MTF1), metal-responsive element (MRE), Wilson’s disease

1 INTRODUCTION

Wilson’s disease (WD) is an autosomal recessive disorder

caused by alterations in the ATP7B gene, which encodes a

copper-transporting ATPase. WD mainly presents with liver-

specific as well as neurologic and/or psychiatric manifesta-

tion (Das & Ray, 2006). In some patients with clinical WD

symptoms, no or only heterozygous pathogenic ATP7B vari-

ants are detectable. Detection rates range from 68.5% to 98%
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(Hedera, 2017). It has been shown that copper (Cu) is able

to increase the ATP7B expression in the liver of pigs (Huang

et al., 2015), rats (Bauerly, Kelleher, & Lönnerdal, 2005),

and seabreams (Minghetti, Leaver, & George, 2010). Notably,

the ATP7B promoter contains four metal-responsive elements

(MREs): MREa, MREe, MREc, and MREd (Oh, Kim, Park,

Hahn, & Yoo, 1999) (Figure 1; Supplementary Methods

Figure S1). MREs are well-known regulatory motifs in the

metallothionein promoter, which interact with transcription
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MREa MREe MREc MREd

GCGCGCA ATGCCGAGCGCATGCGCACTGCGCCC

c.1
g.52,585,473

c.-223
g.52,585,696

c.-454
g.52,585,927

c.-707
g.52,586,180

c.-764
g.52,586,237

coding
region

c.-676
g.52,586,149

5‘ 3‘

GTGCGGA

Cloned for luciferase reporter assays (2.5 kB)

c.-2509
g.52,587,982

F I G U R E 1 Localization of metal-responsive elements (MREs) in the ATP7B promoter. Variant g.52,586,149T > C reported by Chen et al.

(2018) is marked by a dotted arrow. Positions refer to NC_000013.10 (NM_000053.3), Homo sapiens, chr.13, build GRCh37/hg19

factors (TFs) in a metal-dependent manner (Culotta & Hamer,

1989). For the ATP7B promoter, only one MRE-binding TF

(MRE-TF), the Ku-protein, has been described. Ku has been

shown to be necessary for the basal transcription of ATP7B
by binding to MREa (Oh et al., 2002). Likewise, the remain-

ing MREs are promising candidates in orchestrating ATP7B
expression. Here, we investigate MREe, c, and d with respect

to their role in cis regulation of ATP7B.

2 MATERIALS AND METHODS

2.1 Cell culture
Hepatocellular carcinoma cell lines HepG2 and HLE were

cultured in DMEM containing 10% FCS, 2 mM L-glutamine,

and 100 U/ml penicillin/streptomycin at 37◦C and 5% CO2 in

a humidified incubator (details in Supplementary Methods).

2.2 Electrophoretic mobility shift assay
(EMSA)
Nuclear extracts were prepared using an NE-PER Nuclear and

Cytoplasmic Extraction Reagents Kit (Thermo Fisher Scien-

tific). 15 μg of nuclear extract or 50 ng of purified MTF1 pro-

tein (TP304861, Origene, Herford, Germany) were incubated

with 20 fmol double-stranded, biotin-labeled oligonucleotides

(details in Supplementary Methods).

2.3 MatInspector analysis
To determine potential TF for the MREs, MatInspector anal-

ysis (Genomatix GmbH, München, Germany) was performed

with unmutated EMSA oligonucleotides as input sequences

(search for family matches, Matrix Family Library, Ver-

sion 9.2; selected matrix groups: general core promoter ele-

ments and vertebrates; core similarity: 0.7; matrix similarity:

optimized).

2.4 Luciferase reporter assay
Luciferase reporter assays were performed using vectors con-

taining 2.5 kB of the ATP7B promoter region with intact

or mutated MREe, MREc, or MREd. Expression vectors

harboring potential TF (pcDNA3) were cotransfected (details

in Supplementary Methods).

3 RESULTS

MREs are promising candidates for the cis regulation of

ATP7B. We, therefore, analyzed the protein interaction of

the three uninvestigated MREs (e, c, and d) by EMSA. We

detected a specific protein interaction for all investigated

MREs (Figure 2a). We then aimed to narrow down the

protein-binding site of the MREs by sequentially preincubat-

ing nuclear protein extracts with different mutated unlabeled

oligonucleotides before adding labeled wild-type oligonu-

cleotides. A strongly shifted band indicates an important

role in protein binding of a mutated nucleotide (Figure 2b–

d; full-size EMSA in Supplementary Results Figure S1a–c).

Nucleotides that turned out to be significantly involved in

protein binding are shown in Figure 2e, marked in green.

In summary, protein interactions for MREc and MREd were

mainly located directly adjacent to the MRE consensus

sequence (TGCRCN, marked with black boxes; Culotta &

Hamer, 1989). For MREe, protein interaction was mainly

established by the first four MRE consensus nucleotides

(TGCR).

In silico analysis can be used to identify TFs for a known

protein-binding site. We used MatInspector (Cartharius et al.,

2005) to determine possible TFs for MREe, d, and c (Figure 2e

and Supplementary Results Figure S1d). For each MRE, we

selected one to two potential TFs for experimental validation.

For MREe and MREc, we mainly selected TFs that matched

the binding sites determined by EMSA (overlapping green and

yellow nucleotides). For MREe, we chose MTF1. For MREc,

we chose DMTE, which was, in contrast to most of the other
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F I G U R E 2 Metal-responsive elements (MRE)e, MREc, and MREd within the ATP7B promoter interact with proteins at a specific binding

site. (a) Electrophoretic mobility shift assay (EMSA) showing protein binding (lanes 2, 5, 8) and binding specificity validation by preincubating

nuclear extracts with unlabeled MRE oligonucleotides (lanes 3, 6, 9). (b–d) preincubation of nuclear extracts with mutated unlabeled

oligonucleotides to narrow down protein-binding sites. Box: MRE consensus sequence, underlined: inserted mutations. (e) Transcription factors

(TFs) predicted to bind MREs within the ATP7B promoter by MatInspector algorithm. IUPAC consensus sequences of predicted TF-binding sites

(black letters) aligned with input sequence (EMSA oligonucleotides, red letters). Black boxes: MRE consensus sequence. Green: protein-binding

sites determined in EMSA. Yellow: matches to determined binding sites. Pink: matches to MRE consensus sequence. Blue: matching bases outside

of consensus sequence or determined protein-binding site. Numbers on the left: sequence start relative to input sequence. Numbers on the right:
matrix similarity. TF above input sequence indicate matches on (+)-strand, below on (−)-strand. s, specific shift; u: unspecific shift; f, free probe
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Relative luciferase activity
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HLE

HLE
nuclear
extract

purified
MTF1
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protein - + + + +
MREe probe + + + + +
Unlabeled MREe oligo - - + - +

b

c

F I G U R E 3 MTF1 binds to metal-responsive element e (MREe) within the ATP7B promoter and significantly increases ATP7B
promoter-driven reporter gene expression. (a) 48 hours after HepG2 cotransfection with indicated pGL3 luciferase reporter vectors and pcDNA3

expression vectors firefly luciferase activity was measured and normalized to Renilla luciferase activity. One-way ANOVA/Bonferroni’s multiple

comparison test; ns, not significant; ****P ≤ 0.0001. Error bars show standard deviation. Biological replicates N = 3. (b–c) Validation of

MTF1/MREe binding within the ATP7B promoter through electrophoretic mobility shift assay. (b) Lane 4: HLE nuclear extract preincubated with an

unlabeled oligonucleotide containing a known MTF1-binding site (MRE-s; Brugnera et al., 1994; Radtke et al., 1993). (c) Purified human MTF1

protein was used (lanes 4+5) instead of HLE nuclear extract (lanes 2+3)

candidates, not a protein but a DNA sequence motif. Because

TAF9 and TAF6 have been identified as the subunits connect-

ing to DMTE (Theisen, Lim, & Kadonaga, 2010), we included

them for experimental validation. For MREd, whose binding

sites determined by EMSA (green) were exclusively located

outside the MRE consensus sequence (black boxes), MatIn-

spector matches were mainly located within the MRE con-

sensus sequence (pink). We chose two candidates from these

matches, MTF1 and E2F2.

To investigate whether the selected TF candidates interact

with the ATP7B promoter, we performed luciferase reporter

assays. We used vectors with 2.5 kB of the ATP7B pro-

moter cloned upstream of the luciferase reporter gene and

then compared luciferase signals of the wild-type vector

with that of the vector with mutated MRE-binding sites.

The assays were performed under basal conditions or under

coexpression of MRE-TF candidates. For MREc and MREd,

no interaction with the predicted MRE-TFs was detected

(Supplementary Results Figure S2). In contrast, MTF1 sig-

nificantly increased luciferase activity (P ≤ 0.0001), indi-

cating an interaction with MREe, while mutated MREe

reduced luciferase expression to the basal level (P ≤ 0.0001)

(Figure 3a). To validate MTF1-MREe binding, we performed

different EMSA (Figure 3b+c; full-size EMSA in Supplemen-

tary Results Figure S3). First, we preincubated HLE nuclear

protein extracts with unlabeled oligonucleotides containing

a known MTF1-binding site (MRE-s; Brugnera et al., 1994;

Radtke et al., 1993). Shift disappearing because of preincu-

bation with MRE-s in our EMSA argues for MREe–MTF1

interaction (Figure 3b). We then used purified MTF1 pro-

tein instead of nuclear protein extract (Figure 3c), which also

shifted the probe. Together, these results demonstrate that

MTF1 bound to MREe within the ATP7B promoter and sig-

nificantly increased ATP7B promoter-driven reporter gene

expression.

4 DISCUSSION

MTF1 regulates several genes in a metal-dependent manner

or through oxidative stress. It is also essential for basal gene

expression of some genes (Günther, Lindert, & Schaffner,

2012), The most prominent MTF1-regulated gene is the

metallothionein gene. The Drosophila DmATP7, the human

ATP7B and ATP7A orthologue, is another MTF1-regulated

gene, which is involved in Cu homeostasis. This gene is

expressed Cu-dependently in the larvae midgut mediated by

MTF1 (Burke, Commons, & Camakaris, 2008), suggesting a

role of MTF1 in regulating human ATP7B.

Chen et al. have recently reported on a patient with

clinically diagnosed WD and a homozygous variant

(chr13:g.52,586,149T > C; NC_000013.10,hg19) in the

ATP7B promoter region (Chen et al., 2018). They found the

affected site to be bound by MTF1 as well. Our promoter

construct also includes this site (Figure 1, Supplementary

Methods Figure S1), albeit we did not investigate it further.

However, in our luciferase assay with MTF1 coexpres-

sion, mutation of MREe alone was already sufficient to

reduce luciferase activity to basal level even with the site
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g.52,586,149 still intact. Chen et al. have shown that variant

g.52,586,149T > C has only led to a reduction of approxi-

mately 15%. Possibly, both sites are necessary for binding and

activation, and disruption of either will reduce expression.

The difference in the extent of reduction might be caused

by the complete disruption of all seven nucleotides of our

MTF1-binding site, whereas g.52,586,149T > C affects only

one nucleotide.

Our current results should be complemented by further

investigations. The MTF1-mediated signal increase in our

luciferase reporter assay was clear, but modest (Figure 3a).

Here, a positive control using an established MTF1-dependent

promoter would be helpful to better assess the extent of the

effect. Furthermore, the current results should be verified in

a more physiological context. Evaluating the effects of the

introduction of g.52,586,149T > C and/or mutation in MREe

using CRISPR/Cas9 technology on ATP7B expression with

and without copper treatment would help to gain more insight

into physiological relevance. These investigations would have

gone beyond the scope of this article and will be addressed in

a subsequent study.

In summary, we show that MTF1 binds to MREe within

the ATP7B promoter and is a strong candidate in regulating

ATP7B gene expression. Our results argue for not solely focus-

ing on ATP7B coding variants when investigating WD path-

omechanisms, but to also include variants in the promoter

region, especially the MTF1-binding sites, and mutations in

or a deregulation of MTF1 or MREa-binding Ku protein itself.
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