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Summary

Several experimental manipulations result in axonal regener-
ation in the central nervous system (CNS) when applied

before or at the time of injury [1–6] but not when initiated after
a delay [5–10], which would be clinically more relevant. As

centrally injured neurons show signs of atrophy and degen-
eration [11–13], it raises the question whether chronically

injured neurons are able to regenerate. To address this ques-
tion, we used adult rodent primary sensory neurons that

regenerate their central axon when their peripheral axon is
cut (called conditioning) beforehand but not afterwards.

We found that primary sensory neurons express regenera-
tion-associated genes and efficiently regrow their axon in

cell culture two months after a central lesion upon condi-
tioning. Moreover, conditioning enables central axons to

regenerate through a fresh lesion independent of a previous
central lesion. Using in vivo imaging we demonstrated that

conditioned neurons rapidly regrow their axons through
a fresh central lesion. Finally, when single sensory axons

were cut with a two-photon laser, they robustly regenerate
within days after attaining growth competence through
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conditioning. We conclude that sensory neurons can acquire

the intrinsic potential to regenerate their axons months after
a CNS lesion, which they implement in the absence of trau-

matic tissue.

Results

Regeneration-Associated Genes Are Upregulated

in Centrally Injured Sensory Neurons after
a Peripheral Lesion

We tested whether dorsal root ganglia (DRG) primary sensory
neurons can gain axonal growth competence after central
nervous system (CNS) injury. Characteristic of CNS axons,
DRG neurons do not regenerate their central axons after
a spinal cord injury [6]. However, regeneration can still be
achieved by lesioning their peripheral axon before performing
the central lesion [5, 6]. This phenomenon is mediated by tran-
scriptional changes [14] and is known as preconditioning.
However, when the peripheral lesion is made after the central
lesion, the central axons fail to regenerate [5, 6].

We first examined whether centrally injured adult rat primary
sensory neurons would upregulate regeneration-associated
genes (RAGs) upon a subsequent peripheral lesion (i.e., condi-
tioning) [14–20]. To this end, we first transected the dorsal
columns and then we unilaterally cut and ligated the sciatic
nerve, which includes the peripheral axons of the lumbar 4
(L4) and L5 DRG neurons, 2, 4, or 8 weeks later (see Figure S1
available online). Levels of RAG transcripts were quantified
by semiquantitative real-time PCR from RNA extracts of the
L4 and L5 DRGs.

We found that all tested RAGs were upregulated in DRG
neurons conditioned 2, 4, or 8 weeks after the CNS lesion
(Figure 1A). Neuropeptide Y was upregulated over 80-fold,
galanin over 20-fold, small proline-rich protein 1A (Sprr1a)
over 150-fold, vasoactive intestinal peptide (Vip) over 150-fold,
arginase over 15-fold, growth-associated protein 43 (Gap 43)
about 3-fold, and activating transcription factor 3 (Atf-3)
over 8-fold. Importantly, a similar upregulation was induced
in animals that were either conditioned before CNS injury or
underwent peripheral lesion only (Figure S1 and Figure 1A). A
dorsal column lesion alone did not significantly affect the
expression of RAGs compared to unlesioned controls, except
for Vip and Sprr1a, which were slightly, and transiently, upregu-
lated (Figure 1A). Upregulation of RAGs in animals that were
conditioned before or after CNS injury was reflected at the
protein level. Western blot analysis showed an increase of
GAP 43 protein in the chronically injured sensory neurons
upon conditioning 8 weeks after the CNS injury (Figures S1
and S2). Furthermore, immunohistochemistry revealed that
ATF-3 was specifically expressed in large- and medium-size
myelinated N52-positive DRG neurons upon conditioning
8 weeks after the CNS injury (Figures S1 and S2).

Together, our results indicate that the temporal order of the
central and peripheral lesions does not affect the degree of
upregulation of RAGs in the DRG neurons. They also show
that even after chronic injury, RAG expression can be induced
in adult sensory neurons.
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Figure 1. DRG Neurons Conditioned before or after CNS Injury Upregulate RAGs and Show Enhanced Growth on a Permissive Substrate

(A) The level of upregulation of RAGs in DRG neurons in the ipsilateral versus contralateral/unlesioned sides of the rats at 2, 4, and 8 weeks in the groups

conditioned after or before CNS injury and in the peripheral-lesioned-only group, and in lesioned versus unlesioned rats at 2, 4, and 8 weeks after CNS injury

(only dorsal column lesion group). All genes in the group conditioned after CNS lesion were significantly upregulated compared to the control CNS-injury-

only group (p < 0.05 for Vip and Atf-3 and p < 0.001 for the rest, by ANOVA). White indicates an increase of less than 2-fold, gray between 2- and 5-fold, pink

between 5- and 45-fold, and orange more than 45-fold. Data are shown as the mean 6 standard error of the mean (SEM). The DRG neurons from rats condi-

tioned after (B–D) or before CNS injury (E–G), peripheral lesion only (H–J), central lesion only (K–M), and unlesioned (N–P) rats, after 2 weeks (B, E, H, K, and

N), 4 weeks (C, F, I, L, and O), or 8 weeks (D, G, J, M, and P), were cultured for 22 hr on poly-lysine substrate and stained with Tuj-1 antibody. Scale bar

represents 100 mm.

(Q) Percentage of neurons bearing long neurites (mean 6 SEM). DRG neurons in the group conditioned after CNS injury show significantly higher values

compared to unlesioned and CNS-injury-only groups (***p < 0.001 by ANOVA), but not compared to the group conditioned before CNS injury or the periph-

eral-lesion-only group (p > 0.05 by ANOVA).
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Centrally Injured Sensory Neurons Exhibit Enhanced
Neurite Outgrowth on Permissive and Inhibitory

Substrates upon Conditioning
Although upregulation of RAGs has been correlated to an
increased regenerative ability, the key regulatory genes that
set DRG neurons in a growth-competent state still remain
elusive [15, 21]. We therefore tested whether CNS-injured
DRG neurons that were subsequently conditioned extended
neurites in cell culture. The neurons were plated on poly-lysine
and neurite outgrowth was assessed by measuring their
number and average length. We only assessed neurons with
a cell body diameter larger than 30 mm, which are known to
be proprioceptive neurons [22].

We found that 53% 6 2% of the DRG neurons that were
conditioned 2 weeks after CNS injury (Figure S1) exhibited neu-
rites (Figures 1B and 1Q). This result was comparable to DRG
neurons that were either conditioned before CNS injury or
conditioned only (Figures 1E, 1H, and 1Q). In contrast, only
few DRG neurons exhibited neurite outgrowth when they
received a central lesion only (Figures 1K and 1Q) or no lesion
(Figures 1N and 1Q) as observed previously [14, 23]. Uncondi-
tioned neurons remained healthy in culture as they formed
neurites when cultured for longer periods (data not shown)
[14]. Enhanced neurite outgrowth of DRG neurons from rats
conditioned before, after, or without CNS injury was also
observed at 4 (Figures 1C, 1F, 1I, and 1Q) and 8 (Figures 1D,
1G, 1J, and 1Q) weeks. DRG neurons conditioned either before
or after CNS injury also showed enhanced neurite lengths.
Independent of when the conditioning occurred, about 50%
of the cells had neurites longer than 100 mm (Figure S3),
a more than 20-fold increase compared to DRG neurons that
were centrally lesioned only or unlesioned (Figure S3).

Importantly, DRG neurons conditioned after CNS injury
also showed enhanced axonal growth when confronted with
growth-inhibitory CNS myelin substrates in cell culture. More
than half of these as well as neurons that were conditioned
before a CNS injury or conditioned only grew neurites within
40 hr after plating on myelin substrate (Figure S4). The average
length of neurites was similar irrespective of whether the
peripheral lesion was made prior to or subsequent to the CNS
lesion (Figure S5). Together, our data show that neurons condi-
tioned after CNS injury grow axons as efficiently as those
conditioned before CNS injury both on a permissive substrate
as well as on inhibitory myelin.

CNS-Injured Sensory Neurons Regenerate Their Axons

through a Second, Fresh Lesion in the Spinal Cord
upon Conditioning

Although CNS-injured DRG neurons attain axonal growth
competence upon subsequent conditioning when cultured,
they do not regenerate in vivo [5, 6]. It is possible that the
peripheral lesion may set the centrally injured DRG neurons
into a growth-competent state, but the traumatic scar tissue
forming at the injury site may hinder the implementation of
their intrinsic potential. We therefore assessed whether cen-
trally injured DRG neurons that were subsequently condi-
tioned regenerated their axon beyond a fresh central lesion.
To this end, central axons of adult rats were transected and
a peripheral lesion was made 2 weeks later. Then, 1 week later,
the central axons were transected again caudally to the first
lesion (Figure S6). Axonal regeneration through the fresh lesion
was assessed 6 weeks later with anterograde axonal tracing.

In agreement with previous reports, sensory axons of rats
that were conditioned before CNS injury regenerated into
and beyond the injury site (Figures 2C, 2D, and 2I, white arrow-
heads) [6, 23]. When animals were conditioned after CNS
injury, the sensory axons failed to grow [5, 6]. Many axons
had retracted from the caudal edge of the lesion (Figures 2A,
2B, and 2I, red arrowheads). This was also the case in rats
that received a central lesion only [6] (data not shown). In
contrast, in all rats conditioned after an initial CNS injury,
axons regenerated into and beyond the second, more caudally
placed fresh central lesion (Figures 2E–2I, white arrowheads).
The longest regenerating axons per animal grew on average
1.3 mm, which was similar to animals that were conditioned
before CNS injury.

Hence, regardless of a previous CNS injury, conditioning
sets neurons in a growth-competent state in vivo; this growth
potential is manifested by their regeneration through a fresh
CNS lesion.

Conditioned DRG Neurons Rapidly Initiate Axon Growth
As preconditioned axons regenerate, it suggests that they
grow across the lesion before the damaged spinal cord tissue
becomes inhospitable. In contrast, DRG neurons conditioned
after CNS injury would acquire the growth competence too
late to grow across the injury site. To test this possibility, we
studied the growth response of DRG neurons that were condi-
tioned before CNS injury via in vivo imaging. We also assessed
the growth response in neurons conditioned after CNS injury
when confronted with a fresh CNS lesion. GFP-M transgenic
mice that express green fluorescent protein (GFP) in a few
neurons were used [24]. For in vivo imaging, a small unilateral
lesion was performed at the L1 level of the spinal cord. Specifi-
cally, we carefully transected central axons of the L4 and L5
DRG neurons in the dorsal columns close to the dorsal vein
(Figures 3A, 3E, and 3I; Movie S1; and Figure S7). Degeneration
and regeneration of the cut axons were monitored for up to
48 hr (Figures 3A–3L). After completing the in vivo imaging, the
DRGs and spinal cords were dissected to validate that the tar-
geted axons originated from DRG neurons with their peripheral
extension in the sciatic nerve.

During the first 5 to 7 hr postinjury, small sprouts emerged
from the tip of many axons from neurons conditioned before
a central lesion. Similarly, neurons conditioned after an initial
central lesion also showed small sprouts at the fresh lesion
(Figures 3F and 3J, green arrowheads). In contrast, uncondi-
tioned neurons did not form sprouts but their axons retracted
from the lesion (Figure 3B, red arrowheads). At 24 hr postinjury,
the extensions that sprouted from axons conditioned either
before or after CNS injury elongated further and penetrated
the fresh injury site (Figures 3G and 3K, white arrowheads).
Some of these sprouts grew perpendicularly or inversely to the
caudal-to-rostral axis of the spinal cord. Remarkably, many of
the regenerating sprouts grew several hundred micrometers
beyond the lesion within 48 hr postinjury and had a thin growth
tip (Figures 3H, 3L, and 3M, white arrowheads; 422 6 121 mm
and 345 6 84 mm, respectively). In contrast, unconditioned
axons retracted from the lesion and formed retraction bulbs
(Figures 3D and 3M). These results show that conditioning
enables primary sensory neurons to rapidly growthrough a fresh
CNS lesion.

Laser-Lesioned Central Axons Regenerate upon

Subsequent Conditioning
It is possible that with time the damaged spinal cord tissue
might have become too inhospitable not only for uncondi-
tioned but also for growth-competent neurons (Figure S8).
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Figure 2. A Conditioning Lesion Implemented after a CNS Injury Results in

Regeneration of Central Sensory Axons into and beyond a Second, Fresh,

Central Lesion Caudal to the First Central Lesion

Horizontal sections of the spinal cords (rostral to the left).

(A and B) A conditioning after CNS injury does not result in sensory axon

regeneration. Stalled axons are indicated by red arrowheads. (B) is a higher

magnification of (A).

(C and D) A conditioning lesion implemented before the central lesion

(i.e., the classic preconditioning paradigm) results in sensory axon regener-

ation into and beyond the lesion (white arrowheads). (D) is a higher magni-

fication of (C).

(E–H) Conditioning after a central lesion causes axon regeneration into and

beyond a second, fresh, central lesion performed caudally to the first central

lesion. The second central lesion was made 1 week after conditioning

(Figure S6). Axons regenerate into the lesion and at the rostral edge of the

lesion site (white arrowheads). (F) and (H) are higher magnifications of (E)

and (G), respectively.
To test this possibility, we aimed to lesion central sensory
axons without creating traumatic tissue. Specifically, we
used a two-photon laser [25] to transect single GFP-labeled
sensory axons in the spinal cord (Movie S2 and Figures 4B,
4G, and 4L, yellow arrowheads). This resulted in small damage
and minimal scarring of the surrounding nervous tissue.

Using the two-photon lesion paradigm, we found that DRG
neurons conditioned before central axotomy rapidly grew their
axon within 2 days (Figure 4H; average length: 495 6 107 mm). In
contrast, unconditioned axons degenerated and retracted
after laser axotomy (Movie S2) and showed only little sprouting
during the first 2 days (Figure 4S; average length: 27 6 10 mm).
The conditioned axons continued growing in different direc-
tions at later time points (Figures 4I, 4J, 4Q1, and 4S; average
length: 681 6 141 mm). The effect of conditioning is mediated
by changes in transcription [14] that sets the DRG neurons
into a growth-competent mode within approximately 2 days
[23, 26]. Thus, as expected, conditioning after central axotomy
(performed in the example imaged in Figure 4M) resulted in
modest sprouts at 2 days after sciatic nerve lesion (Figures
4N and 4T; 107 mm 6 25 mm). However, at 6 days after condi-
tioning, axons showed an 8-fold increase in length (Figures
4O and 4T; 240 mm 6 43 mm) compared to unconditioned axons
(9 days after two-photon axotomy for both; Figures 4E and 4T;
33 mm 6 14 mm). After the experiment, we examined the degree
of gliosis at the lesion by GFAP immunostaining. Only a few
GFAP-positive astrocytes were found at the two-photon lesion
(Figures 4P2, 4Q2, and 4R2, purple arrows). We also observed
that the regenerative axonal sprouts grew in different direc-
tions. Some of the sprouts traversed the lesion epicenter in the
conditioning paradigms (Figures 4Q3 and 4R3, white arrow-
heads). Two-photon laser-cut axons remained responsive to
conditioning for longer times. When the neurons were condi-
tioned 1 week after the laser axotomy, the axons showed
extensive regeneration. Fourteen days after the two-photon
cut (7 days after conditioning), the axons were 1 mm long
(Figure S9; average length: 965 6 164 mm), whereas uncondi-
tioned neurons showed only continuous modest growth
(Figure S9; average length: 283 6 74 mm). Together, our results
show that primary sensory neurons can be set in a regenerative
state after a central injury that they carry out in the absence of
scarring.

Discussion

In primary sensory axons, a peripheral lesion preceding
a central lesion results in growth of the central axons through
and beyond the lesion without the need for additional interven-
tions to decrease the growth-inhibitory nature of the CNS [6,
23, 26]. This phenomenon is known as preconditioning of the
DRG neurons and can be mimicked by increasing cyclic aden-
osine monophosphate (cAMP) cellular levels [23, 26]. For an
axonal growth effect to be conferred, the peripheral lesion
(i.e., conditioning) has to be implemented prior to, or at least

(I) Each dot represents the longest regenerating axon of each animal in the

following groups: conditioned after CNS injury with a second caudal fresh

lesion (blue dots; n = 7), conditioned before CNS injury (green dots; n = 7),

conditioned after CNS injury (black dots; n = 5), and central lesion only

(red dots; n = 7). *** indicates p < 0.001, by ANOVA, compared to the group

conditioned after CNS injury and the CNS-injury-alone group. Average

length of regenerating axons and standard errors are indicated with black

lines. In all spinal cord images, the rostral direction is to the left as indicated

in (A). Scale bars represent 250 mm (A, C, E, and G) and 125 mm (B, D, F, and H).
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at the same time as, the central lesion. When the peripheral
lesion is performed after the central lesion, the central sensory
axons fail to regenerate.

Here, we investigated the underlying mechanisms for the
distinct regenerative responses (Figure S10). We found that
DRG neurons conditioned after CNS injury acquire an intrinsic
growth competence that is qualitatively and quantitatively
similar to that of neurons conditioned before CNS injury. This
was observed up to 2 months after the initial central lesion,
the longest time period tested. In support of our findings, adult
rat rubrospinal neurons are able to regenerate their axotomized
axon several months after a spinal cord injury in response to
administration of neurotrophic factors near the cell bodies [27].

DRG neurons conditioned after CNS injury also acquire
the ability to grow their central axons in vivo but they only
implement their potential in the absence of traumatic tissue.

Figure 3. Conditioned Axons Rapidly Initiate

Regrowth

Live in vivo images of GFP axons in GFP M mice

that received a central lesion only (unconditioned)

(n = 11 animals) (A–D), conditioning lesion before

CNS injury (n = 8 animals) (E–H), or conditioning

lesion after CNS injury plus a second, fresh, central

lesion (n = 17 animals) (I–L). The mice were imaged

at 0 hr (A, E, and I), 5–7 hr (B, F, and J), 24 hr (C, G,

andK), and 48hr (D, H,andL)postinjury (pi). Lesion

sites are depicted by purple dotted lines. Red

arrowheadsindicateretractionbulbs,greenarrow-

heads indicate initial sprouts, and white arrow-

heads indicate regenerating sprouts that cross

the lesion site in mice that received conditioning

lesion before or after CNS injury. In all spinal cord

images, the rostral direction is to the left as indi-

cated in (A). Scale bars represent 100 mm.

(M) Length quantification of regenerating sprouts

in mice that received a central lesion only (red

dots), a conditioning lesion before CNS injury

(green dots), and a conditioning lesion after CNS

injury plus a second, fresh, central lesion (blue

dots) as measured from the epicenter of the lesion

site (indicated as 0 on the x axis). Arrow indicates

rostral direction of growth. Average length of re-

generating axons and standard errors are indi-

cated with black lines. * indicates p < 0.01 and

** indicates p < 0.001 by ANOVA compared to the

unconditioned group.

Two-photon lesioned axons initiate
regenerative sprouting 3 days after a
peripheral lesion. The sprouts appear
to grow in random directions, which is
probably to be due to the lack of proper
guidance cues [28].

Clearly, the discrepancy in the timing
of changes occurring at the site of
a central lesion and acquisition of axonal
growth competence via a preceding
or subsequent conditioning is crucial
for the different regenerative responses.
Conditioning of DRG neurons induces
retrograde signaling mechanisms [29,
30] that activate the expression of
RAGs (Figure S10) setting neurons in a
growth-competent state within 2 days
[23, 26]. Hence, with a preconditioning
the DRG neurons already express

molecules necessary for axonal growth prior to the central
lesion. Indeed, using in vivo imaging we found that conditioned
axons immediately initiate growth to traverse the lesion within
48 hr, when tissue scarring is not yet evident (Figure S10). DRG
neurons conditioned after the CNS lesion do acquire growth
competence but this occurs after the scar has developed
[31]. Hence, traumatic tissue is not only inhibitory for uncondi-
tioned but also for growth-competent neurons. In conclusion,
successful regeneration of axons by preconditioned DRG
neurons appears to result from rapid crossing of the lesion
site prior to accumulation of cells and molecules inhibitory to
axon growth, including reactive astrocytes. Consistent with
our results, lesioned sensory axons respond favorably to
cAMP application initiated 2 weeks postinjury and regain
neuronal function in zebrafish, which does not form a glial
scar after spinal cord injury [32].
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Figure 4. Two-Photon Lesioned Axons Show

Enhanced Regeneration when Followed by

a Conditioning Peripheral Lesion

Two-photon imaging and lesioning of GFP mice

that received a central lesion only (uncondi-

tioned) (A–E), a conditioning before CNS injury

(F–J), and a conditioning after CNS injury (K–O).

The mice were imaged before injury (A, F, and K),

at 5 min (B, G, and L), 3 days (C, H, and M), 5 days

(D, I, and N), and 9 days (E, J, and O) postinjury.

Lesion made with a two-photon laser is indicated

with yellow arrowheads. White and red arrow-

heads indicate regenerating and stalled axons,

respectively. Red line between (M) and (N) indi-

cates the application of the peripheral lesion

(conditioning) at 3 days after two-photon laser

lesion. The purple dotted lines in the lesion sites

align the images at the two-photon lesion. After

two-photon imaging, the mice were perfused

and spinal cords were stained with GFAP to

reveal reactive astrocytes in central lesion only

(P1–P3), conditioned before (Q1–Q3) or after CNS

injury mice (R1–R3). Regenerating axonal sprouts

in mice conditioned before (Q1) and after (R1)

CNS injury. Extent of scar formation after two-

photon laser is minimal as revealed by GFAP

staining of reactive astrocytes indicated by

purple arrows at the lesion site (P2, Q2, and

R2). Overlay showing the regenerating sprouts

marked with white arrowheads and GFAP-

stained reactive astrocytes indicated with purple

arrows (P3, Q3, and R3). In all spinal cord images,

the rostral direction is to the left as indicated

in (A). Scale bars represent 50 mm (E, J, O, and

P3–R3). Length quantification of sprouts in mice

conditioned before (n = 8 animals) (S) or after

CNS injury (n = 7 animals) (T) compared to unle-

sioned controls (n = 8 animals) at the indicated

time points. Data are shown as the mean 6

SEM. B.C.I. denotes before central injury; A.C.I.

denotes after central injury. **p < 0.05 and

***p < 0.01 by unpaired t test.
Our data have interesting implications for current efforts to
identify and characterize regeneration-inducing genes and
signaling pathways that stimulate axon regeneration by
mimicking the conditioning effect as induced in DRG neurons
via a peripheral lesion [17–21, 23, 26]. The present results
predict that manipulating key effectors involved in condi-
tioning after spinal cord injury would enable axon regeneration
only upon concomitant reduction of traumatic scar tissue.
Indeed, administration of the phosphodiesterase inhibitor roli-
pram 2 weeks after spinal cord injury, which increases the
cAMP level in neurons and attenuates the gliosis, improves
regeneration [33].

In summary, our data provide evidence that chronically
injured DRG neurons can acquire robust regenerative poten-
tial. The implementation of the growth competence, however,
is hampered by traumatic changes at the lesion site. Our data
indicate that inducing a conditioning effect combined with
interventions that reduce the growth-inhibitory nature of the
scar may provide promising therapies for chronic spinal cord
injury.

Supplemental Data

Supplemental Data contain Supplemental Experimental Procedures, ten

figures, and two movies and can be found with this article online at http://

www.cell.com/current-biology/supplemental/S0960-9822(09)00974-9.
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