

Article Article

<pubs.acs.org/ac>

$_1$ Guidelines for the Use of Deuterium Oxide (D $_2$ O) in 1 H NMR ² Metabolomics

³ Kristina Elisa Haslauer,† Daniel Hemmler,† Philippe Schmitt-Kopplin,†,‡ 4 and Silke Sophie Heinzmann[*](#page-5-0), \mathbf{F}

 $^{\circ}$ †Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, German Research Center for Environmental Health, ⁶ Neuherberg, D-85764, Germany

 τ ‡ Chair of Analytical Food Chemistry, Technische Universität München, Freising-Weihenstephan, D-85354, Germany

8 **S** [Supporting Information](#page-5-0)

⁹ ABSTRACT: In metabolomics, nuclear magnetic resonance ¹⁰ (NMR) spectroscopy allows to identify and quantify ¹¹ compounds in biological samples. The sample preparation 12 generally requires only few steps; however, an indispensable ¹³ factor is the addition of a locking substance into the biofluid 14 sample, such as deuterium oxide (D_2O) . While creatinine loss 15 in pure D_2O is well-described, the effects of different D_2O ¹⁶ concentrations on the signal profile of biological samples are 17 unknown. In this work, we investigated the effect of D_2O levels 18 in the NMR buffer system in urine samples, in dependence on ¹⁹ dwell time and temperature exposition. We reveal a decrease of ²⁰ the urinary creatinine peak area up to 35% after 24 h of dwell 21 time at room temperature (RT) using 25% $(v/v) D_2O$, but
22 only 4% loss using 2.5% D_2O , ¹H, inverse-gated (IG) ¹³C, and 22 only 4% loss using 2.5% D₂O. ¹H, inverse-gated (IG) ¹³C, and

23 DEPT-HSQC NMR, and mass spectroscopy MS experiments confirmed a proton–deuterium (H/D) exchange at the CH₂. ²⁴ This leads to underestimation of creatinine levels and has an extensive effect when creatinine is used for normalization. This 25 work offers a sample stability examination, depending on the D₂O concentration, dwell time, and temperature and enables a 26 method to correct for the successive loss. We propose an equation to correct the creatinine loss for samples prepared with 27 various D₂O concentrations and storage temperatures for dwell times up to 24 h. The correction function was validated against
28 an external data set with $n = 26$ samples. To ensure sufficient creatinine stability in an external data set with $n = 26$ samples. To ensure sufficient creatinine stability in future studies, we suggest that a maximum of

29 10% D₂O should be used at 4 $^{\circ}$ C or 2.5% D₂O at RT, respectively.

 \sum_{31} Metabolomics aims to comprehensively characterize
 \sum_{31} (identify and quantify) metabolites in biological fluids (identify and quantify) metabolites in biological fluids ³² and tissues and to study underlying pathways and biological 33 implications.^{[1](#page-5-0)−[3](#page-5-0)} Metabolome research offers the possibility to ³⁴ reveal valuable knowledge, which helps to address various ³⁵ aspects, including personalized medicine, the estimation of ³⁶ environmental or dietary impacts on individuals, and [3](#page-5-0)7 biomarker discovery.^{3−[5](#page-5-0)}

 Urine is a widely used biofluid, because of its availability in 39 large quantities and the noninvasiveness of sampling.^{[6](#page-5-0),[7](#page-5-0)} Nuclear magnetic resonance (NMR) and mass spectrometry (MS) are the key techniques used in urine metabolomics.^{[5](#page-5-0)} The former technique benefits from high robustness and 43 quantitation in nontargeted analysis.^{[8](#page-5-0)}

 Standard operation procedures (SOPs) for NMR-based metabolomics reached some level of agreement, but still some variations exist, in terms of phosphate buffer concentration, 47 concentration of D_2O , and addition of chemicals for positional noise reduction[.7](#page-5-0)[−][10](#page-5-0) While phosphate buffer is added to 49 maintain a constant pH of 7.4, D_2O is necessary to ensure a sufficient locking for stabilization of the magnetic field strength

and to avoid ¹H containing solvents that would unnecessary 51 inflate the NMR spectrum.^{[2,7](#page-5-0),[11](#page-5-0)} Keeping measurement s2 conditions constant is essential in metabolomics, because of ⁵³ a general large sample quantity and high-throughput measure- ⁵⁴ ments over several hours using autosampling devices. 55

In addition to the variation in sample preparation ⁵⁶ procedures, urine as a biosample matrix poses the challenge ⁵⁷ of handling inherent urinary dilution. Several methods are ⁵⁸ available, with the most common being probabilistic quotient ⁵⁹ normalization $(PQN)^{12}$ $(PQN)^{12}$ $(PQN)^{12}$ and normalization to urinary crea- 60 tinine. Creatinine is a breakdown product of creatine ⁶¹ phosphate in muscle tissue. It is removed from the body by ⁶² the kidneys through urinary excretion and known to be a useful 63 marker for renal function.^{$13,14$ $13,14$ $13,14$} If no renal dysfunction exists, 64 creatinine is excreted at a constant rate via urine in 24 h and ⁶⁵ therefore can be used as normalization factor to correct urinary ⁶⁶ dilution. $15,16$ $15,16$ $15,16$ Furthermore, creatinine is an important bio- 67

Received: March 29, 2019 Accepted: August 9, 2019 Published: August 9, 2019

⁶⁸ marker especially in investigations regarding kidney diseases 69 and renal function.^{[17](#page-5-0)}

 Yet, D2O is known to affect hydrogen−deuterium exchange in creatinine, especially in freeze-dried samples, which are 72 reconstituted in pure D_2O^{18} D_2O^{18} D_2O^{18} In this case, the CH₂ creatinine peak disappears or is reduced, which leads to inaccurate quantification.

75 In this study, we investigated the effects of D_2O concentrations in urine buffers on metabolites with a focus on creatinine. Creatinine underwent a conversion over time, 78 which resulted in a decrease of the creatinine peak at δ 4.06 79 ppm and an increase of a triplet upfield $(\delta 4.04$ ppm). We describe the underlying mechanism and propose an optimal sample handling guideline for urinary NMR metabolomics to ensure stable creatinine quantification for high-throughput measurements.

⁸⁴ ■ MATERIALS AND METHODS

85 Sample Preparation. Urine samples from two distinct groups were used: group A consisted of pooled spot urine from 5 healthy individuals, whereas group B contained 26 samples from a previous intervention study, as described in the 2015 89 work of Lagkouvardos et al.^{[19](#page-5-0)} All experiments concerning the impact, mechanism, and mathematical correction of the deuterium oxide effect on urine were performed on samples from group A. These were collected in 50 mL polypropylene 93 tubes (Falcon), pooled, and aliquoted into volumes of 150 μ L for analysis. A second dataset from group B was used for validation of the correction equation. Each volunteer provided written informed consent.

⁹⁷ Samples were stored at −80 °C until analysis. Aliquots were ⁹⁸ thawed on ice, homogenized by vortexing, and transferred into 99 vials containing buffer solution. A 1.5 M K_2PO_4 solution (pH ¹⁰⁰ 7.4) was used as a buffer that contained 0.1% trimethylsilyl-101 propionic acid (TSP) in either 10% D_2O (buffer I) or 100% 102 D_2O (buffer II). Buffers I and II were mixed to obtain required 103 total D_2O concentration for analysis of final D_2O concen-¹⁰⁴ trations from 2.5% to 25%. Buffer solutions and urine were 105 mixed in a ratio of 1:3 (50 μ L buffer and 150 μ L urine) and 106 centrifuged at 4 °C for 10 min at 13 000g. A quantity of 180 μ L ¹⁰⁷ of supernatant was transferred into 3-mm NMR glass vials. For 108 elucidation of the mechanism, 100 μ L of a 0.33 M creatinine ¹⁰⁹ standard solution in H2O (∼7.5 mg/sample) was diluted in 50 110 μ L of buffer I and 50 μ L of H₂O, resulting in a total D₂O 111 concentration of 2.5% D_2O . Equivalently, a sample with a final 112 concentration of 50% D_2O was prepared by mixing 100 μ L of 113 the standard solution in 50 μ L of buffer II and 50 μ L of D₂O. ¹¹⁴ The standard samples were left at RT at least for 24 h to ¹¹⁵ ensure that equilibrium is reached.

 The impact of creatinine loss was estimated using 2.5%, 10%, and 25% D_2O samples. Between sample preparation and measurement, samples were stored at RT and 4 °C. RT samples were prepared once and remeasured after the defined time increments, whereas cooled samples were prepared 13 times and, for every increment, a new sample was measured to exclude the effect of temperature increase during acquisition. For calculation of the correction equation, samples were 124 prepared from pooled urine. D_2O concentrations in these samples were adjusted to 2.5%, 5%, 10%, 15%, 20%, and 25%, respectively. Samples were measured in increments of 2 h from $127 t = 0$ h to $t = 24$ h. Between sample preparation and measurement, samples were stored at RT. All sample preparation steps were performed on ice until analysis.

NMR Instrumentation and Data Processing. Urine ¹³⁰ samples were analyzed on a Bruker 800 MHz spectrometer ¹³¹ that was operating at 800.35 MHz and was equipped with a ¹³² quadrupole inverse cryogenic probe (Bruker BioSpin); the 90° ¹³³ pulse was set to 14 μ s. Sixteen scans were recorded into 64 K 134 data points with a spectral width of 16 ppm. As a quality ¹³⁵ marker, the peak width at half-maximum for the TSP peak was ¹³⁶ monitored and spectra with a peak width at half-maximum of ¹³⁷ >1.0 Hz were excluded. All spectra were acquired at 300 K. ¹³⁸ One-dimensional proton spectra were acquired using a ¹³⁹ standard 1D-pulse sequence with water suppression (noe- ¹⁴⁰ sygppr1d) during an RD of 4 s, an acquisition time of 3 s, and a 141 mixing time (tm) of 200 ms. To avoid integration of ¹⁴² neighboring signals, integration boundaries of \pm 8.5 Hz around 143 the centroid value were set. 144

One-dimensional (1D) carbon spectra were acquired using ¹⁴⁵ an inverse-gated (IG) decoupling pulse (zgig) with proton ¹⁴⁶ decoupling during the recycle delay (RD) of 58 s (WALTZ- ¹⁴⁷ 16) to eliminate a nuclear Overhauser effect (NOE), a 90° ¹⁴⁸ pulse for ¹³C at 13 μ s, a decoupler pulse at 12 μ s, and a 149 decoupler power level at 1.11 dB. Multiplicity edited HSQC ¹⁵⁰ spectra were recorded using a DEPT-HSQC (distortionless ¹⁵¹ enhanced polarization transfer heteronuclear single quantum ¹⁵² coherence) pulse sequence (hsqcedetgpsisp2.2). Spectral ¹⁵³ width were set to 13 and 50 ppm in the proton (F2) and ¹⁵⁴ carbon (F1) dimensions, respectively. For each 2D spectrum, ¹⁵⁵ 5578×3072 data points were collected using 2 scans per 156 increment with an acquisition time of 0.25 s and 16 dummy ¹⁵⁷ scans. 158

Acquisition and processing were performed using TopSpin ¹⁵⁹ 3.5 software (Bruker BioSpin). flame ionization detection ¹⁶⁰ (FID) devices were multiplied by an exponential function ¹⁶¹ corresponding to line broadening of 0.3 Hz prior to Fourier ¹⁶² transformation. All spectra were manually phased, baseline ¹⁶³ corrected and calibrated to TSP (δ TSP = 0 ppm) before 164 exporting into Matlab software (R2011b; Mathworks) for ¹⁶⁵ further data processing. 166

The water region was removed (δ 4.6–5.0 ppm). Spectra 167 were aligned using a recursive segment-wise peak alignment ¹⁶⁸ $(RSPA)$ algorithm.^{[21](#page-5-0)} Orthogonal partial least-squares (OPLS) 169 analysis was performed as described by Cloarec et al. 22 22 22 170 Integrals were calculated using trapezoidal numerical integra- ¹⁷¹ tion. Local baseline correction was performed by generating ¹⁷² linearly spaced vectors between integration boundaries and ¹⁷³ subtracting the resulting integrals from peak integrals. Negative ¹⁷⁴ peak integrals of the deuterated creatinine triplet (i.e., in the ¹⁷⁵ absence of deuterated creatinine) were set to zero. All integral ¹⁷⁶ areas were normalized to the corresponding TSP peak area as ¹⁷⁷ an internal standard. For investigation of creatinine loss over ¹⁷⁸ time, measured CH₂ integrals were expressed in % of CH₂ peak 179 area recorded at $t = 0$ (CH₂/CH_{2i} [%]).

MS Measurements. Analysis of the isotope distribution ¹⁸¹ was performed using a maXis qTOF-MS equipped with an ¹⁸² APOLLO II electrospray ion (ESI) source (Bruker Daltonics). ¹⁸³ Samples were measured via direct injection and in electrospray ¹⁸⁴ positive mode. Source settings were the same as elsewhere ¹⁸⁵ described:^{[23](#page-6-0)} nebulizer pressure = 2 bar, dry gas flow = 10 L/ 186 min, dry gas temperature = 200 $^{\circ}$ C, capillary voltage = 4.5 kV, 187 end plate offset = +500 V, mass range = m/z 50–1500. 188

■ RESULTS AND DISCUSSION 189

To initially investigate the impact of sample preparation ¹⁹⁰ conditions on urine samples, we measured pooled urine ¹⁹¹

192 samples with altering D_2O after an equilibration time of 24 h f1 193 after buffer contact. In Figure 1, an overlap of six urine spectra

Figure 1. Proton spectra (−0.1−5.5 ppm) of creatinine standard in $H₂O/D₂O$ and buffer with peak annotation to creatinine structure and enlargement of CH creatinine peak area as stacked plot with D_2O concentrations ranging from 2.5% (red) to 25% (magenta).

194 with altering D_2O concentrations shows a clear decrease in 195 creatinine CH₂ peak intensity after 24 h and an increase in an 196 upfield triplet, depending on D_2O concentration. At a D_2O 197 concentration of 2.5%, no triplet was observed, i.e., the D_2O ¹⁹⁸ concentration was too low to induce an effect. To systemati-199 cally investigate further effects of D_2O over time at RT, besides 200 creatinine, we analyzed samples under the two extreme D_2O
201 concentrations (2.5% and 2.5%) every 2 h for 24 h, taking 2.5% concentrations $(2.5\% \text{ and } 25\%)$ every 2 h for 24 h, taking 2.5% 202 D_2O as a control. No other signals were found (threshold 203 correlation coefficients of $R^2 > 0.5$). Yet, several urine ²⁰⁴ metabolites are known to be susceptible to proton−deuterium 205 exchange, such as histidine, 24 which was not seen here. Our ²⁰⁶ results suggest that, under the sample preparation conditions of 207 25% D_2O within 24 h, no other metabolites are affected by the ²⁰⁸ H-D exchange. Therefore, the following evaluation focuses on ²⁰⁹ the observed effects on creatinine.

²¹⁰ The main issue with a decrease in creatinine peak area is ²¹¹ derived from the usage of creatinine as a normalization factor ²¹² and its utilization as an important marker for renal activity. To 213 circumvent this issue, alternatively to the CH₂ peak, the CH₃ ²¹⁴ moiety could serve for creatinine quantification. The standard 215 deviation of peak area of CH_3 was very low (<2%). However, a ²¹⁶ 2D-HSQC spectrum of a QC sample from a clinical study (for 217 details, see the [20](#page-5-0)18 work of Gil el al.²⁰) revealed overlap in 218 the CH₃ peak area but not for the CH₂ peak (see [Figure S1A](http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.9b01580/suppl_file/ac9b01580_si_001.pdf) in

the Supporting Information). This overlap is derived from 1,1- ²¹⁹ dimethylbiguanid (metformin). Metformin is a first-line ²²⁰ medication for type-2 diabetes. Type-2 diabetes had a global ²²¹ total prevalence of 8.4% in 2014, ranging from 7.3% to 13.7%, ²²² depending on thr region, 25 25 25 and is therefore expected to cause 223 substantial problems, especially in epidemiological studies or ²²⁴ studies that include diabetes patients. Selected ${}^{1}H$ NMR 225 spectra of type-2 diabetes patients highlight this problem ²²⁶ ([Figure S1B](http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.9b01580/suppl_file/ac9b01580_si_001.pdf)). For these spectra, the $CH₃/CH₂$ peak integral 227 has a standard deviation of 30%. Therefore, we concluded that ²²⁸ the $CH₃$ peak is not suitable for creatinine quantification. 229

Elucidation of H/D-Exchange Mechanism. As suggested ²³⁰ by Leibfritz et al.,^{[18](#page-5-0)} we hypothesized the cause of this 231 creatinine conversion to arise from a H/D exchange. We ²³² examined the underlying mechanism by a combination of (A) 233 solvent-suppressed $^1\mathrm{H}$ NMR for the quantitative estimation of 234 creatinine degradation, (B) inverse-gated (IG) 13 C NMR to 235 study changes in the chemical shift due to proton−deuterium ²³⁶ exchange and splitting patterns from carbon-deuterium bonds. ²³⁷ (C) Multiplicity edited ¹H−¹³C-HSQC (DEPT-HSQC) were 238 recorded to link the features revealed by the individual ²³⁹ experiments together. This confirmed a D_2O -dependent 240 proton−deuterium exchange at the (3,4)-position (see [Figure](#page-3-0) 241 f2 [2](#page-3-0)). Neither the addition of potassium fluoride (KF) nor the $242 f2$ variance of the phosphate $(PO₄)$ concentration influenced 243 proton−deuterium exchange. However, as expected, the ²⁴⁴ proton−deuterium exchange did not occur in the complete ²⁴⁵ absence of PO_4 (data not shown). A decrease of the CH₂ 246 creatinine peak occurs simultaneously with the increase of the ²⁴⁷ monodeuterated (CHD) peak. (IG) ¹³C spectra allowed us to 248 quantitatively study carbon nucleotides without NOE and ²⁴⁹ uncover a triplet for monodeuterated (III^*) ¹³C and a quintet 250 for polydeuterated (III^{**}) ¹³C. To investigate the extent of 251 CHD and CD₂ formation under relevant operating conditions, 252 we recorded an IG 13 C spectrum of human urine with 25% 253 D_2O . As expected, monodeuteration occurred, but the 254 formation of double deuteration was below a S/N ratio of 3 ²⁵⁵ (see [Figure S4](http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.9b01580/suppl_file/ac9b01580_si_001.pdf) in the Supporting Information). ²⁵⁶

Pattern splitting occurred because of different nuclear spin ²⁵⁷ systems and proton decoupling $(2NI + 1)$, with $I(H) = 1/2$, 258 $I(D) = 1$, and N being the number of nuclei, no splitting for 259 protons), resulting in a singlet for CH₂, a triplet for CHD, and 260 a quintet for CD_2 , respectively. Equivalent splitting patterns 261 were found for $CH₂$ and CHD peaks in DEPT-HSQC-spectra 262 ([Figure 2\)](#page-3-0), including a multiplicity inversion for the single ²⁶³ resonating proton in the CHD peak. ²⁶⁴

To confirm the elucidated mechanism, high-resolution ²⁶⁵ electrospray ionization−mass spectrometry (ESI-MS) was ²⁶⁶ used as an orthogonal analytical method to NMR. The ²⁶⁷ proton–deuterium exchange was verified for the 50% D_2O 268 stored for 48 h, after applying positive ESI mode ([Figure 3](#page-3-0)). 269 f3 The spectrum clearly shows the presence of all three states $(m/270)$ z 114.069 for $[C_4H_7N_3O+H]^+$, 115.076 for $[C_4H_6DN_3O+H]^+$, 271 and 116.081 for $[C_4H_5D_2N_3O+H]^+$. As expected, the H/D- 272 exchange did not occur at the CH₃ of creatinine (δ 3.05) signal 273 in creatinine.

Impact of the H/D Exchange on the Creatinine CH_2 275 Peak Area under Different Conditions. The described $H/276$ D-exchange leads to a loss in $CH₂$ creatinine peak area. In this 277 work, we investigated to which extent sample preparation (i.e., ²⁷⁸ D_2O concentration of the buffer) and measurement conditions 279 (i.e., temperature during dwell time) affect the resulting peak ²⁸⁰ area. Six different conditions were examined regarding their ²⁸¹

Figure 2. Mechanism of H/D exchange in creatinine with annotation of protons and carbons; (A) $^1{\rm H}$, (B) (IG) $^{13}{\rm C}$, and (C) DEPT-HSQC spectra with enlargements of the creatinine peak region and assignments of peaks for 2.5% and 50% D_2O samples 48 h after buffer addition.

Figure 3. Positive ESI-MS spectrum; enlargement of creatinine including annotation of the different deuteration states $(m/z 114.069)$ for $[C_4H_7N_3O+H]^+$, 115.076 for $[C_4H_6DN_3O+H]^+$, and 116.081 for $[C_4H_5D_2N_3O+H]^+$.

282 CH₂ peak area stability over 24 h. We chose three different 283 D_2O concentrations: 2.5% D_2O as minimal D_2O concen-284 tration, 10% D_2O as recommended in widely used urine NMR 285 protocols,¹⁰ and 25%, because this sample preparation (\geq 25%) 286 was used in several previously published studies.^{7,[26](#page-6-0)} Samples 287 were kept at RT and 4 $^{\circ}$ C to cover the conditions of an ²⁸⁸ availability of a cooled autosampler versus analysis at RT.

 Prior to the analysis of creatinine conversion, a general estimation of accuracy and robustness was performed, resulting in a relative standard deviation (RSD) of <1% for multiple 292 measurements of the same sample (*n* = 24) and up to ~10% variation for measurements of identical samples prepared multiple times and measured on different days ($n = 24$). This 294 originates from various impact factors on the overall technical ²⁹⁵ error (sample preparation, analytical error, spectral processing, ²⁹⁶ and peak integration variability). Since temperature-controlled ²⁹⁷ time-course measured samples (i.e., 4 $^{\circ}$ C) were individually 298 prepared and 25 °C samples were prepared only once, the ²⁹⁹ results of the cooled samples are expected to result in a larger ³⁰⁰ inherent variability. Considering this variability, we set an ³⁰¹ acceptance level for values to be true to \pm 5% of the CH_{2i} peak 302 area $(t = 0)$. 303

In [Figure 4,](#page-4-0) we show the impact of D_2O concentrations at 304 f4 RT ([Figure 4](#page-4-0)A) and 4 $^{\circ}$ C for dwell time up to 24 h [\(Figure](#page-4-0) 305 [4](#page-4-0)B). At RT ([Figure 4A](#page-4-0)), only samples containing 2.5% D_2O 306 are sufficiently stable to allow 24 h of measurements, whereas ³⁰⁷ 10% and 25% D_2O show losses up to 14% and 35% of the 308 initial peak area, with losses of >5% after 4 and 0 h. For cooled ³⁰⁹ samples, the decrease in peak area is scaled down, but still ³¹⁰ significant: 2.5% and 10% D_2O concentration showed to be 311 sufficiently stable for 24 h, whereas samples containing 25% ³¹² D_2O showed significant decrease after 8 h. In summary, the 313 availability of a 4 °C cooled autosampling device allows for the ³¹⁴ use of 10% D_2O , while analysis at RT needs minimization of 315 the D_2O content to no more than 2.5%. 316

Correction Equation to Compensate Creatinine Loss. ³¹⁷ In order to use datasets that were analyzed under suboptimal ³¹⁸ conditions, we went on to investigate the possibility of ³¹⁹

Figure 4. Ratio of measured creatinine CH₂ integral area over time relative to initial creatinine CH₂ for D₂O concentration of 2.5%, 10% and 25% with σ-error bars, dashed lines indicate acceptance limits (100% \pm 5%) over 24 h. Data points represent mean values from $n = 4$ measurements, standard deviations are shown as error bars; residual creatinine peak areas are shown for all conditions. (A) Samples at RT show a strong decrease in the creatinine CH₂ peak area. The strongest effect is visible for 25% D₂O, and only the condition 2.5% D₂O is relatively stable. (B) Storage temperature at 4 \degree C allows stability of the CH₂ creatinine signal for both 2.5% and 10% D₂O.

 320 correcting creatinine, based on the remaining creatinine $CH₂$ ³²¹ singlet peak and the emerging CHD triplet.

322 Using the complete dataset from group A $(n = 214)$, we 323 found a linear correlation ($R^2 = 0.94$) between the relative 324 change in CH_2 and CHD peak integrals to the initial CH_{2i} f5 325 integral (Figure 5). The equation, as obtained by linear fitting

Figure 5. Linear correlation of CHD and $CH₂$ peak areas after normalization to CH_{2i} peak area at $t = 0$ h, color-coded by D₂O concentration; the equation shows linear approximation $(R^2 = 0.94)$.

³²⁶ (Figure 5), can be converted and utilized to estimate initial 327 values at $t = 0$ (CH_{2i}), based on CHD and CH₂ peak areas: $CH_{2i} \approx 2.8$ CHD + CH₂

 This equation allows one to estimate the initial creatinine concentration in already analyzed samples, based on the peak 330 integral of the residual creatinine peak (CH_2) and its conversion product, the emerged deuterated creatinine peak (CHD). We hypothesized the empirically found factor of monodeuterated peak area results from two aspects: (1) the relaxation time of hydrogen neighbored to deuterium is larger than hydrogen alone and (2) the CHD peak originated from 336 one instead of two hydrogen atoms, since deuterium is ¹H NMR invisible.

338 Indeed, an inversion–recovery T_1 experiment revealed that T_1 relaxation times change from 2.0 s for undeuterated creatinine to 5.8 s for monodeuterated creatinine (see [Figures](http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.9b01580/suppl_file/ac9b01580_si_001.pdf) [S2 and S3](http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.9b01580/suppl_file/ac9b01580_si_001.pdf) in the Supporting Information). This results in a significant loss in signal intensity when recycle delays and acquisition times are kept rather short. This signal loss can be corrected by applying the formula for the compensation factor

used in the 2017 work of Maitre et al.,^{[27](#page-6-0)} which results in a 345 factor of 1.4. Together with the stoichiometric correction of ³⁴⁶ the number of hydrogen atoms, this explains the factor of 2.8 ³⁴⁷ presented herein. 348

Application of the Correction Equation. We applied 349 this correction to the training dataset used for calculation of ³⁵⁰ the equation ($n = 214$) and an independent test dataset ($n = 351$) 26) in order to compare the gained improvement for creatinine ³⁵² quantification (see Figure 6). $353 f6$

Figure 6. Comparison of dataset A with $n = 214$ samples for 24 h measurements with (filled circles) and without (empty circles) application of correction including graphical distribution plotted over CHD peak area and for the independent test dataset B with $n = 26$ samples for $t = 0$, 12, and 24 h with 25% D_2O with (filled rhombus) and without (empty rhombus) correction.

[Table 1](#page-5-0) shows creatinine peak areas before and after 354 t1 application of correction for datasets A and B. Remarkably, the ³⁵⁵ result was achieved for different D_2O concentration and 356 independent of time. No systematic error toward D_2O 357 concentration was observed in dataset A. This allows ³⁵⁸ application of the correction for different D_2O concentration 359 in the buffer and without knowledge of the dwell time (i.e., ³⁶⁰ sample preparation to time of analysis). Potential variation can ³⁶¹ be introduced by independent overlays of signals in the region ³⁶² of the triplet area. This result also suggests that other ³⁶³ degradation and conversion effects are negligible under the ³⁶⁴ investigated conditions of up to 24 h dwell time, RT, and a ³⁶⁵ maximum of 25% D_2O , as mean values remain within the 366 accepted error level. ³⁶⁷

Table 1. Comparison of 24 h Measurement with and without Application of Correction for Datasets A and B

³⁶⁸ This result shows a significant correction of the creatinine 369 peak, exclusively based on the $CH₂$ and CHD peaks in the ³⁷⁰ acquired spectra.

371 CONCLUDING REMARKS

 In this study, we determined the effect of adding D_2O as buffer solution on metabolite measurements in NMR spectroscopy with a focus on urine as a test matrix. We highlighted that creatinine rapidly undergoes conversions by H/D exchange in contact with D_2O . This leads to underestimated creatinine levels in NMR studies and has an extensive effect when creatinine is used for normalization. Especially in clinical studies, creatinine is a significant marker for renal function; therefore, accurate values are essential for precise data interpretation. As metabolomics studies are generally based on large sample quantities, measurements are executed over several hours, utilizing autosampling devices, and therefore enable the successive creatinine loss. In this study, we introduced a recommendation to address this issue and provide a guideline for future NMR metabolomics studies.

 Our results show the importance of sample storage at low 388 temperatures (i.e., 4 $^{\circ}$ C) prior to analysis, to minimize the creatinine-conversion effect to <5% for at least 24 h. This guideline should be considered for future study designs. In the absence of a cooled device, where measurements are executed 392 at RT, a reduction of D_2O to 2.5% reduces the loss in creatinine peak area to <5% in 24 h.

³⁹⁴ For already completed measurements under suboptimal ³⁹⁵ conditions, the correction factor introduced here can be ³⁹⁶ applied to correct for loss in integral areas.

 The findings in this study show the importance of well- defined and tested standardized operating procedures and sample preparation methodology for urinary NMR metab- olomics to produce accurate and significant biological results. Although our application is limited to urine, an adaption to other sample matrices may be of interest for further investigations.

⁴⁰⁴ ■ ASSOCIATED CONTENT

405 **6 Supporting Information**

⁴⁰⁶ The Supporting Information is available free of charge on the ⁴⁰⁷ [ACS Publications website](http://pubs.acs.org) at DOI: [10.1021/acs.anal-](http://pubs.acs.org/doi/abs/10.1021/acs.analchem.9b01580)⁴⁰⁸ [chem.9b01580.](http://pubs.acs.org/doi/abs/10.1021/acs.analchem.9b01580)

 409 Superposition of creatinine CH₃ signal with metformin 410 in 2D-HSQC and ¹H spectra (Figure S1); urine spectra ⁴¹¹ from inversion recovery experiment (Figure S2); 412 determination of T_1 relaxation times for CH_2 and 413 CHD in creatinine (Figure S3); IG 13 C for estimation of 414 CD₂ occurrence under real measurement conditions ⁴¹⁵ (Figure S4); experimental details and graphs ([PDF](http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.9b01580/suppl_file/ac9b01580_si_001.pdf))

(1) Whitfield, P. D.; German, A. J.; Noble, P.-J. M. Br. J. Nutr. 2004, 428 92, 549. 429

(2) Beckonert, O.; Keun, H. C.; Ebbels, T. M. D.; Bundy, J.; 430 Holmes, E.; Lindon, J. C.; Nicholson, J. K. Nat. Protoc. 2007, 2, 431 2692−2703. 432

(3) Patti, G. J.; Yanes, O.; Siuzdak, G. Nat. Rev. Mol. Cell Biol. 2012, 433 13, 263−269. 434

(4) Nicholson, J. K.; Lindon, J. C.; Holmes, E. Xenobiotica 1999, 29, 435 1181−1189. 436

(5) Alonso, A.; Marsal, S.; Julià, A. Front. Bioeng. Biotechnol. 2015, 3, 437 $23.$ 438

(6) Bouatra, S.; Aziat, F.; Mandal, R.; Guo, A. C.; Wilson, M. R.; 439 Knox, C.; Bjorndahl, T. C.; Krishnamurthy, R.; Saleem, F.; Liu, P.; 440 et al. PLoS One 2013, 8, No. e73076. 441

(7) Lauridsen, M.; Hansen, S. H.; Jaroszewski, J. W.; Cornett, C. 442 Anal. Chem. 2007, 79, 1181−1186. 443

(8) Bernini, P.; Bertini, I.; Luchinat, C.; Nincheri, P.; Staderini, S.; 444 Turano, P. J. Biomol. NMR 2011, 49, 231−243. 445

(9) Craig, A.; Cloarec, O.; Holmes, E.; Nicholson, J. K.; Lindon, J. 446 C. Anal. Chem. 2006, 78, 2262−2267. 447

(10) Dona, A. C.; Jiménez, B.; Schäfer, H.; Humpfer, E.; Spraul, M.; 448 Lewis, M. R.; Pearce, J. T. M.; Holmes, E.; Lindon, J. C.; Nicholson, J. 449 K. Anal. Chem. 2014, 86, 9887–9894. 450

(11) Emwas, A.-H.; Luchinat, C.; Turano, P.; Tenori, L.; Roy, R.; 451 Salek, R. M.; Ryan, D.; Merzaban, J. S.; Kaddurah-Daouk, R.; Zeri, A. 452 C.; et al. *Metabolomics* 2015, 11, 872–894. 453

(12) Dieterle, F.; Ross, A.; Schlotterbeck, G.; Senn, H. Anal. Chem. 454 2006, 78 (13), 4281−4290. 455

(13) Jackson, S. Health Phys. 1966, 12, 843−850. 456

(14) Goldman, R. Exp. Biol. Med. 1954, 85, 446−448. 457

(15) Warrack, B. M.; Hnatyshyn, S.; Ott, K.-H.; Reily, M. D.; 458 Sanders, M.; Zhang, H.; Drexler, D. M. J. Chromatogr. B: Anal. 459 Technol. Biomed. Life Sci. 2009, 877, 547−552. 460

(16) Boeniger, M. F.; Lowry, L. K.; Rosenberg, J. Am. Ind. Hyg. 461 Assoc. J. 1993, 54, 615−627. 462

(17) Waikar, S. S.; Betensky, R. A.; Bonventre, J. V. Nephrol., Dial., 463 Transplant. 2009, 24, 3263−3265. 464

(18) Leibfritz, D.; Dreher, W.; Willker, W. In vivo NMR applications 465 of metabonomics. In The Handbook of Metabonomics and Metab- 466 olomics; Lindon, J. C., Nicholson, K. J., Holmes, E., Eds.; Elsevier: 467 London, 2007: pp 496−497. 468

(19) Lagkouvardos, I.; Klaring, K.; Heinzmann, S. S.; Platz, S.; ̈ 469 Scholz, B.; Engel, K.-H.; Schmitt-Kopplin, P.; Haller, D.; Rohn, S.; 470 Skurk, T.; et al. Mol. Nutr. Food Res. 2015, 59, 1614−1628. 471

(20) Gil, R. B; Ortiz, A.; Sanchez-Nino, M. D; Markoska, K.; 472 Schepers, E.; Vanholder, R.; Glorieux, G.; Schmitt-Kopplin, P.; 473 Heinzmann, S. S; et al. Nephrol., Dial., Transplant. 2018, 33 (12), 474 2156−2164. 475

(21) Veselkov, K. A.; Lindon, J. C.; Ebbels, T. M. D.; Crockford, D.; 476 Volynkin, V. V.; Holmes, E.; Davies, D. B.; Nicholson, J. K. Anal. 477 Chem. 2009, 81, 56−66. 478

(22) Cloarec, O.; Dumas, M.-E.; Craig, A.; Barton, R. H.; Trygg, J.; 479 Hudson, J.; Blancher, C.; Gauguier, D.; Lindon, J. C.; Holmes, E.; 480 Nicholson, J.; et al. *Anal. Chem.* **2005**, 77 (5), 1282−1289. 481

- (23) Hemmler, D.; Heinzmann, S. S.; Wöhr, K.; Schmitt-Kopplin,
- P.; Witting, M. Electrophoresis 2018, 39, 1645−1653.
- (24) Bradbury, J. H.; Chapman, B. E.; Pellegrino, F. A. J. Am. Chem. Soc. 1973, 95, 6139−6140.
- (25) Zhou, B.; Lu, Y.; Hajifathalian, K.; Bentham, J.; Di Cesare, M.;
- Danaei, G.; Bixby, H.; Cowan, M. J.; Ali, M. K.; Taddei, C.; et al. 488 Lancet 2016, 387 (10027), 1513-1530.
489 (26) Zacharias, H. U.; Schley, G.;
- (26) Zacharias, H. U.; Schley, G.; Hochrein, J.; Klein, M. S.; Köberle, C.; Eckardt, K.-U.; Willam, C.; Oefner, P. J.; Gronwald, W. Metabolomics 2013, 9, 697−707.
-
- (27) Maitre, L.; Lau, C.-H. E.; Vizcaino, E.; Robinson, O.; Casas, M.; Siskos, A. P.; Want, E. J.; Athersuch, T.; Slama, R.; Vrijheid, M.;
- Keun, H. C.; Coen, M.; et al. Sci. Rep. 2017, 7, 46082.