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Abstract 

We present a Focused Library Generator that is able to create from 

scratch new molecules with desired properties. After training the Generator on 

the ChEMBL database, transfer learning was used to switch the generator to 

producing new Mdmx inhibitors that are a promising class of anticancer drugs. 

Lilly medicinal chemistry filters, molecular docking, and a QSAR IC50 model were 

used to refine the output of the Generator. Pharmacophore screening and 

molecular dynamics (MD) simulations were then used to further select putative 

ligands. Finally, we identified five promising hits with equivalent or even better 

predicted binding free energies and IC50 values than known Mdmx inhibitors. The 

source code of the project is available on http://github.com/bigchem/online-chem. 

Introduction 

 To find molecules that maximize the desirable properties and 

simultaneously minimize their adverse effects is a significant challenge in the 

modern chemically-related sciences. This is especially true for drug discovery 

research where a few atoms have to “encode” specific activity, selectivity, 

pharmacokinetics etc. The number of chemical compounds is enormous [1, 2], 

with drug-like space estimated to be 1060 molecules, and to even enumerate all 

of them is an impossible task much less consider synthesis and experimental 

testing. Several approaches – to name the most beneficial, virtual screening, and 

in silico structure generation – have been developed to enrich the outcome of 

projects involved in designing new molecules with optimized properties. The 

former approaches (filters) screen a database of existing organic compounds, 

(e.g. the ZINC database), or just synthesizable (Enamine REAL [3]), against 

several prognostic models built within QSAR/QSPR (Quantitative Structure-

Activity/Property Relationship) methodology, and select the most promising 

candidates for further analysis and experimental testing. The latter strategies 

(generators) can computationally generate new molecules [4] with desired 
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predicted properties using experimentally validated training sets [5]. Such 

molecules can be later produced and assayed. The main advantage of the latter 

procedures is that they can potentially navigate in unexplored areas of chemical 

space not represented in existing libraries. Such compounds offer potentially 

better specificity, selectivity, and pharmacokinetic properties. They are also 

unlikely to be covered by existing intellectual property limitations. 

 The generators are based on the recent progress with sequence data 

processing methods. Examples of such data are natural language sentences or 

music where each subsequent piece of information (words or notes) depends on 

the previous parts. Since the first work on sequence generation revealed the 

possibility for recurrent neural networks to model the probability distribution of the 

next token in a sequence [6], the scientific community immediately realized its 

power and opportunities. Many works appeared in different data domains, 

including among others, chemoinformatics [4]. The chemical molecules can be 

presented as ordinary alphanumeric strings by means of Simplified Molecular 

Input Line Entry System (SMILES) [7] from which the model can learn the 

conditional probability distribution of the next symbol with respect to all previous 

tokens. Once trained, the model can generate a new and diverse set of valid 

SMILES that are similar to the training dataset [8]. Though the ability to generate 

an arbitrary compound from "nothing" looks promising and appealing, its practical 

application is not different from exploiting combinatorial libraries. Therefore, it is 

crucial to find a way to adapt the model for sampling new molecules from the 

desired region of chemical space. For this purpose, transfer learning techniques, 

where the pre-trained model continues training on a task-specific dataset, are 

widely used [9]. After several epochs, the model converges and begins producing 

SMILES that are similar to such datasets. Another way to restrict molecular 

generator is to apply a reinforcement learning paradigm and bias selection of 

symbols from high probability variants drawn from the predicted distribution [5, 

10]. Recurrent neural network architecture shows exceptionally good 

performance in sequence-related tasks. During sequence processing, the 

network stores the entire "idea" of the input data in its internal state. This 

encoding vector can be successfully converted to new SMILES by using it as the 

starting internal state of another recurrent unit. Thus, other techniques, for 

example, Generative Adversarial Networks (GAN) [11, 12], and Variational 

Autoencoders [13], can efficiently navigate in this encoding space and enforce 

the recurrent network to produce focused SMILES of interest.  
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 In our work we demonstrated the applicability of such approaches to 

model the mouse double minute x (Mdmx, also known as Mdm4), which is a 

critical negative regulator of a tumor suppressor protein p53 [14]. Mdmx triggered 

a wave of research since the discovery of its importance to cancer progression 

[15]. The mutation of TP53 appears in about half of human cancers [16], and in 

the remnant, the wild-type p53 is inactivated by its negative regulators, Mdm2 

and Mdmx proteins [17]. The former is the first experimentally identified as a 

major endogenous inhibitor of p53 [18–20], and the latter, which is highly 

homologous with Mdm2, influences p53 transcriptional activity [14] and is a vital 

independent regulator of p53 [21]. Until now, however, the studies on small-

molecule Mdmx inhibitors have made slow progress. There are nine Mdm2 

inhibitors in clinical studies [22, 23], but for Mdmx, there is none. Development of 

SJ-172550, the first reported inhibitor of Mdmx [24], was put on hold because of 

stability problems [25], other alternatives, like XI-011 [26], and NSC207895 [27] 

had difficulties at the preclinical trials. 

 Even though Mdm2 and Mdmx are structurally closely related, their slight 

differences lead to Mdm2 inhibitors or even p53 transactivation domain being 

inferior in terms of binding affinity to Mdmx [28]. The usage of Mdm2 inhibitors in 

some cases is significantly limited due to its toxicity in normal cells [29]. Recently, 

it was reported that the loss of Mdmx induces p53 activation but has much less 

destructive effects in vivo than Mdm2 inhibition [30]. Therefore, Mdmx remains 

an interesting and unexplored target of great potential for cancer treatment.  

For the first time, we applied generative neural networks for designing new 

putative Mdmx inhibitors in silico and validated our approach with MD 

calculations. We showed that the Generator equipped with appropriate 

constraints, e.g. molecular docking, and a QSAR regression model, can 

efficiently navigate in chemical space with a high density of promising inhibitors. 

The overall methodology, as well as the source code provided 

(http://github.com/bigchem/online-chem), can be applied to other drug-design 

projects with minor changes. 

Methods 

Datasets 
 ChEMBL library of SMILES For our primary generator model we selected 

1,727,112 compounds from the ChEMBL library [31]. As distinct from all other 
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works on SMILES generators, we did not perform a pre-processing of the original 

data, e.g., string size limitation, chirality removing, standardization, and 

chemistry-relevant tokenization. This was done with a goal of training a universal 

recurrent model that would be able to cover the whole ChEMBL database and 

then, finding weights (“embedding”) that could also be used separately from the 

original generator model. This SMILES-embedding, like word-embeddings which 

are actively used for construction of language models, could be also applied to 

QSAR modeling [32]. 77,112 randomly selected SMILES were used as a 

validation set while the remaining 1,650,000 SMILES were used as a training set. 

 Mdmx inhibitors The training set of inhibitors (total 293) with 

experimental IC50 values [33–44], which have been tested with human Mdmx, 

were selected from the ChEMBL and BindingDB [45] databases. Their IC50 

values were measured by several kinds of methods,  

 

Figure 1. Distribution of log(IC50) experimental values, and also VINA scores for the known Mdmx 
inhibitor. 

 

such as the enzyme-linked immunosorbent assay (ELISA) (21 compounds), the 

dose-response confirmation of Inhibitors of Mdm2/MdmX interaction in 

luminescent format (19 compounds), the time resolved fluorescence energy 

transfer (TR-FRET) assay (237 compounds), fluorescence polarization assay 

(FPA) (2 compounds), the quantitative sandwich immune-enzymatic assay (14 

compounds). Most of the inhibitors had log (IC50) values less than -4.0, Figure 1.  

The average Tanimoto similarity within the dataset is 0.56. One can 

cluster all compounds in three different scaffolds, Table. 1, though only one 

cluster contains the majority of inhibitors (247 compounds).  
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Table 1. Diversity of the original inhibitors. Numbers mean the number of compounds in a 

respective cluster. 

 
 

 

30 compounds 16 compounds 247 compounds 
 

SMILES generator neural network (SGNN) 
 
 The generator neural network model consists of 2 LSTM (Long-Short 

Term Memory) [46] layers stacked upon each other with the number of internal 

units equal to 512 and hyperbolic tangent as a nonlinearity activation function. 

Stacked recurrent layers are commonly used for generator architectures but vary 

in the number of layers and the number of processing units in each layer, Table 

2. 

Table 2. Neural network parameters from the literature. 

Deep-learning 
framework 

Number and type of 
layers 

Number of units Reference 

Keras [49]  3 LSTM 64 [8] 
Keras 3 LSTM 1024 [4] 
Keras 3 LSTM 512 [9] 
PyTorch [50] 3 GRU [51] 512 [47] 
Keras 2 LSTM 256 [48] 
 

The last model in the Table 2 contains the smallest number of layers. We chose 

this architecture but with a bigger number of units equal to 512, which resulted in 

3,306,043 parameters. SGNN vocabulary is bigger (stereochemistry and 

inorganic ions) than in [48], so more training parameters are needed to encode 

the information. Following the last LSTM layer, we added an ordinary dense layer 

with a softmax output, Figure 2. To facilitate batch computation, we applied  
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Figure 2. The SGNN model architecture. 

 

masking to differentiate which positions in the input sequence are valid symbols. 

By design, our model can work with batches of different lengths, also consisting 

of strings of various sizes. 

 The input vocabulary was fixed to 66 letters including characters for the 

start (^) and the end ($) of a string  

$#%()+-./0123456789=@ABCFGHIKLMNOPRSTVXZ[\]abcdegilnoprstu^ 

Besides drug-like compounds, the proposed vocabulary can additionally encode 

inorganic ions often co-crystallized with the core fragment. It also can work with 

common reagents in organic synthesis, thus, facilitating the use of the same 

molecular representation in different models, being a universal SGNN model. 

Each letter was one-hot encoded and then passed to recurrent units. We 

did not employ any tokenization scheme for the SMILES generation model 

because, as stated above, the primary goal was to train a universal model 

covering the whole ChEMBL database. Therefore, any restriction, even if it may 

seem chemistry-relevant, could lead to an under-representation of some classes 

of tokens in the training dataset, thus, worsening the quality of the entire model. 

Our preliminary analysis showed that using the popular tokenization scheme [49] 

over simple character-based treatment did not improve the accuracy of the 

model. The output of the SGNN is a probability distribution of the next symbol 

conditioned on all previous symbols in a string over the vocabulary. During 

decoding, we randomly pick a symbol from the vocabulary according to this 

distribution. Sampling at higher temperatures results in a smoother probability 
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landscape and, therefore, can produce more diverse but also invalid SMILES. To 

adjust the softmax output to different temperatures, the following formula is used 

(see details in Supporting Information): 

𝑝! =
!
!" !!  

!

!
!! !!  

! 
!

                                                                 (1) 

where yi is the output of the SGNN, T is the temperature, and pi is the corrected 

probability.  

The SGNN was implemented in Lasagne [50] with Theano backend [51]. 

SMILES validation was done using RDKit library [52]. SGNN was trained for 100 

epochs with the Adagrad optimization algorithm[53] (constant learning rate 0.01, 

gradient clipping 100, batch size 2048). To avoid overfitting, we used the early-

stopping technique with a validation dataset. However, we did not see the 

overfitting and stopped training after the maximum number of epochs.  

Molecular docking 

The crystal structure of Mdmx in complex with p53 (PDB ID: 3dab [54]) at 

a resolution of 1.9 Å was used for the docking studies. The receptor was 

protonated at neutral pH with only polar hydrogens by AutoDockTools-1.5.6 and 

Gasteiger charges were added. By centering on p53, the docking grid was 

created. In particular, a grid box size of 24×18×22 and centered at 0.514 (x), -

21.838 (y), and 8.047 (z) was set with spacing of 1.0 Å between the grid points. 

The ligands were docked using the AutoDock VINA [55] program (hereafter 

simply called VINA). Ten predicted conformations were generated for each 

ligand. The rest of the parameters were set to the default values. From the 10 

binding poses, we chose the optimal one in terms of the docking score. 

 

QSAR models for IC50 and solubility estimation 
 

To estimate IC50 values of new Mdmx inhibitors we built a regression 

model using the OCHEM platform. OCHEM platform [56] automatically estimates 

the applicability domain (AD)[57] that is of crucial need for the current project. 

The generator treats molecules as simple sequences of characters with 

predefined grammar rules. Though the final sequence may be a valid SMILES, it 

can result in a molecule, which is chemically non-synthesizable or is very 
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different from the training set for which IC50 estimation may be unreliable. The 

QSAR model was used for additional filtering of the generated compounds 

selecting only those molecules that are in its AD. We explored different machine 

learning methods and descriptors available on OCHEM website and found that 

the best model was based on a Transformer-CNN method [58]. This model’s 

parameters are coefficient of determination r2 =0.69, root mean squared error 

RMSE=0.51, and mean absolute error MAE = 0.35 (n=293). The model is 

publicly available on http://ochem.eu/model/785. We used all 293 compounds for 

modeling though some values were measured with different methods because 

the number of points on individual assays were not enough for building and 

validating a model (see Datasets section).  

 Though our primary interest was to find new molecules that can bind to 

Mdmx we also ran the full generation cycle with solubility as one of the 

constraints besides IC50 and VINA endpoints. The solubility model used in this 

study was built with the same Transformer-CNN approach and resulted in r2 

=0.92, RMSE=0.58, and MAE = 0.41 (n=1311) and is available on 

http://ochem.eu/model/784.  

Tuning the generator 
 
 After training the generator on the ChEMBL database, we tuned it with the 

Mdmx dataset according to the following algorithm: 

1. Retraining the SGNN model solely on known Mdmx inhibitors, which 

formed the transfer set. The number of unique molecules in the transfer 

set was small compared to the initial ChEMBL training dataset. Therefore, 

we augmented (maximum 10 times) this set with non-canonical SMILES 

[59, 60], which were shown to increase the accuracy of the models. For 

example, toluene canonical SMILES is Cc1ccccc1, and non-canonical 

variants are: c1cccc(C)c1, c1ccc(C)c1, c1c(cccc1)C, etc. Both canonical 

and non-canonical SMILES were used in the training set for the SGNN. 

2. New SMILES were generated by SGNN. The compounds which passed a 

Lipinski-like filter (MW > 100 and MW < 700, HBD < 5, and HBA < 10) 

and a collection of Lilly filters [61] were then docked with VINA [55]. An 

IC50 QSAR model was also used to estimate the IC50 values for the 

molecules generated. Both docking scores and IC50 values were saved in 

the temporary database. 
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3. The generated compounds were ranked by considering both IC50 and 

VINA scores simultaneously. According to Fig. 1, most active compounds 

have -8 <= log(IC50) <= -4 and -11 <= VINA score <= -8. The Spearman 

correlation coefficient between VINA scores and log(IC50) is equal to -0.16 

thus showing that both endpoints presumably capture different aspects of 

structural features allowing compounds to be active. Therefore, we 

normalized values of both endpoints to the same interval and used the 

average of the normalized values as the final score for the molecules. A 

new training dataset was formed from the original data and highly-scored 

putative ligands from Step 2, keeping the ratio of known and generated 

ligands 1:1. As in step 1, all SMILES were augmented. 

4. The SGNN model was retrained on this new dataset. 

5. The sampling temperature was increased according to the formula, as 

discussed in the Results and Discussion section: 

𝑇!"!#$ = 1.0+ 0.5 ∗ (𝑐𝑦𝑐𝑙𝑒 − 1)                                            (2) 

Steps 2-5 were repeated by generating new SMILES at the end of each cycle. In 

this study, we performed two separate runs for tuning the generator. The first run 

(run-1) used the VINA score and IC50 values to select promising inhibitors. The 

second run (run-2) utilized additional solubility values. Note, additional filters 

decrease the number of generated molecules, and for chemical space 

exploration, one needs to increase the number of attempts while generating 

compounds. In run-2, we generated ten times more SMILES compared to run-1. 

Virtual screening 
 To perform virtual screening of the output of the Generator (run-1), a 

pharmacophore model was built by Schrödinger Phase [62, 63] based on the 

known small-molecule Mdmx inhibitor WK298 [64], which formed a complex with 

Mdmx. The structure of this complex was obtained by docking WK298 into 

Mdmx. The initial conformations of WK298 and Mdmx for docking were extracted 

respectively from crystal structures with PDB IDs of 3lbj [65] and 3dab [54]. The 

top-scored binding pose was well superimposed with the crystal structure of 

WK298-Mdmx complex and when it was aligned with the crystal structure of p53-

Mdmx complex, we can see WK298 binds to Mdmx in a way that mimics parts of 

the binding of the native p53 peptide. The Trp23 pocket is filled with the 6-

chloroindole substituent and the 4-chlorobenzyl ring protrudes the Leu26 pocket. 
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Finally the third key substituent of WK298, the phenyl ring, occupies the Phe19 

pocket, although the plane of this ring is nearly perpendicular to the plane of the 

Phe19 side chain of p53. The pharmacophore model, Figure 3, was based on the 

aforementioned critical residues of p53, (Phe19, Trp23, and Leu26) [65]. The 

model was validated internally in Schrödinger suite. Hereby, 204 of 274 active 

compounds have been successfully retrieved and the parameters are Area 

Under the Curve (AUC) 0.72, EF1% 10.62. We used this pharmacophore model 

to screen all the stereoisomers from the Schrödinger LipPrep. Finally, we 

analyzed molecules with Molecular Dynamic (MD) simulations.  

Figure 3 The pharmacophore model of Mdmx inhibitor used in this study (yellow: WK298, white: 
p53) 

 

MD simulations were performed with AmberTools18 [66], including ligand 

reduction with Reduce; atomic charge calculation with Antechamber and am1bcc 

as the backend; topology and coordinate files generation with tleap. Each MD 

simulation ran for 10 ns of production time under the NPT ensemble referring to 

the constant 0.987 atm with isotropic position scaling and 300 K using the weak-

coupling and SHAKE algorithm; maximum time step of 2 fs was used. The 

default value of the nonbonded cutoff was used properly along with the Particle 

Mesh Ewald (PME) calculations. For the stable ones which have a small 

standard deviation of RMSD value (“sd” in Table 3), we further calculated the 

binding free energies between the protein and ligands using the MMPBSA.py 

Python script [67] provided by AmberTools18. It is known that post-processing 

trajectories according to Molecular Mechanics/ Poisson Boltzmann (or 

Generalized Born) Surface Area (MM/PB(GB)SA) approximation allows a better 

evaluation of the binding patterns of these ligands to Mdmx and, therefore, can 
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help to identify the most potent hits [68]. We selected 100 frames from the last 

nanosecond of simulation with 10 ps intervals for calculation of ΔG values. The 

ΔG calculation was not refined by the entropy contribution in order to reduce the 

computational time. Therefore, the calculated ΔG was only an approximation of 

true free energy but could be used to compare the generated ligands with similar 

Mdmx binding pattern. 

The parameters and the environment for MD simulations worked well on 

the WK298-Mdmx complex. We were able to get stable trajectories by running 

10ns MD simulations on this complex, according to the RMSD (see Supporting 

information). 

Results and Discussion 

The generator 
 We examined the ability of the Generator to produce chemical structures 

following a comparison of distributions for molecular weight, lipophilicity, 

topological surface area, and synthetic accessibility introduced in [8]. For this 

purpose, we sampled approximately ten millions SMILES from the SGNN, and 

79% of them were valid unique SMILES, see Table 3. The results in Figure 4 

(blue dotted and solid lines labeled with "ChEMBL" and "ChEMBL (generated)") 

showed a good correlation between distribution shapes for different properties. 

Table 3. Parameters of generated molecules. 

Strings All Valid SMILES Unique SMILES 
All 10 495 701 9 377 274 (89.3%) 8 297 705 (79.1%) 
Stereo (with @) 1 677 294 1 388 454 (13.2%) 1 325 236 (12.6%) 
Cis/trans (with / or \) 1 153 284 998 506 (9.5%) 905 536 (8.6%) 
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Figure 4 Distribution of molecular weight, logP, TPSA, and synthetic accessibility for original 
ChEMBL database, generated molecules before and after tuning SGNN model with Mdmx 
inhibitors. 

 

 Notably, our generator sampled 13.2% valid molecules with chiral centers, 

and 9.5% geometric isomers with cis/trans configurations. 

 The Mdmx transfer dataset of known inhibitors consisted of 293 

molecules. It was augmented to 2916 SMILES and then used for retraining the 

original ChEMBL model. While an early-stopping technique was not required for 

training using ChEMBL, it was essential on this step because the number of 

parameters of the model was huge compared to the amount of training data, and 

the model could easily overfit [69]. In our experiments, 3-4 epochs were sufficient 

for transfer of the information. Total 5803 (run-1) valid SMILES that passed drug-

like Lilly filters were generated during all 10 cycles of tuning and 778 with VINA 

score less than -7.5 were selected for further virtual screening.  
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Figure 5. Visualization of chemical space of Mdmx inhibitors. 

 

The visualization of the chemical space of generated inhibitors, Figure 5, 

based on the deep neural network model [70] reveals an interesting landscape 

consisting of a valley with the known WK298 inhibitor in the middle and two 

ridges. Most of compounds selected by MD simulations are located at the highest 

and most occupied ridge to the left of the valley. The landscape evidently shows 

that the generator explored particular directions in the vast chemical space, and it 

was not a pure random walk. 

The temperature, Equation 1, can control the diversity of the generated 

SMILES. At low T, the system can produce valid compounds similar to the 

training set and with excellent quality. But to design new creative molecules, we 

need to add curiosity to the generator by increasing T. The increase of 

temperature decreased the number of valid SMILES which was 66% for T = 1.45, 

see Supporting Information. This higher temperature would cause the generator 

to produce garbage more in more than 1/3 of the outputs. In this study we made 

10 such cycles and the corresponding maximum temperature was T = 1.45. The 

authors [48] used 5-12 cycles for a similar procedure using uniqueness of 
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generated SMILES and their distance to the original dataset as a stopping 

criteria.  

Mdmx inhibitors 
 

The 5803 molecules, which passed advanced drug-likeness filters, were 

produced by the Generator and were ranked according to the sum of normalized 

VINA scores and log(IC50) values (Fig. 6). Then pharmacophore model filtered 

the top 102 molecules to 96. We simulated Mdmx complexes with these ligands 

and 50 trajectories were obtained. 

 

Figure 6. The scheme of the virtual screening workflow. 

To investigate the stability of the ligands’ binding pose in the receptor 

pocket, we analyzed the RMSD values for the ligand of the Mdmx complex. For 

the known inhibitor WK298, which was subjected to the same process, the 

standard deviations of RMSD are in the range of 0.317 to 2.758. We set the 

threshold to 2.758 to filter the relatively unstable trajectories. This filter further 

decreased the number of molecules to 49, for which we also estimated the 

binding free energies. Theoretical ΔGexp can be estimated by experimental IC50 
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values with formula ΔGexp ≈ RT ln(IC50) [68, 71]. For WK298 with IC50 value of 

19.7 µM [65], its ΔGexp is around -6.5 kcal/mol set. Below we analyze 5 promising 

hits (Table 4) with ΔGexp < -6.5, which could be thus expected to have a higher 

activity than WK298. 

Table 4. RMSD and the binding free energy (ΔG) of the representative compounds and WK298 
ascending by ΔG 

 RMSD 
-log(IC50) 

ΔG 
(kcal/mol) Compound avga stdb minc maxd 

WK298 1.5 0.3 0.52 2.9 -4.7 -9.4 
3021 4.7 0.4 0.63 5.9 -5.2 -13.0 
92 1.6 0.5 0.51 3.7 -7.7 -10.8 
100 1.7 0.7 0.48 5.8 -7.9 -6.9 
34 2.8 0.7 0.67 5.2 -7.9 -6.7 
39 4 1 0.78 8.0 -7.6 -6.7 
a. avg = the average; b. std = standard deviation; c. min = the minimum; d. max = the maximum 

Compound 92 has a unique scaffold that is 3,5-disubstituted-2-thioxo-2,3-

dihydro- 1H-imidazole. We aligned its Mdmx complex with the crystal structure of 

p53-Mdmx complex (PDB ID: 3dab). As shown in Fig. 8c, its urea group points 

towards the indole ring of the p53 residue Trp23 and both of its imino groups 

have H-bond interaction with Met32. 3-phenyl is fairly close to Phe19 pocket. The 

three aromatic rings of it lay on the top of helix α2 of Mdmx and the imino group 

has H-bond interaction with His33. Moreover, Tyr78 of Mdmx kept the “closed” 

conformation, which was specially studied in [65].  

3,3-diphenylpropanamide is one of the common substructures among 

generated molecules, such as compound 100. 4-chlorophenyl is located in the 

Trp23 pocket. One of the two-phenyl rings occupies the space of Lys24 of p53 

and the other one is exposed to the solvent. In the case of compound 34, one 

phenyl ring is substituted by its bioisosteres like pyrrole and methyl ester. The 

latter appears more frequently so as to become another common fragment. Here, 

4-fluorophenyl mimics Trp23 of p53 and 4-chlorophenyl mimics Phe19. Besides, 

1H-pyrrole toward the opposite direction is aligned with Lys24. 

Outside the range of filtered molecules, compound 39 with ΔG of -6.7 

kcal/mol also has an ester-substituted two-phenyl “umbrella”. Its long straight 

chain lies across the cleft of the protein and the hydrophobic pocket shrinks 

significantly to fit around it. In the crystal structure of Mdmx complex with Mdmx 
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selective inhibitor (PDB ID: 6q9y; compound 16, IC50 of 3.7 µM), we can observe 

the similar binding conformation [72]. Apart from filling the Trp23 and Leu26 

pockets, the remaining phenyl group nicely overlaps with Ser20 of p53.  

 

 
 Figure 7 Compound 39 and Mdmx complex aligned with known inhibitor in complex with Mdmx 

(PDB ID: 6q9y). (white: p53, magenta: 6q9y, yellow: compound 39). 

 

 Comparing the binding pattern of these complexes, the molecule’s 

extremities can be well aligned to Phe19, Trp23 and Leu26 of p53. It is frequently 

seen that fragments of ligands insert into the Trp23 hydrophobic pocket. 

Simultaneously, the pocket shrinks to accommodate the size of small molecules. 

Interestingly, almost every compound analyzed can mimic the three key 

interacting residues. And some of them can better align with p53 in more 

residues beyond those three. Especially the surface over the helix α2 is a hot 

spot for fragments to occupy like Ser20 of p53. As for Tyr78, in most cases, it 

remains in a “closed conformation” pointing to the ligand. Therefore, we assume 

it tends to interact with the ligand and flips only with the movement of the ligand. 

To select some of them that are typical and very different from known Mdmx 

inhibitors and test them by bioassay in the future would be a worthwhile 

endeavor. It is noted that some compounds with good ΔG values are not similarly 

ordered at the top of the results from Generator. This is due to their  
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Figure 8 a) p53-Mdmx complex (PDB ID: 3dab). White color indicates p53 and the surface of 
Mdmx is shown in purple colour; b) WK298-Mdmx complex (PDB ID: 3lbj). Yellow color indicates 
WK298; c) –f) The binding patterns of respective compounds (shown in yellow) in complex with 
Mdmx are shown. Compounds 3021 and 92 had similar binding modes and thus only complex 

with compound 92 is shown. 
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different computational principles. The scoring function integrates both empirical 

information and experimental affinity measurements. Relative ΔG in this work is 

calculated based on molecular mechanics and Poisson-Boltzmann Surface Area 

(MM/PBSA) in the absence of entropic contribution. And the evaluation criteria of 

the Generator also equivalently take the predicted IC50 values into account. 

Constraints during tuning  

The current implementation of the tuning workflow for the generator allows 

introducing several constraints to take into account while generating new 

molecules. In this study, we used the IC50 model to estimate the inhibition 

potential of a compound, and VINA scores to measure its binding affinity. 

However, most of the generated compounds have solubility issues. We 

investigated is it possible to create new inhibitors considering solubility as well as 

other endpoints. We started another cycle of generation but with an additional 

solubility filter (run-2).  

 

Figure 9. Comparison of similarity distributions for run-1 of generation (without solubility, 

left) and run-2 (with additional solubility parameter, right). 

Distributions of the Tanimoto similarity of genenerated molecules for entire 

compounds and Murcko scaffolds [73] are depicted in Fig. 9. The first TOP-500 

compounds from the second run are also available in the Supporting Information. 

It is clear that adding another filter shifts the generator to produce a more diverse 

set of compounds as well as chemical scaffolds. Utilizing more QSAR filters at 

this stage should benefit the entire de-novo design pipeline and we will further 

investigate the mutual influences of different filters to the overall scoring 

procedure.  
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Figure 10. Number of compounds generated during run-1 and run-2 as compared to the original 

dataset.  

As shown in Fig. 10, the overlap between generated compounds during two 

different runs is less than 10% (517/6395). Note, the total number of generated 

compounds also includes those structures that overlap with the training dataset. 

For example, for run-1 the generator produced in total 6395 structures, but 592 of 

them were already in the training dataset (the generator can produce the same 

molecule more than one time). Thus, different filters guide exploration of different 

regions of chemical space and can be used complementary to each other. But 

the question of how to account for all these filters in one workflow remains open.  

Conclusions 
 

Designing putative inhibitors for Mdmx is a challenging task, which so far 

has not resulted in a new drug candidate. In this work, we exploited the SGNN 

guided sampling, with docking scores to design new, putative inhibitors of Mdmx. 

The validation of the focused library generated by the computer through 

molecular dynamics simulation identified several compounds with binding 

energies similar or higher than the reference inhibitor. The overall approach 

being entirely artificial intelligence driven until the final inspection of the binding 

poses proved its ability, at least virtually, to design new compounds with machine 

learning methods and validate them with traditional molecular dynamics 

simulations in an automated manner. Despite several proposed generators [8–

13, 48, 74–76], our study is the first one to describe and implement the full 

process of virtual drug design of molecules using “generators”. The public 
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availability of its code and whole workflow allows other users to adapt and use it 

for their own projects. Though the number and quality of filters applied during the 

generation phase are to be optimized further, the whole algorithmic scheme, we 

believe, will guide future drug-development process, bring new drug candidates 

for challenging targets and will contribute to the diversification of medicinal 

chemistry methodology. 
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