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See Covering the Cover synopsis on page 1175.

BACKGROUND & AIMS: Altered interactions between the
mucosal immune system and intestinal microbiota contribute
to pathogenesis of inflammatory bowel diseases (IBD). It is not
clear how inhibitors of cytokines, such as antagonists of tumor
necrosis factor (anti-TNF), affect the intestinal microbiome. We
investigated the effects of anti-TNF agents on gut microbe
community structure and function in a longitudinal 2-step
study of patients with IBD. We correlated our findings with
outcomes of treatment and investigated patterns of metabolites
in fecal samples before and after anti-TNF therapy. METHODS:
We performed a prospective study of 2 cohorts of patients in
Germany; the discovery cohort comprised 12 patients with IBD,
17 patients with rheumatic disease, and 19 healthy individuals
(controls); fecal samples were collected at baseline and 2, 6,
and 30 weeks after induction of anti-TNF therapy. The valida-
tion cohort comprised 23 patients with IBD treated with anti-
TNF or vedolizumab (anti-a4b7 integrin) and 99 healthy con-
trols; fecal samples were collected at baseline and at weeks 2, 6,
and 14. Fecal microbiota were analyzed by V3–V4 16S ribo-
somal RNA gene amplicon sequencing. Clinical response and
remission were determined by clinical disease activity scores.
Metabolic network reconstruction and associated fecal metab-
olite level inference was performed in silico using the AGORA
(Assembly of Gut Organisms through Reconstruction and
Analysis) resource. Metabolomic analyses of fecal samples from
a subset of patients were performed to validate metabolites
associated with treatment outcomes. RESULTS: Anti-TNF
therapy shifted the diversity of fecal microbiota in patients with
IBD, but not with rheumatic disease, toward that of controls.
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WHAT YOU NEED TO KNOW

BACKGROUND & CONTEXT

TNF antagonists represent a current mainstay in IBD
therapy, but therapeutic efficacy is hampered by primary
and secondary loss of response. The intestinal microbiome
has been suggested to be implicated into to host immune
response to biologic therapy. Whether gut microbial
functionscontribute to anti-TNFefficacy in IBD isnot known.

FINDINGS

Anti-TNF therapy shifted the diversity of fecal microbiota
in patients with IBD toward that of healthy individuals.
Levels of butyrate and substrates involved in butyrate
synthesis were significantly associated with clinical
remission following anti-TNF therapy.
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Across timepoints, diversity indices did not vary significantly
between patients with IBD who did or did not achieve clinical
remission after therapy. In contrast, in silico modeling of
metabolic interactions between gut microbes found metabolite
exchange to be significantly reduced at baseline in fecal sam-
ples from patients with IBD and to be associated with later
clinical remission. Predicted levels of butyrate and substrates
involved in butyrate synthesis (ethanol or acetaldehyde) were
significantly associated with clinical remission following
anti-TNF therapy, verified by fecal metabolomic analyses.
CONCLUSIONS: Metabolic network reconstruction and assess-
ment of metabolic profiles of fecal samples might be used to
identify patients with IBD likely to achieve clinical remission
following anti-TNF therapy and increase our understanding of
the heterogeneity of IBD.
LIMITATIONS

Further investigations in larger longitudinal IBD cohorts
are necessary to delineate in detail the associations
of gut microbial metabolic signatures with therapy
outcome in IBD.

IMPACT
Keywords: Crohn’s Disease; Ulcerative Colitis; Inflammation;
Short-Chain Fatty Acid.

nflammatory bowel disease (IBD), with its main en-
In silico modelling of metabolic profiles of fecal samples
might be used to identify patients with IBD likely to
achieve remission following anti-TNF therapy. These
analyses might also provide information about the
pathogenesis of IBD.

* Authors share co-first authorship; § Authors share co-senior authorship.

Abbreviations used in this paper: AGORA, Assembly of Gut Organisms
through Reconstruction and Analysis; BASDAI, Bath Ankylosing Spondy-
litis Disease Activity Index; CD, Crohn’s disease; CID, chronic inflamma-
tory disease; HBI, Harvey-Bradshaw Index for CD; HC, healthy control;
IBD, inflammatory bowel disease; PERMANOVA, permutational multivar-
iate analysis of variance; RA, rheumatoid arthritis; rRNA, ribosomal RNA;
SCFA, short-chain fatty acid; TNF, tumor necrosis factor; UC, ulcerative
colitis.
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Itities Crohn’s disease (CD) and ulcerative colitis (UC),
can be considered an archetypal disease entity of a larger,
heterogeneous group of chronic inflammatory diseases
(CIDs), characterized by a dysbalanced immune system,
leading to excessive proinflammatory cytokine production
and destructive local inflammation.1,2 CIDs affect different
organs through their primary manifestation but are char-
acterized by common systemic immune perturbations. The
underlying etiology comprises a polygenic susceptibility
with more than 200 risk variants and loci identified for IBD
until today3–5 and many of these are shared among the
different CID entities. Shared disease genes are preferen-
tially involved in the regulation of innate and adaptive im-
mune responses and are thought to affect the homeostasis
of host-microbiota interactions.6,7 Intestinal dysbiosis has
been detected across CIDs.8,9 Although dysbiosis in IBD10–13

is likely influenced by immune dysregulation and destruc-
tion of the epithelial interface by local inflammation, the
etiology of dysbiosis seen in other CIDs without overt
inflammation in the gut is still vague and comprises shifts of
specific bacterial taxonomical groups and enrichment of
potentially harmful taxa; for example Eggerthella lenta in
rheumatoid arthritis (RA).14,15 Despite an immanent need to
understand the underlying mechanism of dysbiosis, a sys-
tematic comparison of gut microbial communities in intes-
tinal vs nonintestinal-driven inflammatory disease is
missing so far. Blockade of tumor necrosis factor (TNF) has
evolved as a therapeutic principle that is effective across
different CIDs.16,17 Although the use of anti-TNF antibodies
is a mainstay for the therapy in CID, the development of
antibodies directed against other proinflammatory cyto-
kines (interleukin-6, interleukin-1b) and lately also the
exploitation of other principles (e.g., blockade of integrin-
mediated immune cell trafficking in IBD),18 has led to an
increased complexity in the treatment of these CID entities.

To what extent targeted therapies are able to interfere
with altered gut microbial community structures and meta-
bolic function is unknown. Likewise, whereas it was shown in
cancer therapy that efficacy of targeted therapies, such as
immunotherapy as well as classical chemotherapy, is criti-
cally modulated by gut microbial community composi-
tion,19,20 it is unknown whether gut microbiota and related
metabolic properties are associated with therapeutic
outcome. Here, we investigated the role of anti-TNF therapy
on longitudinal dynamics of gut microbial composition and
metabolic function in a 2-tiered approach. First, we investi-
gated the influence of anti-TNF on gut microbial diversity by
16S ribosomal RNA (rRNA) phylogenetic profiling and
ecosystem-scale metabolic modeling in patients with IBD or
rheumatic diseases. We show that inferred microbial meta-
bolic interactions are associated with response to anti-TNF
therapy in patients with IBD. In a second step, we validated
our findings in an independent IBD cohort and found that
microbial metabolite interactions are able to discriminate
between anti-TNF remitter and nonremitters. Using in silico
prediction of metabolite exchange and stool metabolomics,

http://creativecommons.org/licenses/by-nc-nd/4.0/
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we show that, among other principles, butyrate levels are
significantly altered between patients achieving remission vs
nonremitting patients. We thereby demonstrate that (1) 16S
rRNA based functional prediction of metabolic cooperativity
might serve as a novel approach for predicting clinical
response to TNF antagonists in patients with IBD, and (2)
identify the short-chain fatty acid (SCFA) butyrate as a clin-
ical marker for therapeutic efficacy in IBD.
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Materials and Methods
Patient Recruitment and Study Design

Human study subjects were recruited at the outpatient
clinic of the University Hospital Schleswig-Holstein, Campus
Kiel, to obtain fecal samples. Treatment decisions were made
due to clinical requirements after discussion at the interdisci-
plinary inflammatory medicine board of the hospital. The
design of the prospective studies had no influence on treatment
or other clinical actions. Patients were naïve to biological
treatment or had at least paused prior biologic therapy for
more than 12 weeks. The study was approved by the ethics
committee of the Christian-Albrechts-University of Kiel (A 124/
14 and AZ 156/03–2/13) and subjects provided written
informed consent.

For the discovery cohort (cohort 1), patients were recruited
from 2 major patient groups: (1) 12 patients with intestinal
inflammation (ie, IBD, UC [n ¼ 4], CD [n ¼ 8]), or (2) with non-
IBD rheumatic diseases (ie, seropositive RA [n ¼ 10], seroneg-
ative RA [n ¼ 2], ankylosing spondylitis [n ¼ 5]), which are
collectively termed rheumatic diseases (n ¼ 17) hereafter. Pa-
tients were asked to collect morning feces before (24 hours) and
at designated time points (2, 6, and 30 weeks) after anti-TNF
therapy initiation. Fecal samples were collected using feces
collection tubes with prefilled DNA stabilizer (Stratec, Birken-
feld, Germany) and stored at �80

�
C until further use. Anti-TNF

agents comprised infliximab, certolizumab pegol, adalimumab,
and etanercept. Single time-point samples from a group of 19
healthy, untreated subjects were included at the same time and
using identical sampling procedures were included into the
study as controls. For the validation cohort (cohort 2), a total of
23 biologics-naïve patients with IBD (CD ¼ 10, UC ¼ 13) were
recruited, who received first-time anti-TNF (infliximab, n ¼ 10)
or anti-a4b7 integrin antibody (vedolizumab, n ¼ 13) therapy.
Patients were investigated within a 24-hour time frame before
initiation of treatment and at weeks 2, 6, and 14 after initiation of
treatment, including collection of morning feces. Single time-
point fecal 16S rRNA gene microbial profiles from a cross-
sectional cohort of healthy individuals (n ¼ 99) sampled in the
time frame of the study served as a reference map to assess the
directionality of microbial changes after anti-TNF therapy initi-
ation for cohort 2. Overview of patient characteristics are
detailed in Supplementary Table 1. Overview of clinical efficacy
data for the 2 cohorts is shown in Supplementary Tables 2 and 3,
respectively. A detailed overview about cohort composition and
molecular analyses is given in Supplementary Figure 1.

Patient Assessment
All patients were scheduled for biologic therapy for medical

reasons and received drug at least until week 22. Clinical dis-
ease indices were assessed at baseline and at weeks 2, 6, 14,
and 30 after therapy initiation using clinical disease scores
(Disease Activity Score 28 for RA [DAS28], Bath Ankylosing
Spondylitis Disease Activity Index [BASDAI], Harvey-Bradshaw
Index for CD [HBI], or Mayo score for UC).21 In RA, clinical
response was defined as a reduction of the DAS28 score by
more than 1.2 points, whereas clinical remission was defined as
a DAS28 <2.6. For ankylosing spondylitis, the BASDAI clinical
response was defined as a reduction of 50% (BASDAI50) at
week 6, whereas clinical remission was defined as a BASDAI
<4. Responders in the HBI for CD were defined by a decrease of
�2 points in HBI, whereas nonresponders showed a decrease
of <2 points or an increase in HBI. Patients with CD with an
HBI of �4 were considered to be in remission, and those with
�5 to have active disease. In patients with UC, a decrease of the
partial Mayo score of �2 points and �30% with either a
decrease of rectal bleeding �1 or with rectal bleeding �1 were
defined as responders. Patients with a partial Mayo score of �2
(bleeding 0) were considered to be in remission, and those with
�3 to have active disease. Histopathological scoring of biopsies
was performed by standard clinical procedures in a blinded
fashion by a trained pathologist, and the overall grade of
inflammation was grouped according to normal (0), mild (1),
moderate (2), or severe inflammation (3), and the respective
values were used for pathology score calculation.
Statistical Analyses
Phylotype abundances were subsampled to the lowest

number of sequences within the analyzed sample and relative
abundances were log10-normalized. Principal coordinate anal-
ysis was performed on abundance (Bray-Curtis) and presence/
absence (Jaccard) based distance matrices. One-way permuta-
tional multivariate analysis of variance (PERMANOVA) was
performed to test the statistical significance of microbial com-
munity differences in healthy subjects and patients with IBD or
rheumatic diseases. Both principal coordinate analysis and
PERMANOVA were performed in PAST software and principle
coordinates were visualized in the vegan package v.2.0–10 in R
software V 3.0.3 (https://cran.r-project.org/web/packages/
vegan/index.html). We employed the ƟYC (Yue-Clayton) simi-
larity index22 to measure the shift of microbiota before and
after initiation of treatments (within and between disease
groups) as well as directionality in reference to healthy subject
microbiota. This similarity index is based on the species
abundance of shared as well as nonshared species applying
even weighting to all species in communities. The nonpara-
metric Mann-Whitney U test was used to test the significance of
diversity/distance differences between healthy subjects and
patients (IBD/rheumatic diseases) at different time points. The
nonparametric Wilcoxon matched-pairs signed rank test was
used to observe the significance of changes before and after
therapy initiation within a disease group. Indicator species
analysis23 was performed to identify indicator bacterial phy-
lotypes between healthy control (HC) group and patients (IBD
and rheumatic diseases) before and 30 weeks after therapy
initiation. This approach takes relative abundance and relative
frequency of occurrence in 2 sets of samples24 into account.
Microbial Community Modeling
We used reconstructed metabolic models of 773 human gut

bacterial species25 (AGORA [Assembly of Gut Organisms

https://cran.r-project.org/web/packages/vegan/index.html
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through Reconstruction and Analysis] resource) to predict
metabolic potential and biochemical interactions between
bacterial species. We extensively refined the originally pub-
lished models to remove erroneous futile cycles that occurred
in community simulations and often caused unreasonably high
exchange fluxes between bacteria (see Supplementary Table 6
for details). By mapping 16S rRNA sequences to the corre-
sponding models contained in AGORA and combining them to a
community-level metabolic model, we derived patient-specific
models of the respective microbial community. Using these
models, we inferred ecological relationships (mutualism,
competition, antagonism) and potential metabolite exchange
interactions with the host. Please refer to the Supplementary
Materials and Methods for a more detailed description.
Results
CIDs Are Characterized by Intestinal Dysbiosis

We investigated microbiota community structures of IBD,
healthy controls (HC) and patients with rheumatic diseases
(seropositive/seronegative RA or ankylosing spondylitis) at
baseline. This discovery cohort comprised longitudinal fecal
samples of a total of 29 patients (IBD ¼ 12, rheumatic
diseases ¼ 17) before and after anti-TNF therapy initiation
and single time-point fecal samples from HC (n ¼ 19)
(Supplementary Tables 1 and 2); 16S rRNA gene sequencing
of all samples (including baseline and post therapeutic
intervention) resulted in the identification of 388 phylotypes
(Supplementary Table 4, Supplementary Materials and
Methods). As all statistical algorithms assessing
a�diversity have inherent strengths and weaknesses, we
used a set of a�diversity indices, including (1) observed and
(2) estimated (Chao I) richness, (3) evenness of species
considering abundance (nonparametric Shannon), and (4)
phylogenetic distance (phylodiversity score). Comparing all
groups, baseline microbial communities between HCs and
the rheumatic disease or IBD groups, respectively, were
significantly different, as shown by nonparametric Kruskal-
Wallis test. To interrogate pairwise baseline differences of
microbial a-diversity between specific groups, we used the
Mann-Whitney U test, which, for the pair IBD vs HC, showed
significantly reduced a�diversity index values for (1)
observed (P ¼ 0.024; Figure 1A) and (2) estimated (Chao I)
richness (P ¼ 0.019; Figure 1B), (3) NP Shannon index of
diversity (P ¼ 0.0001; Figure 1C), and (4) phylogenetic
diversity (P ¼ 0.017; Figure 1D). Patients with rheumatic
diseases also had reduced bacterial diversity compared with
HC, but the index levels were only significant for the NP
Shannon diversity index (Figure 1C). Principal coordinate
analysis on membership- (Jaccard) and abundance-based
(Bray-Curtis) b�diversity distance matrices demonstrate
that the first 2 coordinates were able to separate samples for
a health/disease descriptor status. PERMANOVA test on
Jaccard (Figure 1E) distances showed a significantly distinct
microbial composition among IBD, rheumatic diseases, and
HC. Similarly, abundance (Bray-Curtis)-based analysis
revealed significant differences in patients with IBD and
rheumatic diseases compared with HC, but the differences
were not significant between rheumatic diseases and IBD
communities (Figure 1F). These observations confirm earlier
findings11 showing that the baseline intestinal microbial
communities of patients with IBD are characterized by a
reduced number of species and diminished richness and
evenness (a�diversity) as well as altered community
composition and structure (b�diversity). In contrast, intes-
tinal microbiota from patients with rheumatic diseases only
display shifts in community structure (b�diversity)
compared with HC, indicating a disease effect on the gut
microbiota even in the absence of overt intestinal
inflammation.
Effects of Anti-TNF Treatment on Microbial
Diversity in IBD and Rheumatic Diseases Are
Reflected on the b- But Not a-diversity Level

To analyze the effect of anti-TNF treatment on intestinal
microbiota in IBD (n ¼ 12) and rheumatic diseases (n ¼ 17)
independently, we assessed a-diversity indices before and 2,
6, and 30 weeks after first-time anti-TNF therapy induction
and used the samples of the HC group as a reference point.
The observed and estimated species richness and phylodi-
versity in patients with IBD increased after the beginning of
therapeutic intervention and reached statistical significance
at week 30 compared with baseline. This shift was directed
toward the controls, and the distance between diversities of
treatment-naïve IBD fecal samples and HCs became
nonsignificant after 30 weeks of therapy (Figure 2A–D).
Similar differences were not observed for the NP Shannon
diversity index (Figure 2C). In contrast, restoration of bac-
terial diversities was not evident in patients with rheumatic
diseases (Figure 2E–H). Interestingly, we failed to identify a
discrimination between remitting and nonremitting patients
based on a-diversity restorations (Supplementary Figure 2),
which could also be due to limited sample size. We next
investigated b-diversity indices to measure longitudinal
community composition changes before and after therapy
initiation. We assessed the interindividual dissimilarity us-
ing Yue and Clayton distance matrix, which considers not
only membership overlap, but also species abundance be-
tween communities.22 Pairwise comparison of distances
between samples at baseline and during treatment (2, 6, and
30 weeks) showed increased interindividual dissimilarity
among anti-TNF–treated IBD patients (Supplementary
Figure 3A). This indicates that anti-TNF treatment induces
an increase of heterogeneity of the intestinal microbiota
between patients with IBD. In contrast to IBD, anti-TNF
treatment in patients with rheumatic diseases during
treatment was associated with an overall decrease of
dissimilarity (week 30 vs pretreatment) of the microbiota
(Supplementary Figure 3B). This indicates an overall
constriction of microbial b-diversity (ie, a gain of similarity)
among patients with rheumatic diseases. To understand the
directionality of the observed changes, we compared
dissimilarity between healthy subjects and disease groups
(IBD, rheumatic diseases) before and during therapeutic
intervention and observed that anti-TNF treatment shifted
the microbial communities of both patient groups toward
healthy subjects, indicating a subtle corrective effect of
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anti-TNF treatment on microbial dysbiosis of both disease
entities, IBD and rheumatic diseases (Supplementary
Figure 3C and D). Again, a discrimination between clinical
remission and nonremission was not observable (data not
shown).

Individual Phylotype Alterations After Anti-TNF
Treatment

We next determined indicator bacterial phylotypes that
were significantly different between HC and anti-TNF–
treated patients with IBD or rheumatic diseases at baseline
and asked whether these taxa would alter their abundance
on anti-TNF treatment (week 30). In IBD, we identified 14
indicator phylotypes that were significantly different be-
tween HC from untreated IBD (Supplementary Table 5). On
anti-TNF treatment, all 14 identified phylotypes lost the
indicator species status, suggesting that these phylotypes
are normalized on anti-TNF treatment (Figure 3A). In IBD,
Coprococcus (indicator value, 84.37; P ¼ .003) and Rose-
buria inulinivorans (indicator value, 79.25; P ¼ .031) were
the top indicator phylotypes at baseline (based on P value,
compared with HC). Both indicator phylotypes displayed
reduced abundance compared with healthy subjects at week
0 and increased their abundance over the time course of
treatment, leading to loss of significance between HC and
IBD at week 30 (Figure 3B, Supplementary Table 5). In
patients with rheumatic diseases, we identified 5 indicator
phylotypes, which, by abundance, were significantly
different between baseline and HC and lost the indicator
status after anti-TNF treatment at week 30 (Supplementary
Figure 4A, Supplementary Table 6). Of those 5 indicator
taxa, the abundance of the top indicator phylotypes (week
0 compared with HC, based on P value) Erysipelotrichaceae
(indicator value, 81.33; P ¼ .009) and Dorea (indicator
value, 68.81; P ¼ .042) increased significantly to become
nonindicators in posttreatment samples at week 30
(Supplementary Figure 4B). Strikingly, none of these iden-
tified taxa were significantly associated with therapeutic
outcome of anti-TNF treatment (remission/nonremission).
We therefore hypothesized that such outcome-associated
shifts might be better visible in the inferred metabolic
pathways and functional properties of the microbiota, which
are known to display a greater interindividual consistency
compared with the highly variable abundance of individual
taxa.26

Stabilizing Ecological Interactions Are Less
Frequent in IBD and Rheumatic Diseases

As diversity measurements and individual taxa identifi-
cation in our exploratory cohort were not able to predict
therapy outcome in IBD, we next used in silico metabolic
modeling from 16S rRNA sequencing data to infer metabolic
interactions within the luminal microbiota and associated
fecal metabolite levels. We hypothesized that metabolic
functions rather than taxonomical composition might affect
response to TNF antagonists. For this purpose, we used the
recently published AGORA resource, a comprehensive as-
sembly of metagenomics data from 773 human gut bacterial
species, designed to predict metabolic interactions among
microbial communities based on 16S rRNA data.25 We
categorized ecological relationships between 2 different
bacterial organisms into mutualistic interactions, antago-
nistic interactions, and resource competition, depending on
the benefit that the individual partners obtained from the
predicted interactions. Although mutualistic and antago-
nistic interactions can increase community dynamics,27,28

interspecific resource competition can reduce community
stability.27 Interestingly, the predicted frequencies for
mutualistic pairwise interactions did not show significant
differences between patients with IBD or rheumatic dis-
eases compared with HCs. However, we found that in IBD,
and to a lesser degree in rheumatic diseases, the predicted
frequency of antagonistic interactions was significantly
reduced at the beginning of the therapy and partially
restored toward the end of the treatment (Figure 4A). Vice
versa, we observed an enhanced interspecific resource
competition of gut bacteria in both inflammatory diseases,
indicating a reduced stability of microbial communities.
Metabolic Cross-feeding Is Impaired in Patients
With IBD and Rheumatic Diseases and
Associated With Lack of Clinical Efficacy of Anti-
TNF Therapy

To evaluate whether anti-TNF treatment also affects the
rates (or fluxes) of metabolite exchange between organisms
(referred to as “metabolic interchange”), we used metabolic
network modeling to predict the exchange of metabolites
between bacterial community members in the individual
samples using in silico microbial community models (for
details see Supplementary Materials and Methods). The
simulation results indicated that nonremitting patients with
IBD or rheumatic diseases, compared with HCs, displayed a
baseline reduction of total metabolic interchange, which
also remained below the levels of HC after 30 weeks of anti-
TNF treatment (Figure 4B). This was in contrast to patients
achieving clinical remission, who did not display a reduction
of the predicted metabolic interchange (Figure 4B)
compared with HCs. These data point toward different mi-
crobial metabolic signatures that might affect therapeutic
efficacy and contribute to clinical remission. In summary,
the in silico modeling of the gastrointestinal bacterial
metabolism indicated a strong disruption of ecosystem
functioning within IBD and rheumatic diseases gut micro-
biomes, which was partly restored upon anti-TNF therapy.
Anti-TNF Therapy Restores Disrupted Gut
Microbial Community Metabolism in IBD

We next aimed to validate our central hypothesis that
impaired metabolic cross-feeding is associated with clinical
outcome of anti-TNF therapy in IBD using a second, inde-
pendent longitudinal IBD cohort (see Supplementary
Table 7). In this context, we also aimed to investigate
whether these potential effects were attributed to anti-TNF
therapy alone or reflected a generalizable effect of suc-
cessful remission induced by treatment with biologics. We
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Figure 2. Anti-TNF thera-
peutic intervention re-
stores a-diversity in IBD,
but not in rheumatic dis-
eases (RD). Observed
number of phylotypes (A
and E), estimated species
richness (B and F), NP
Shannon diversity (C and
G) and phylodiversity (D
and H) indices were
assessed in fecal samples
collected from patients
with IBD or RD at baseline
and after initiation of anti-
TNF interventions (W,
week). HCs served as
benchmark for normal mi-
crobial diversities. Re-
mitters are shown as open
circles, whereas non-
remitters are shown as fil-
led circles. Significance of
observed differences were
determined by Wilcoxon
matched-pairs signed rank
test (pairwise comparison:
before and after the
beginning of therapeutic
interventions) or Mann-
Whitney U test (HCs
compared with patients).

=
Figure 1. a- and b-diversity of intestinal microbial communities in IBD, rheumatic diseases (RD), and HCs. a-diversity indices
as estimated by observed number of phylotypes (A), estimated richness (B), NP Shannon index of diversity (C) and phylo-
diversity (D). Principal coordinate plots based on Jaccard (E) and Bray-Curtis (F) distances. Significance of differences in a-
diversity indices were determined by the Mann-Whitney U test. Significance of differences in b-diversity was assessed by
PERMANOVA statistics. Bonferroni-corrected P values: Bray-Curtis: (HC–IBD, P ¼ .0003; HC–RD, P ¼ .0003; IBD–RD, P ¼
.0366); Jaccard (HC–IBD, P ¼ .0003; HC–RD, P ¼ .0003; IBD–RD, P ¼ .237).

November 2019 Gut Microbes and Efficacy of TNF Antagonists in IBD 1285

BA
SI
C
AN

D
TR

AN
SL
AT

IO
NA

L
AT



Figure 3. Anti-TNF intervention partly restores phylotype alterations in IBD. (A) Loss (down) or gain (up) of indicator species
status was determined in relation to HC group microbiota. Relative abundance signal values were transformed into Z-scores
for visualization. Each column represents an individual patient, whereas each row represents the relative abundance of labeled
indicator species. (B) Representative indicator phylotypes that were significantly decreased at week 0 compared with HCs and
increased in abundance after anti-TNF therapeutic intervention to become comparable to HC subject status (median ¼ green
dashed line) at week 30. P values indicate the statistical significance at week 0 between patients with IBD and HCs.
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recruited a total of 23 patients (CD ¼ 10, UC ¼ 13) (cohort
2), who underwent first-time therapy with either anti-TNF
(infliximab) or anti-a4b7 integrin (vedolizumab) anti-
bodies and collected fecal samples at baseline and at weeks
2, 6, and 14 after therapy induction (Supplementary
Table 3). To exclude a priori differences on the dietary
intake that might influence microbial community structure,
we assessed the dietary intake in a subgroup of patients
(n ¼ 7 patients, anti-TNF treatment; n ¼ 3 remitting, n ¼ 4
nonremitting) using the validated Potsdam Dietary Ques-
tionnaire29 and were not able to observe significant differ-
ences in the intake of carbohydrates, fibers, protein, or fat
between patients achieving remission or nonremitting pa-
tients (data not shown). However, a thorough assessment is
needed to fully understand effects of dietary intake on the
predicted metabolic properties of the gut microbiota. We
performed metabolic cross-feeding analysis on the 16S data
sets from the longitudinal fecal samples of either anti-TNF–
or anti-a4b7-integrin–treated patients with IBD and spe-
cifically aimed to validate our previous findings from cohort
1, namely that in silico prediction of metabolic and ecolog-
ical interactions associated with clinical efficacy in anti-
TNF–treated patients with IBD.

Indeed, in silico predictions on bacterial interactions
suggested differences in the gastrointestinal microbial
ecology depending on the patients’ remission status in
response to anti-TNF. Only patients who did not achieve
clinical remission displayed significantly reduced antago-
nistic interactions and significantly increased resource
competitive interactions, when compared with HCs. Both
findings were in line with findings from cohort 1, indicating
that nonremitting patients with IBD display a disrupted gut
microbial ecosystem (Figure 5A). Moreover, the baseline
total predicted metabolic interchange (ie, cross-feeding)



Figure 4. Bacterial metabolic interactions are disrupted in IBD and rheumatic diseases (RD), and metabolic interchange is
especially reduced in patients not remitting in response to anti-TNF intervention. (A) Fraction of antagonistic (þ/–), competitive
(–/–), and mutualistic (þ/þ) interactions among bacterial community members for each disease group (IBD or RD) and therapy
duration (week 0, 2, 6, or 30). Dashed lines indicate the median value for samples from healthy subjects and the gray area the
interquartile range (IQR). (B) Predicted total intercellular metabolite fluxes (ie, interchange/cross-feeding) of all metabolites
relative to HCs. The dashed line ( ¼ 1) indicates the median value and the gray area the IQR for samples from healthy subjects.
Bar heights denote the median interchange estimates for the respective disease group (pretreatment vs posttreatment),
depending on the patients’ therapy response status (Remission vs No Remission). Error bars span the IQR.
Asterisks indicate significantly different levels for the respective disease group and time compared with HCs (2-sided Mann-
Whitney U test, P < .05).
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was already reduced by 25% ± 5% (median ± SE) only in
nonremitter IBD patients compared with HCs (Figure 5B,
top; Mann-Whitney U test, P ¼ .02), whereas the predicted
metabolic interchange of remitter patients with IBD were
similar to levels observed for controls (Figure 5B, bottom;
Mann-Whitney U test, P ¼ 0.48). To exclude any a priori
confounding factors that might affect the predicted meta-
bolic interchange, we performed linear regression of gut
metabolic interchange with clinical, laboratory, and
histology-based disease markers at baseline. We were not
able to observe significant differences in disease activity
parameters (HBI/Mayo at baseline, leukocytes, C-reactive
protein, pathology index) that might explain different
baseline metabolic interchange between remitting and
nonremitting patients (Supplementary Figure 5). To assess
whether disruption of metabolic interchange was specif-
ically attributed to anti-TNF therapy or displayed a unifying
phenomenon of clinical disease state, we investigated the
proportion of metabolic interaction pairs between remitters
and nonremitters in response to therapy induction with an
anti a4b7-integrin antibody (vedolizumab). Although the
sample number of remitters (n ¼ 11) and nonremitters (n ¼
2) was too small to substantiate our findings using a
statistically valid method, our observation indicates that
disrupted microbial metabolic interchange may also be
more pronounced in nonremitters to vedolizumab
(Supplementary Figure 6).
In Silico Meta-analysis of Microbial Metabolite
Cross-Feeding Interactions Predicts Specific
Metabolic Pathways Associated With Anti-TNF
Therapy in IBD

To identify exact metabolite cross-feeding interactions
that are disrupted during IBD, we combined the 16S rRNA
data from all patients undergoing anti-TNF therapy in



Figure 5. In silico–predicted ecological interaction types and total metabolite interchange levels in patients with IBD before and
during anti-TNF intervention. (A) Fraction of antagonistic (þ/–), competitive (–/–), and mutualistic (þ/þ) interactions among
bacterial community members. Dashed lines indicate the median value for samples from healthy subjects and the gray area the
interquartile range (IQR). (B) Predicted total intercellular metabolite fluxes (ie, interchange/cross-feeding) of all metabolites
relative to the interchange levels in HCs. The dashed line ( ¼ 1) indicates the median value and the gray area the IQR for
samples from healthy subjects. Bar heights denote the median of predicted interchange estimates for the respective disease
group and the patients’ remission status. Error bars span the IQR. Asterisks indicate significantly different levels for the
respective disease group and time compared with HCs (2-sided Mann-Whitney U test, P < .05).
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cohorts 1 and 2 for an in silico meta-analysis. Principal
component analysis on the predicted cross-feeding rates of
374 metabolites revealed neither cohort-derived batch ef-
fects nor gender disparities (Supplementary Figure 7). From
these cross-feeding interactions, we inferred 10 metabolites
in nonremitter patients that were less frequently exchanged
already at baseline compared with HCs. Only 3 (ethanol,
glutamate, glycine) of them were also observable in patients
who achieved clinical remission (Figure 6, left Venn dia-
gram), suggesting a stronger disruption of the metabolic
interaction network in nonremitter patients with IBD.
Interestingly, in silico analysis predicted a restoration of
some affected metabolites (eg, butyrate) after anti-TNF
therapy (Figure 6, right Venn diagram). Overall, non-
remitting patients with IBD display a stronger disruption of
metabolic interactions (7 metabolites) in response to anti-
TNF therapy compared with patients achieving clinical
remission (4 metabolites, Figure 6). A direct comparison of
baseline samples from remitting and nonremitting patients
inferred that especially the intercellular exchange of buty-
rate is significantly reduced by 81% (median) in non-
remitter patients compared with patients with IBD who
achieved clinical remission (false discovery rate–corrected
Mann-Whitney U test, P ¼ .02). Overall, these results
support the hypothesis that the response to therapy itself is
strongly associated with the prevalence of metabolic ex-
changes in treatment-naïve patients.
Clinical Remission in Anti-TNF Therapy Is
Associated With Changes in the Stool
Metabolome

Based on the in silico prediction of gut microbial metabolic
cross-feeding interactions,wepostulated that anti-TNF therapy
might also be associated with changes in fecal metabolites. To
test this hypothesis,we investigated the stoolmetabolome from
9 patients with IBD (CD ¼ 3, UC ¼ 6, remitting ¼ 5,
nonremitting ¼ 4) at baseline and after 14 weeks of anti-TNF
treatment. To define which metabolites were characteristic in
baseline, nonremission, and remission groups, we built an
orthogonal partial least squares discriminant analysis model
(Figure 7A). The classification models were highly significant
for both datasets. Overall, we observed time-dependent dif-
ferences between baseline and week 14 and fewer differences
due toremissionstate (Figure7AandB).Despite small effects of
the treatment,we couldfindparticularmetabolites increased at
baseline, in remission or in nonremission state (Figure 7C).
Within the screening set of 50 metabolites (authentic chemical



Figure 6. Disruption of specific metabolite exchange interactions between bacteria is more pronounced in nonremitter patients
with IBD than in remitter patients already before anti-TNF therapy. The Venn diagrams show metabolites whose exchanges
between bacterial community members are, compared with HCs, significantly reduced in patients with IBD who go into
remission and/or do not achieve remission in the course of the treatment (left: before treatment; right: after treatment; false
discovery rate–corrected 2-sided Mann-Whitney U test, P < .05). All anti-TNF–treated patients with IBD from cohorts 1 and 2
were combined for this analysis to improve statistical power.
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standards), 21 were found in fecal samples and of those, 4
metabolites were responsible for the discrimination of the 3
groups (Figure 7C). Whereas the baseline group was
discriminated by elevated levels of 3-indolepropionic acid and
L-tyrosine, 3-hydroxyphenylacetic acid was increased in the
remission group and pyruvic acid in the nonremission group
(Figure 7C). All other clusters were not identified by an
authentic chemical standard and are only putatively annotated
on MS1 or MS2 level (summarized in Supplementary Table 8).
We next investigated whether specific stool metabolites were
applicable to delineate clinical remission in anti-TNF–treated
patients with IBD. Overall, creatinine distinguished untreated
(week 0) from anti-TNF–treated (week 14) patients, irre-
spectiveof remissionstatus. Interestingly and in linewith our in
silico prediction, we found that butyric acid was significantly
increased uniquely in the stool metabolome of anti-TNF
remission patients. In contrast we found that the metabolite
Cluster_1061 annotated as “3-methyl-thiopropionic acid,
methyl 2-(methylthio)acetate” (Figure 7F) was found to be
specifically increased in patients with IBD not achieving
remission at week 14.
Discussion
Dysbiosis is defined by altered diversity, composition,

and structure of the intestinal microbiota, but the underly-
ing metabolic principles contributing to dysbiosis remain
poorly understood. Most importantly, it is unknown
whether anti-TNF therapy may affect gut microbial
composition or function and could thereby contribute to
disease control in IBD. In this study, we investigated the
interplay of therapeutic anti-TNF inhibition and gut micro-
biota function in IBD and delineated the effects of organ-
specific inflammation (ie, intestinal vs nonintestinal) on
host microbe interaction using patients with rheumatic
disease as a nonintestinal inflammatory control cohort. We
confirmed that IBD and rheumatic diseases display distinct
features of altered microbial community structure and
metabolic function in comparison with healthy individuals
and thereby confirm previous findings from studies
assessing fecal global microbial profiles (a- and b-diversity)
in IBD and rheumatic diseases.11,30,31 Although these pre-
viously published studies used different techniques and
sampling conditions, we present a coherent dataset as a
direct side-by-side comparison of rheumatic diseases and
patients with IBD recruited from the same clinical setting.
Furthermore, we applied a novel systems biology approach
that, for the first time in the context of IBD, allowed us to
assess functional consequences of the dysbiotic change in
community structure on the level of metabolic interactions
within microbial communities. We show that anti-TNF
treatment induces restoration of intestinal microbial di-
versity in IBD, whereas in rheumatic diseases, anti-TNF–
associated changes were less pronounced and only tran-
sient. We further analyzed anti-TNF–associated shifts of
phylotype abundances in IBD and rheumatic diseases by
indicator species analysis and identified disease-specific
phylotypes that change their abundance over the time
course of anti-TNF treatment in either IBD or rheumatic
diseases. Notably, we neither identified indicator species
that specifically attributed to clinical efficacy of anti-TNF
treatment nor did we confirm previously reported associa-
tions of increased counts of Faecalibacterium prausnitzii at
baseline with therapeutic efficacy,32 which both might be
attributed to small sample sizes in our study.

It is noteworthy that phylotypes whose abundance
changed significantly in patients with IBD toward the di-
rection of healthy subjects (eg, Coprococcus and Roseburia
inulinivorans) are known SCFA producers.33,34

These findings prompted us to interrogate gut metabolic
functions using an in silico, 16S rRNA gene sequencing-based
metabolic cross-feeding analysis. This analysis was conduct-
ed to identify metabolic cross-feeding interactions that might
contribute to increased butyrate production observed in the
case of therapeutic efficacy (remission). Using 2 independent
cohorts of anti-TNF therapy in IBD, we assessed potential



Figure 7. Stool metab-
olome analysis identifies in-
dicator metabolites of
therapy response in patients
with IBD. Orthogonal partial
least squares discriminant
analysis (OPLS-DA) scores
plot derived from (þ)- (A)
and (–)-hydrophilic interac-
tion chromatography–liquid
chromatography tandem
mass spectrometry (HILIC-
LC-MS/MS) (B) analysis of
longitudinal stool samples of
9 patients with IBD, who
underwent anti-TNF ther-
apy.Sampleswerecollected
before therapy and at 14
weeks. Baseline, non-
remission and remission
samples are colored in gray
and red, respectively. OPLS-
loading plot illustrates clus-
ters, which are responsible
for the separation of the 3
groups. (C) Clusters are
colored according to the
importance for the 3 classes
(red [high] to gray [low]).
Metabolites identified by
authentic chemical stan-
dards are labeled. (D–F)
Creatinine, butyric acid, and
the metabolite Cluster_1061
were found to be signifi-
cantly altered between the
groups. #, increased at
baseline compared to the
nonremission group; *,
increased in the remission
groupcompared tobaseline;
D, increased in the non-
remission group compared
with remission group; signif-
icance was calculated with
Mann-Whitney rank sum
test (P < .05). CV-ANOVA,
cross-validation analysis of
variance.
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metabolic interactions between bacteria within the commu-
nity using constraint-basedmodeling.We show that reduction
in metabolite cross-feeding interactions and increase of
resource competition are present in IBD. Such metabolic in-
teractions are widespread in human intestinal microbiota and
are thought to be of high importance for community stability
and robustness in a healthy state.35 Although mutualistic and
antagonistic interactions can stabilize community dynamics
and thereby contribute to the maintenance of species di-
versity,27,28 interspecific resource competition can reduce
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community stability.27 Moreover, it has been suggested that
species co-occurrences in microbial communities are largely
driven by metabolic exchanges between cells.36 Indeed, we
observed that metabolite exchange interactions could be
restored by anti-TNF intervention in IBD. More importantly,
we show that, already at baseline level, the total metabolite
exchange across bacteria is significantly disrupted in patients
with IBD not achieving clinical remission in response to
anti-TNF therapy. Last, we found that butyrate and substrates
involved in butyrate synthesis, such as ethanol or acetalde-
hyde, were less frequently exchanged among bacterial com-
munities from patients who did not show therapeutic efficacy
in response to anti-TNF therapy. Along this line, it has been
shown by various studies that disturbances in the microbial
networks containing taxa that typically produce SCFA char-
acterize treatment failure to conventional and biologic ther-
apy.37,38 These findings do not only support the crucial role of
SCFA in the disease control of patients with IBD but also un-
derline the feasibility of using 16S in silico analysis to predict
metabolic pathways that are disrupted in IBD andmight affect
therapeutic efficacy, which has also been suggested by
others.39,40 It is tempting to speculate on the mechanism
of action by which biologic therapy is able to restore metab-
olite exchange interactions in IBD. A robust clinical response
to biologic therapy leads to mucosal healing, inducing
subsequent changes in host transcriptome architecture.18

As impaired congruence between host transcriptome and
gut microbiome has been described as a distinct feature
of IBD,41 we assume that reestablished congruence upon
successful biologic therapy might also affect phylotype-
phylotype interactions and metabolite crosstalk among bac-
teria. However, a further detailed molecular description of
changes in the mucosa-associated microbiota and their inter-
action with host transcriptional changes in the context of
anti-TNF treatment is needed to deepen our understanding of
the host-microbial interaction and its effect on remission
induction.

In summary, we demonstrate that the use of anti-TNF
treatment leads to restoration of intestinal microbiome
constitution and shifts of disease indicator taxa in human
IBD, and we show that specific inferred metabolic in-
teractions between luminal bacteria are associated with
therapeutic outcome in IBD. Similar to studies on immune
checkpoint inhibitors in cancer, our study clearly suggests
functional links between the intestinal microbial ecosystem
and therapeutic manipulation by TNF inhibition. Further
studies are thus warranted to analyze the exact role of the
microbial metabolic interaction network as a potential
diagnostic marker or actionable entry point to actively
improve therapy control in IBD.
Supplementary Material
Note: To access the supplementary material accompanying
this article, visit the online version of Gastroenterology at
www.gastrojournal.org, and at https://doi.org/10.1053/
j.gastro.2019.07.025.
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Supplementary Materials and Methods

16S rRNA Gene Sequencing
Aliquot of extracted DNA was used to amplify V4 vari-

able region of 16S rRNA gene. Forward primer (515F)
consists of 50 Illumina (San Diego, CA) adaptor (AATGA-
TACGGCGACCACCGAGATCTACAC), a primer pad (TATGG-
TAATT), linker (GT), and 16S rRNA gene-specific forward
primer (GTGCCAGCMGCCGCGGTAA) and reverse primer
(806R) includes reverse complement of 30 Illumina adapter
(CAAGCAGAAGACGGCATACGAGAT) a 12-nucleotide barcode
(xxxxxxxxxxxx) reverse primer pad (AGTCAGTCAG), reverse
primer linker (CC) and reverse primer (GGAC-
TACHVGGGTWTCTAAT). 16S rRNA gene variable region V3
and V4 will be amplified using dual-indexed fusion primers.1

In brief, primers consist of illumina linker sequence,
12 base barcode sequence, and heterogeneity spacer
followed by either 16S rRNA gene-specific forward (319F:
ACTCCTACGGGAGGCAGCAG) or reverse (806R: GGAC-
TACHVGGGTWTCTAAT) primer sequences. Amplification
was performed by Phusion Hot start Flex 2X master Mix
(New England Biolab, Frankfurt am Main, Germany) in
GeneAmp Polymerase Chain Reaction (PCR) system 9700
(Applied Biosystems, Foster City, CA) using the following
cycling conditions: an initial denaturation of 3 minutes at
98�C followed by 30 cycles, denaturation at 98�C for 10
seconds, annealing at 55

�
C for 30 seconds, elongation at 72

�
C

for 30 seconds, and a final extension at 72
�
C for 10 minutes.

PCR performance for quality (expected amplicon size) and
quantity (band intensity) was assessed by running aliquot
of amplified products on agarose gel. Quantitative normali-
zation was performed using SequalPrep kit (Invitrogen,
Carlsbad, CA) to pool equal amount of amplicons per
sample. Sequencing was performed using the Illumina
MiSeq platform employing a paired end approach with 2
times 250 bases, aiming at a 250 base target region. Conse-
quently, this approach ensures the highest contig quality
possible.

DNA Extraction and 16S rRNA Gene Sequencing
16S rRNA gene variable region V4 19 (cohort 1) and V3-

V420 (cohort 2) –based bacterial profiles were generated
from patients with IBD and patients with rheumatic dis-
eases (RD) and HC feces. Total genomic DNA was extracted
from feces using MoBio Powersoil DNA Isolation kit (Dia-
nova GmbH, Hamburg, Germany) as per the manufacturer
instructions. 16S rRNA gene amplicon libraries were pre-
pared and sequenced as published earlier.

16S rRNA Gene Sequence Analysis
Sequencing reads were primarily processed for quality

control using the software mothur package 21. For cohort 1,
more than 2.2 million high-quality reads varying from 6366
to 67699 reads per samples. These sequences were binned
into 453 taxonomical phylotypes. For subsequent analysis,
sequences per sample were rarefied to 6366 to have com-
parable sequencing depth. This resulted in the rarefication

of 388 phylotypes. For cohort 2, more than 2.7 million high-
quality ready varying from 4036 to 43033 reads per sam-
ples. These sampels were binned into 441 taxonomical
phylotypes.

Forward and reverse reads (fastq) were merged to form
contigs, and discarded if they were more than 275 bases in
length, having any ambiguous base, or more than 8 homo-
polymers. Sequences were aligned against mothur curated
silva alignment database and screened to have alignment in
amplified specified (V4, V3-V4) regions only. Chimeric se-
quences were detected by the Uchime 22 algorithm and
were also removed. In the first step, sequences were clas-
sified (threshold 80%) phylogenetically using mothur
formatted greengenes (gg_13_8_99) training sets and elim-
inated if classified as unknown, archaea, eukaryotes, chlo-
roplast, or mitochondria. Subsequently, reference-based
(green genes) operational taxonomical units (OTUs or
phylotypes) picking approach was implemented to cluster
sequences with same phylogenetic affiliations into a phy-
lotype (label ¼ 1).2–5 Alpha diversity indices including
observed and estimated number of phylotypes and
nonparametric Shannon index were calculated using
mothur. For phylogenetic diversity estimation, neighbor
joining phylogenetic tree was generated by Clearcut com-
mand as implemented in mothur. Significance of differences
in diversities among healthy, IBD, and RD subjects were
assessed by Whitney U test, otherwise significance of dif-
ferences in diversities before and after therapies were
assessed by Wilcoxon matched-pairs signed-rank test. Both
tests were performed in GraphPad prism 5.0 (GraphPad, La
Jolla, CA). To identify the specific phylotypes that alters
after therapy initiations, we used indicator species anal-
ysis24 using 1000 iteration using mothur.

Microbial Community Modeling
We used a flux balance analysis-based community

modeling approach6 to assess the functional consequences
of shifts in microbial community structure in inflammatory
diseases. Flux balance analysis is a methodological frame-
work that tries to infer fluxes within metabolic networks
through the utilization of comprehensive reconstructions of
an organism’s metabolic network and the assumption of
evolutionary objectives for inferring fluxes within this
network. The underlying metabolic networks used are
typically built from the annotated genome of an organism
with a downstream manual curation procedure that cor-
rects errors in the model (eg, based on literature data),
removes gaps in metabolic pathways, and performs distinct
validation steps depending on the amount of experimental
data available for a specific organism.7 In addition, these
networks contain information about the reversibility of the
present reactions and information about the specific nutri-
tional environment of an organism that is implemented
through constraints on specific metabolite uptake and
secretion reactions. Using such networks, flux balance
analysis assumes that all (internal) metabolites within a
metabolic network are balanced in their production/con-
sumption and that irreversible reactions are used only in
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the thermodynamically feasible direction. Using this
assumption, flux balance analysis determines a flux that
maximizes the production of all biomass components from
the constrained nutrient supply, which should reflect the
evolutionary objective of maximizing growth rate. In the
context of microbial community modeling, the metabolic
networks of distinct bacterial species are connected to each
other through a common compartment that allows for the
exchange of metabolites and contains an inflow of metab-
olites representing the respective growth environment
considered (eg, a specific diet). We here assume that within
a community, the objective of optimization is community
growth, that is, the maximization of the total amount of
bacterial biomass that is being produced.8

We used the AGORA (Assembly of Gut Organisms
through Reconstruction and Analysis) resource containing
genome-scale metabolic models of 773 constituent bacterial
species of the human gut microbiota8 to predict the
ecological relationships between the species that are pre-
sent in the analyzed microbial communities. These models
were built in a semi-automated fashion from the annotated
genomes of the corresponding species.8 Furthermore, the
models were used to assess the metabolic activity of com-
munities in the individual samples under defined dietary
conditions and oxygen regimes.8 To simulate the nutritional
environment in the human gut, the inflow of metabolites
into the models were constrained by assuming a western
diet and anaerobic conditions.8

Please note that in this study, the bacterial genome-scale
metabolic models were used to predict metabolic pheno-
types of bacterial populations within the sampled micro-
biomes. Therefore, predictions should be considered as
novel hypothesis on the biochemical physiology of dysbiosis
and need to be experimentally scrutinized in future studies.

Prediction of Bacterial Growth and Ecological
Relationships

To determine whether pairs of coexisting species affect
each other’s metabolism and growth, we used Flux Balance
Analysis9 to predict the organisms’ growth rates in isolation
(single growth msg) and their growth rates in pairs of
different species (co-growth mcg). The underlying rationale
is that the growth rate of an organism can be altered
through metabolic interactions with neighboring cells. For
co-growth simulations, the models were merged in a pair-
wise manner as previously described.8,10 The predicted
single growth and co-growth rates were compared to infer
the theoretical ecological relationship of each pair of spe-
cies: The relationship of 2 bacterial organisms was consid-
ered (1) mutualistic if each organism could grow faster in
co-growth compared with single growth (mcg > msg þ ε),
(2) competitive if both organisms grew slower compared
with their respective single growth rate (mcg < msg � ε), (3)
antagonistic if one organism could grow faster while the
other organism had a reduced growth rate, (4) commensal if
one species could grow faster in a pair and one did not
show an altered growth rate (msg þ ε > mcg > msg � ε) , (5)
amensal if one organism had a reduced growth rate and the

other organism’s growth remained unchanged, and (6)
neutral if both species showed no difference between sin-
gle- and co-growth rate. An ε of 10–6 was used to account
for minor differences between predicted single- and co-
growth rates that might occur due to unstable floating-
point computations during linear optimization. In this
study, we focused on mutualistic, competitive, and antago-
nistic interactions because only less than 1% (median) of
the species pairs per sample were predicted to be
commensal, amensal, or neutral. All scripts for single- and
co-growth simulations were implemented in R and are
available at https://github.com/jotech/agora_interactions.

To map 16S sequencing reads from each sample to the
corresponding bacterial models from the AGORA resource
and their predicted interactions, sequence reads were
aligned against the 16S ribosomal rRNA gene sequences of
the corresponding bacteria using USEARCH.11 Each
sequence was mapped to the AGORA organism with the
highest V4 16S sequence identity and sequence reads with
less than 97% sequence identity were considered as bac-
teria that are not included in the AGORA collection. Next, we
mapped for each sample the relative phylotype frequencies
to every pair of AGORA organisms to calculate the relative
pair abundancy ci,i ¼ ci

2 and ci,j ¼ 2 * ci $ cj, for i s j, where
ci and cj are the relative abundancies of the individual
phylotypes i and j, respectively.

Prediction of Metabolic Interchange Within
Bacterial Communities

To assess metabolic activity of the microbial commu-
nities for each sample, the metabolic models of bacteria
mentioned previously were joined into a community
simulation as described previously.8,10 Only bacterial spe-
cies that were detected with a relative abundance above
0.1% were included in the community model. To account
for individual abundances, a “community biomass reaction”
was introduced that incorporated the biomass reactions of
the individual bacteria in accordance with their relative
abundances. Fluxes were determined using parsimonious
flux balance analysis,12 by maximizing the production of
community biomass subject to the previously mentioned
dietary constraints and concomitantly minimizing the total
sum of fluxes (scaled with a factor of 10–5 in the objective
function). For each case, optimality of the resulting objec-
tive function value was verified by maximizing biomass
production without minimization of the total sum of fluxes.
To accelerate computation, dietary constraints were scaled
by a factor of 10. For individual bacteria, active reactions
were determined based on a threshold flux of 10–6 mmol/
gDW per hour. To predict the activity of specific reactions
on the community level, all fluxes of the same biochemical
reactions across all community members were summed and
a threshold flux of 10–4 mmol/gDW per hour was used to
decide which reactions are likely to be active and which are
not, or only marginally used. For the 2 cohorts we tested for
significantly different predicted reaction activities between
male and female samples within the healthy or IBD cohorts
(pretreatment) but did not observe significant differences.
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Impact of Different Assumptions for Dietary
Conditions

As mentioned previously, the flux balance simulations
for bacterial community metabolism requires the definition
of the nutritional environment. Chemical composition of the
environment of gut-inhabiting bacteria is decisively deter-
mined by the dietary habits of the human host.13 Thus, also
the model prediction might be strongly influenced by the
nutritional assumptions for in silico simulations. Because all
patients and healthy persons who were part of this study
were located in northern Germany, we assumed a stan-
dardized western diet as defined previously.8 Nonetheless,
for sake of completeness, we compared the model pre-
dictions on the frequency on antagonistic, mutualistic, and
resource competitive interactions also to a fictive diet high
in fibers, such as arabinogalactan and xylan.8 For healthy
controls, the models predict less antagonistic and compet-
itive interactions compared with western diets (see
Figure 3A). In contrast to western diets, levels of antago-
nistic interactions in IBD and RD did not significantly differ
from HCs, but resource competitive interactions were still
significantly more frequent in both disease entities if a high-
fiber diet is used for model simulations. Thus, changing the
dietary conditions had some impact on model predictions,
but model simulations do not contradict the central obser-
vation of more abundant community-destabilizing compet-
itive interactions during disease. Moreover, assuming a
western diet is more accurate for the specific 2 cohorts used
in this study.

Manual and Literature-based Corrections to
AGORA Metabolic Models

While in silico simulating the metabolic processes within
bacterial communities, we came across a number of in-
consistencies in the original models (Version 1.01) that
caused unrealistically high predicted flux rates for metabolic
cross-feeding interactions (ie, > 500 mmol*h�1*gDW�1; in
comparison, the maximum inflow flux of water is set to 10
mmol*h�1*gDW�1). These high fluxes were caused by futile
cycles that involved the cyclic release and uptake of metab-
olites as depicted in the scheme shown in Supplementary
Figure 7. The corrections listed in Supplementary Table 6
prevented such cycles and include amendments in reaction
stoichiometry and reversibility.

Statistical Analysis of Metabolomic Data
Metabolites were analyzed from stool samples of 9

subjects with IBD, treated with anti-TNFa antibody, which
resulted in 4 nonremission and 5 remission patients at
week 14. An orthogonal partial least squares discriminant
analysis (OPLS-DA) was applied to find variables respon-
sible for the separation of remission and nonremission pa-
tients before and after the treatment.

The robustness of the build model was verified by
calculation of P values with cross-validation analysis of
variance (CV-ANOVA). The goodness of fit R2Y(cum), the

goodness of prediction Q2(cum), and the P values were
reported as indicators for the significance of the models.
The coefficients of regression of the models were consid-
ered to detect which metabolites are highly correlated
(positively or negatively) with the different classes. All the
classification models were done in SIMCA 13.0.3.0 (Ume-
trics, Umeå, Sweden), the box plots in RStudio (Version
1.0.136; 2009–2016, RStudio, Inc.) and the Mann-Whitney
Rank Sum Test in SigmaPlot 12.0 (Systat Software Inc.,
San Jose, CA).

Nontargeted Metabolomics Using Hydrophilic
Interaction Chromatography–Liquid
Chromatography Tandem Mass Spectrometry

Approximately 50 mg of fecal stool sample was weighed
in sterile ceramic bead tubes (NucleoSpin Bead Tubes,
Macherey-Nagel, Dueren, Germany). One milliliter of pre-
chilled (�20�C) methanol (LiChrosolv, hypergrade for
liquid chromatography–mass spectrometry [LC-MS]; Merck
KGaA, Darmstadt, Germany) was added to the stool sample
and homogenized with Precellys Evolution Homogenizer
(Bertin Corp., Rockville, MD; 4500 rpm, 40 � 3 seconds, 2-
second pause time). Samples were then centrifuged for 10
minutes at 21,000g, and cooled at 4�C. An aliquot of 100 mL
was evaporated at 40�C (Savant, SPD121P, SpeedVac
Concentrator; ThermoFisher Scientific, Waltham, MA) and
reconstituted with 75% acetonitrile (LiChrosolv, hyper-
grade for LC-MS; Merck KGaA) to perform hydrophilic
interaction LC (HILIC) coupled to MS analyses. The
robustness of the build model was verified by calculation of
P values through the analysis of variance of the cross-
validated predictive residuals (CV-ANOVA). To exclude
possible overfitting, the significance level of P value was set
to .05.

Fecal samples and standard mixtures of 50 metabolites
were analyzed on a time of flight mass spectrometer
(maXis; Bruker Daltonics, Bremen, Germany), coupled to an
UHPLC system (Acquity; Waters, Eschborn, Germany). A
charge modulated hydroxyethyl Amide HILIC column
(iHILIC-Fusion UHPLC Column, SS, 100 � 2.1 mm, 1.8 mm,
100Å; HILICON AB, Umeå, Sweden) was used to separate
polar metabolites of stool samples. A stock solution of 0.5
molar ammonium acetate (Merck KGaA) was adjusted to pH
4.6 with glacial acetic acid (Biosolve, Valkenswaard,
Netherlands). MilliQH2O was derived from Milli-Q Integral
Water Purification System (Billerica, MA). Mobile phase for
HILIC separation consisted of 5 mM ammonium acetate in
95% acetonitrile, pH 4.6 (A) and 25 mM ammonium acetate
in 30% acetonitrile, pH 4.6 (B). Elution of metabolites was
performed with a flow rate of 0.5 mL/minutes, using a 0.1%
to 99.9% phase B gradient over 7.5 minutes. At the start,
0.1% B was kept for 2 minutes with increasing step to
99.9% B within 7.5 minutes; 99.9% B was constant for 2.5
minutes with fast decrease to 0.1% B within 0.1 minutes
and a pre-run time of 2.5 minutes at 0.1% B. The column
oven temperature was set to 40�C and the injection volume
at partial loop was 5 mL.
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MS Conditions
Internal calibration of mass spectrometer was done by

injecting ESI-L Low Concentration Tuning Mix (Agilent,
Santa Clara, CA). External calibration of mass spectrom-
eter was ensured by injecting ESI-L Low Concentration
Tuning Mix (1:4 diluted in 75% acetonitrile) in the first
0.3 minutes of each LC-MS run, introduced by a switching
valve.

Mass spectra were acquired in positive and negative
ionization mode (þ/� ESI). ESI parameters were as follows:
nitrogen flow rate of 10 L/minute, dry heater of 200�C,
nebulizer pressure of 2.0 bar, and capillary voltage of
4500V. Data were acquired in line and profile mode with
acquisition rate of 5 Hz. Data-dependent MS/MS experi-
ments were performed for each sample by fragmenting the
3 most intense ions within 1 scan (>2000 counts, active
exclusion of 3 spectra, release after 0.1 minute and recon-
sider precursor if current intensity/previous intensity � 3).

Collision energy was set to 10 eV and isolation width of 8
Dalton.

Data Processing
Raw LC-MS data were processed with Genedata Refiner

MS software (Genedata GmbH, Munich, Germany), including
chemical noise substraction, calibration, chromatographic
peak picking, deisotoping and metabolite library search
(HMDB for MS1 level [±0.005 Dalton])14 and spectral li-
braries derived from MassBank of North America (http://
mona.fiehnlab.ucdavis.edu), including MassBank,15 GNPS,16

HDMB, and LipidBlast17 for MS2 level (0.1 Dalton). Final
data matrix consisted of mass signals (m/z) and their
respective retention time (RT) in minutes, called cluster
with observed maximum intensity for each sample. Clusters
with RT <1 minute were excluded from further analysis.
Data were normalized to the wet sample weight and scaled
(unit-variance) before statistical analysis.
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Supplementary Figure 1. Schematic overview of included cohort and analysis workflow. For hypothesis generation cohort 1
(MAUT) was included in 16S profiling þ in silico metabolic flux analysis. Key findings were validated in cohort 2 (EMED). For in
silico meta-analysis (Figure 6) HC (in total n ¼ 118) and patients with IBD (in total n ¼ 35) were pooled from cohorts 1 and 2.
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Supplementary Figure 2. Alpha diversity in patients with IBD and patients with rheumatic diseases (RD) according to
responder status. As a measure of change in alpha diversity, observed number of phylotypes (A and B), estimated species
richness (C and D), phylo-diversity (E and F), and NP Shannon diversity (G and H) were assessed in fecal samples collected
from IBD and RD subjects at baseline and after initiation of anti-TNFa interventions. Responders are shown as open circles,
whereas nonresponders are shown as filled circles.
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Supplementary Figure 3. Anti-TNFa therapeutic intervention induces expansion of beta diversity in IBD but not in RD. Yue
and Clayton dissimilarity (beta diversity) within IBD (A) and RD (B) groups before and after anti-TNFa interventions. Interin-
dividual distances before therapy initiation were used as baseline point to compare interindividual distances at week 2, week 6,
and week 30 after anti-TNFa intervention. P values were determined by Wilcoxon matched-pairs signed-rank test and
represent Yue and Clayton dissimilarity between HC and patients with IBD (C), HC and patients with RD (D). Interindividual
distances were compared with HCs at baseline and after therapy initiation at week 2, week 6, and week 30. Significance of
changes were ascertained by Mann-Whitney test.
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Supplementary Figure 4. Indicator phylotypes before and after anti-TNFa therapeutic intervention in patients with RD.
(A) Loss (down) or gain (up) of indicator species status was determined in relation to healthy control group microbiota. Relative
abundance signal values were transformed in to Z-score for visualization. Each column represents individual patients whereas
each row represents the relative abundance of labeled indicator species. (B) Representative indicator phylotypes, that were
significantly decreased at week 0 compared with HC and increased in abundance after anti-TNFa therapeutic intervention to
become comparable to HC subject status at week 30. P values indicate the statistical significance at week 0 between patients
with RD and HCs.

Supplementary Figure 5. Linear regression analysis of gut metabolic interchange with disease activity parameters at baseline.
Linear regression of relative metabolic interchange with disease activity score (HBI/Mayo), leukocyte count, C-reactive protein,
and pathology index. Note, that none of the listed parameters shows a significant relationship with the degree of relative
metabolic interchange in baseline microbial samples.
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Supplementary Figure 6. In silico–predicted ecological interaction types and total metabolite interchange levels in patients
with IBD on anti-a4b7 integrin intervention. (A) Fraction of antagonistic (þ/�), competitive (�/�), and mutualistic (þ/þ) in-
teractions among bacterial community members. The dashed line indicates the median value for samples from healthy
subjects and the gray area the interquartile range (IQR). (B) The predicted total intercellular metabolite fluxes (ie, interchange/
cross-feeding) of all metabolites relative to the interchange levels in healthy controls. The dashed line (¼ 1) indicates the
median value and the gray area the IQR for samples from healthy subjects. Bar heights denote the median of predicted
interchange estimates for the respective disease group and the patients’ remission status. Error bars span the IQR.
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Supplementary Figure 7. Principal component analysis on
predicted metabolite exchange rates. Samples from healthy
controls and patients with IBD (pretreatment only) and from
both cohorts (MAUT and EMED) were combined for this
analysis. The analysis included the in silico–predicted cross-
feeding rates of 374 different metabolites. Shown are only the
first 2 principal component axes, which cover 78% of the
observed variability in the data.
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