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Summary 

The Glucocorticoid Receptor (GR) is a potent metabolic regulator and a major drug target. While GR is 

known to play integral roles in circadian biology, its rhythmic genomic actions have never been 

characterized. Here we mapped GR’s chromatin occupancy in mouse livers throughout the day/night 

cycle. We show how GR partitions metabolic processes by time-dependent target gene regulation, 

and how GR controls circulating glucose and triglycerides differentially during feeding and fasting. 

Highlighting the dominant role GR plays in synchronizing circadian amplitudes, we find that the 

majority of oscillating genes are bound by and depend on GR. This rhythmic pattern is altered by high 

fat diet in a ligand-independent manner. We find that the remodeling of oscillatory gene expression 

and of postprandial GR binding result from a concomitant increase of STAT5 co-occupancy in obese 

mice. Altogether, our findings highlight GR’s fundamental role in the rhythmic orchestration of hepatic 

metabolism. 
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Introduction 

 

Circadian rhythms drive the physiological adaptation to daily phases of resting/fasting and 

activity/feeding (Eckel-Mahan and Sassone-Corsi, 2013; Panda, 2016). At molecular level, the 

circadian clock consists of a 24-hour feedback loop, in which the activators CLOCK and BMAL1 

(ARNTL) induce their own repressors, CRY1/2 and PER1/2/3. A second loop is formed by the nuclear 

receptors REV-ERBα/β (NR1D1/2) and RORα/β/γ (RORA/B/C) (Takahashi, 2017). 

Glucocorticoids (GCs) are steroid hormones secreted with a prominent circadian rhythm. GCs peak at 

the onset of the feeding phase, occurring in the early night in rodents, and in the early morning in 

humans (Spiga et al., 2014). GCs maintain blood glucose during periods of stress or fasting and 

entrain metabolic programs among different organs (Patel et al., 2014). It has been shown that GCs 

can synchronize daily rhythmicity in peripheral tissues and that treating cells and mice with GCs 

induces circadian gene expression and corresponding oscillations (Balsalobre et al., 2000; Oishi et al., 

2005; Reddy et al., 2007). 

GCs bind to the Glucocorticoid Receptor (GR; NR3C1), a ligand gated transcription factor belonging to 

the nuclear receptor superfamily. Upon hormone binding, GR enters the nucleus to regulate gene 

expression by direct binding to glucocorticoid response elements (GREs) in the DNA of target 

promoters or enhancers (Greulich et al., 2016). Several studies have shown both genetic and physical 

interactions between GR and the core clock machinery: For example, functional GREs have been 

identified in the Per1 and Per2 regulatory regions, while the Rev-erbα promoter was found to be 

repressed by GR (So et al., 2009; Torra et al., 2000; Yamamoto et al., 2005). CRY1 and CRY2 were 

shown to interact with GR in a ligand-dependent manner to repress the activation of gluconeogenic 

genes like Pck1 (Lamia et al., 2011). Similarly, CLOCK antagonizes GC-induced transcriptional 

activity via lysine acetylation of the GR protein itself (Nader et al., 2009).  
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Disruption of either clock function or GC secretion causes profound metabolic dysregulation, resulting 

in obesity, type 2 diabetes, and nonalcoholic fatty liver disease (Eckel-Mahan and Sassone-Corsi, 

2013; Marcheva et al., 2013). On the other hand, GC excess has detrimental effects on glucose and 

fat metabolism (Patel et al., 2014). Finally, there is a bifacial relationship between metabolism and the 

clock, as the internal time keepers are very sensitive to changes in the nutritional environment. For 

instance, it has been shown that excessive caloric intake (just like time restricted feeding) can shift 

circadian patterns of transcription and energetics (Damiola et al., 2000; Eckel-Mahan et al., 2013). 

(Bass, 2016). Thus, circadian misalignment from inappropriate feeding schedules or shift work is 

associated with metabolic disease and altered GC rhythmicity (Barclay et al., 2012; Spiegel et al., 

2009). 

Despite much evidence for a role for GR in circadian biology, its actual contribution to diurnal rhythms 

has not been studied on a genomic scale. We used ChIP-Seq, RNA-Seq, proteomics and mouse 

genetics to characterize hepatic GR function around the clock. Here we show that the daily rhythm of 

corticosterone secretion has a differential effect on chromatin occupancy by GR. We find that GR 

regulates nutrient partitioning by binding to promoter proximal sites near housekeeping and 

gluconeogenic genes during the day, while the nightly GC surge allows GR to reach distant enhancers 

activating lipid and amino acid metabolism. The majority of 24 hour oscillating genes are bound by GR 

in a time point specific manner overlapping with core clock factors. Surprisingly, this rhythmic pattern 

is altered by nutritional challenge. Exposure to high fat diet (HFD) causes an expansion of the GR 

cistrome selectively during the night. This concurs with remodeling of target gene expression and an 

increased crosstalk with Stat5 signaling. By using liver specific knockout mice, we demonstrate that 

these GR-dependent temporal metabolic gene programs affect circulating glucose and triglycerides 

respectively during feeding and fasting. Furthermore, we observe an altered response to exogenous 

GCs in obese mice. Taken together, we provide evidence that nutrition influences the clock and the 

GC response in a ligand-independent fashion. 
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Results 

 

GR binding to chromatin is rhythmic 

To investigate the genomic extent of circadian gene regulation by GR, we performed ChIP-Seq on 

mouse livers every 4 hours throughout the day and night cycle. Our experimental cohort showed the 

expected rise in corticosterone levels towards ZT12 (lights off), with lowest levels being detected at 

ZT0 (lights on) (Figure S1A). We detected binding of GR to its known hepatic target genes, such as 

Per1 in all replicates (Figure 1A and data not shown). For our analyses, normalized ChIP-Seq data 

from two biological replicates were used for peak calling. We then created a ‘peak union’ of 14,920 

genomic sites reproducibly bound by GR at any given time point. Subsequently, we quantified 

occupancy from the sequencing tag counts for all peaks within the union for each time point. 

Interestingly, it appears that the strength of the ChIP-Seq signal mirrored the endogenous ligand 

availability, with peak GR occupancy coinciding with the highest levels of hormone secretion (Figures 

1A&B and S1A&B). The highest number of GR-bound loci was found at ZT12, at the beginning of the 

active/feeding phase and at the peak of corticosterone secretion. Afterwards, at ZT16 and 20, these 

numbers dropped, to reach the lowest amount of GR-bound cis-regulatory elements during the day 

(ZT0, 4 and 8). GR binding largely occurred near gene bodies during this phase, meaning that high-

affinity sites bound during the day under low hormone levels, were primarily at the promoter. During 

the night (ZT12, 16 and 20), increased ligand availability seemed to enable GR to reach distant 

enhancers, and a larger fraction of ChIP peaks could be detected at greater distance from the 

transcription start site (Figure 1C and S1C). Approximately 800 GR binding sites consistently mapped 

to <1kb upstream of the TSS during both day and night, while the number of distal intergenic elements 

increased from <500 during the day to >2,000 at night. 

To further characterize these target sites, we grouped the first three (lights on, ZT 0, 4, 8) and the last 

three (lights off, ZT 12, 16, 20) time points together. Figure 1D shows that most of the GR binding 
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sites occupied during fasting were also bound during the feeding phase. Functionally, these promoter 

proximal sites corresponded to house-keeping genes involved in chromatin organization, gene 

expression and cellular maintenance. Consistent with its known role in gluconeogenesis, ‘glucose 

metabolism’ was an enriched term. The majority of GR sites (roughly 10,000), however, which were 

occupied only at night and which include distal elements, were linked to genes important for amino 

acid and cholesterol metabolism, fatty acid and triglyceride metabolism. Hence, metabolic gene 

expression programs were regulated by GR in response to hormone specifically at night, while the 

mice were moving, eating and digesting their food (Figures 1D, and S1D-F). 

Motif analyses revealed a significant enrichment for known co-occurring liver specific transcription 

factors, such as HNF4α, C/EBP, FoxA and HNF6 (Lim et al., 2015) at all times. We also newly 

identified PPAR (and CREB) response elements near GREs in our cistromes. Promoter proximal ‘high 

affinity’ sequences occupied during both day and night were further enriched for ETS transcription 

factor motifs and showed a higher percentage of ‘perfect’ GREs, whereas the distal sites bound only 

at night additionally featured HNF1 motifs and fewer consensus GREs (Figures 1E-G, and S1G). 

In summary, our ChIP-Seq experiments around the clock in mouse livers showed that GR chromatin 

occupancy followed a daily rhythm aligned with its ligand availability. Low hormone levels during the 

day resulted in promoter proximal binding near housekeeping and gluconeogenic genes, while high 

corticosterone during the night brought about additional binding to distal regulatory elements near lipid 

metabolic target genes. 

 

GR binding overlaps with core clock factors and drives rhythmic transcription 

Since GR activity is tightly connected with circadian rhythms, we integrated our data sets with 

published liver cistromes for the core clock machinery (Koike et al., 2012). We calculated the peak 

overlap for our GR ChIP-sequences with CLOCK, BMAL1, PER1, PER2, CRY1 and CRY2 ChIP-

signals from each time point. We then performed functional annotation of co-bound promoters and 
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enhancers by association with the nearest coding gene. As shown in Figure 2A, GR binding only 

partially overlapped with CLOCK and BMAL1, given that they primarily act during the day, while GR 

mainly appears at night. In order to characterize commonly regulated genes, irrespective of the phase 

of genomic binding, we performed functional annotation of all co-bound promoters and enhancers by 

association with the nearest protein coding gene. The genes co-occupied in sum by GR together with 

CLOCK/BMAL1 were involved in carbohydrate, lipid and amino acid metabolism, as well as circadian 

clock function, consistent with their roles in metabolic regulation (Figure 2B). 

Both GCs and BMAL1/CLOCK are potent inducers of Per1 and Per2 expression. Consequently, we 

found co-occupancy of cis-regulatory elements by GR, PER1 and PER2 mostly at ZT12, 16 and 20, 

with GR slightly preceding Per1/Per2 (Figure 2C). The genes commonly regulated during the night 

were assigned to lipid and amino acid metabolism, circadian clock function and Notch signaling 

(Figure 2D). Again, this underscores the link between GCs, the clock and metabolic homeostasis. 

GR has previously been reported to physically interact with CRY1/2 in mouse livers (Lamia et al., 

2011). Accordingly, we observed the largest overlap among all the clock factors for GR, CRY1 and 

CRY2. Similar to PER1 and PER2, GR binding coincided with cryptochromes predominantly at ZT12 

and during the remainder of the dark phase (Figure 2E). Again, the gene networks that could be linked 

to these co-bound enhancers regulated lipid and amino acid metabolism, clock function as well as 

Srebp targets (Figure 2F). 

In addition, we used ChIP-Seq data sets for REV-ERB-α/β and RORα/γ (Cho et al., 2012; Fang et al., 

2014; Zhang et al., 2015) to determine the potential impact of GR on this regulatory loop (Figure S2A). 

Both REV-ERBs peak at ZT8, before being repressed by GR, while RORs peak at night (Bookout et 

al., 2006; Yang et al., 2006). Both REV-ERBα/β and RORα/γ significantly overlapped with GR at 

common enhancers and promoters. GR and REV-ERBα/β co-bound approximately 6,000 sites, of 

which about 5,000 sites were identically co-occupied by GR and RORα/γ. Of course these events did 

not happen simultaneously, but rather sequentially. These core cis-regulatory sequences targeted by 
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GR and the Rev-erb-ROR loop again corresponded to genes involved in lipid, fatty acid and amino 

acid metabolism, the circadian clock and PPARα activity. 

Taken together, we found that GR occupancy partially overlapped with the classical clock transcription 

factors, most prominently with cryptochromes and with the ancillary loop, in a rhythmic pattern, at loci 

governing glucose, lipid and amino acid metabolism. One predominant theme among all the GR and 

‘clock’ co-occupied target genes was an enrichment for PPAR signaling (Figures 2B,D,F, and S2A). 

This concurs with the PPARE motifs enriched in our day/night GR cistromes (Figure 1E) and is 

consistent with PPARα’s known role as a direct mediator of circadian lipid metabolism in the liver 

(Chen and Yang, 2014). 

Finally, we detected GR ChIP peaks within the promoter or enhancer regions of all core clock genes 

(Table S1). We therefore profiled mRNA expression over 24 hours in liver-specific GR knockout mice 

(Figure S2B&C). Using ‘JTK Cycle’ to identify mRNAs with robustly oscillating expression profiles, we 

found that loss of GR caused significant amplitude dampening of rhythmic gene expression across all 

six time-points (Figure 2G). Specifically, over 1,300 rhythmic mRNAs harboring a nearby GR peak lost 

oscillation, despite the presence of a functional core clock (Figure 2H). In line with our ChIP-Seq 

results, the three ‘dark’ time-points (ZT12, 16, 20) showed more differential gene regulation than the 

light phase in the GR mutants (Figures 2I, S2B, and S2C). Genes involved in glucose metabolism 

were downregulated, while lipid, fatty acid and triglyceride metabolism was upregulated at night. Our 

results suggest that GR interacts with the core clock loop to generate rhythmic output, and that co-

regulation of these programs is involved in daily cycles of metabolic adaptation to feeding and fasting 

(Figure S2D). 

 

High fat diet induces cistromic reprogramming 

Prolonged HFD feeding can alter the mammalian circadian clock, for example by disrupting behavioral 

and molecular rhythms in mice (Kohsaka et al., 2007). We therefore performed analogous GR ChIP-
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Seq experiments in mouse livers after 12 weeks of HFD. Importantly, we did not observe significant 

differences in serum corticosterone concentration in the HFD group, which showed the expected 

weight gain and insulin resistance (Figures S3A-G). 

Interestingly, while the general pattern of circadian GR binding was conserved, we found a significant 

increase in both the number of peaks and the number of tag counts per site, most prominently at night, 

upon exposure to HFD (Figures 3A-C). For example, the total number of peaks at ZT12 increased by 

more than 3,000. This amplified intensity of genomic GC action was mainly detected at ZT12, 16 and 

20, and led to a gain of GR binding near promoters, thereby altering the normal proximal-distal 

distribution during the day-night cycle. Although we did not notice any alteration in signal strength 

during the day (ZT0, 4, 8), we discovered a pronounced enrichment of target gene sets involved in 

energy metabolism, in addition to the ‘housekeeping’ programs identified in the light phase of controls 

(Figures S3B,C). This additional lipid annotation of the rest/fasting phase in our GR cistromes could be 

a signature of the disrupted energy partitioning that occurs under HFD (Bass, 2016). 

Both ‘day’ (ZT0, 4, 8) and ‘night’ (ZT12, 16, 20) GR cistromes were again co-enriched for liver specific 

motifs such as C/EBP, HNF4α, FoxA, PPAR etc. However, the HFD group now additionally featured a 

STAT5 motif near GREs (Figure 3D). While around 13,000 sites were collectively bound by GR during 

the night in controls, HFD tissue displayed additional 9,354 GR peaks (Figure 3E). These night-

specific gained GR binding sites were associated with genes involved in both glucose and lipid or fatty 

acid metabolism as well as insulin signaling (Figure 3F). A motif enrichment analysis to identify 

specific signatures overrepresented in only these >9,000 night-specific HFD-induced GR binding sites 

again found a STAT consensus motif (Figure 3G). We would like to stress that the newly gained HFD 

peak sequences did contain GREs, but only the STAT motif was distinct. 

RNA-Seq data from the same livers displayed differential mRNA expression for several hundreds of 

genes near these gained peaks on HFD. Once more, the expression differences of these putative 
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HFD-induced GR targets were more prominent during the night and were associated with glucose, 

amino acid, lipid and fatty acid metabolism (Figures 3H&I, and S3I). 

In conclusion, HFD reprogrammed hepatic GR cistromes primarily at night during the feeding phase. 

Increased DNA binding by GR was associated with STAT5 motifs near genes important for glucose, 

lipid and fatty acid metabolism. Nightly reprogramming occurred despite similar endogenous ligand 

levels, similar amounts of nuclear GR, CRY1 and CRY2 proteins (Figures S3H&I), and comparable 

mRNA profiles of GR, Stat5 and 11β-hydroxysteroid dehydrogenase, the gatekeeper enzyme that 

produces active intracellular GCs (see below).  

 

GR, STAT5 and PPARα signaling pathways intersect 

Our motif and pathway enrichment searches predicted the involvement of PPAR and STAT signaling 

in the modulation of GR activity. PPARα is the most prominent PPAR in the liver, acting as a key 

sensor for nutritional cues such as fatty acids and lipids, and has an integral role in hepatic energy 

balance (Kersten et al., 1999; Preidis et al., 2017). This makes it a promising drug target for the 

treatment of hepatic steatosis and fibrosis (Pawlak et al., 2015). It is conceivable that HFD-fed mice 

show differences in effective PPAR ligand availability due to changes in diet composition or 

deregulation of metabolic networks. 

Stat5 genetically interact with GR in liver homeostasis, and GR x Stat5 hepatocyte specific double 

mutant mice develop hepatic steatosis and hepatocellular carcinoma (Engblom et al., 2007; Mueller et 

al., 2011; Mueller et al., 2012). In vivo, Stat5 activity is regulated by pulsatile growth hormone (GH) or 

cytokine signaling (Baik et al., 2011). 

These observations together with the Stat5 motif being prominently enriched in the differential GR 

bound sequences, prompted us to perform ChIP-Seq for both PPARα and Stat5 in control and HFD 

livers at ZT12. As expected, motif analyses showed both STAT and PPAR response elements as the 

top enriched in the corresponding data sets, together with GREs and the typical liver signatures. 
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Moreover, pathway annotations of the target genes for both factors were indicative of their roles as 

key regulators of hepatic metabolism, irrespective of diet (Figures S4A-D).  

Interestingly, PPARα occupancy remained largely unchanged between control and HFD livers, while 

STAT5 showed an increased recruitment and an increased overlap with GR on HFD (Figures 4A-C, 

and S4E). For example, overlap between GR and STAT5 grew from around 4,000 to almost 8,000 

peaks upon exposure to HFD. Co-occupancy between GR and PPARα, on the other hand, remained 

almost constant between 2,000 – 3,000 peaks. Figure 4D shows two examples of metabolic genes co-

bound by GR, PPARα and Stat5, the Pemt and Abat loci. Of course, this does not mean that PPARα 

transcriptional activity was not altered, i.e. via changes in ligand availability or co-regulator 

recruitment.  

Importantly, these GR-bound cis-regulatory elements almost all (>98%) showed enrichment for the 

active histone H3K27 acetylation mark, which concomitantly increased at ZT12 (compared to ZT0) 

and under HFD (at ZT12, compared to control diet) (Figures 4D&E, and S4F&G). 

Briefly, we found an expansion of both GR and STAT5 cistromes at ZT12 in HFD livers, accompanied 

by increased histone H3K27 acetylation. While PPARα occupancy was not affected by the diet, GR 

and STAT5 co-occupancy increased, near genes important for lipid and fatty acid metabolism. 

 

High fat diet induced reprogramming is driven by STAT5 

To identify differential factors regulated by HFD or insulin resistance within the transcriptional complex 

shared by GR and STAT5, we performed ChIP-MS (GR ChIP coupled to mass spectrometry 

proteomics). Indeed, both STAT5 and the PPARα heterodimer partner RXR were purified in the GR 

interactomes (Figures 5A and S5A). However, the proteomics experiments did not reveal other 

relevant candidates that might explain our observed HFD-induced increase in GR & Stat5 co-

occupancy. For instance, chromatin remodelers, histone modifying enzymes, co-regulators and 

transcription factors (such as SWI/SNF, CBP, HNF4α, C/EBP and NCOA5) were co-purified with GR, 
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as expected (Fletcher et al., 2002; Oakley and Cidlowski, 2013), but these were similarly enriched 

under both conditions. 

Focusing on GR and STAT5 themselves, hepatocyte-specific GR and Stat5 knockout mice on HFD 

showed that STAT5 occupancy was not affected by the loss of GR, while GR binding at shared, 

gained sites was significantly reduced in Stat5 mutants (Figures 5B&C and S5B&C).  

In conclusion, we saw that GR, PPARα and STAT5 co-occupied metabolic enhancers in HFD livers, 

and that enhanced GR binding depended on the presence of STAT5. This observed increase in 

STAT5-GR co-occupancy might be due to altered JAK/STAT or GH signaling, in insulin resistant, 

obese animals.  

 

Cistromic reprogramming affects glucose and triglyceride metabolism 

To test whether the HFD-induced binding events were functionally relevant, RNA-Seq was performed 

for ZT0, 4, 8, 12, 16, 20 in hepatocyte-specific GR knockouts. Again, more genes were differentially 

expressed during the night on HFD, corresponding to pathways including lipid, fatty acid, amino acid 

and carbohydrate metabolism (Figures 6A and S6A&B). Loss of GR once more caused a 

transcriptional dampening of circadian amplitude across all time-points, with a large proportion of 

direct GR targets losing oscillation on HFD (Figures 6B and S6C&D). 

Moreover, to directly test whether the HFD-induced binding events were functionally relevant, we 

determined the differential expression of those genes harboring a gained GR peak nearby, specifically 

during the feeding phase (Figure 6C). Indeed, more than 400 gained targets were de-regulated in the 

absence of GR, with the upregulation of lipid and fatty acid metabolism being the most prominent. 

These GR-dependent changes occurred despite similar mRNA expression of the core clock machinery 

itself (except for Per1) (Figure S6D). 



13 
 

In accordance with our NGS profiles, GR mutants were prone to develop hepatic steatosis, which was 

exacerbated by HFD, and had lower blood glucose levels specifically during the night (Figures 6D&E 

and S6E&F). Strikingly, circulating triglycerides were lower only during the day, which was more 

evident on HFD, while liver triglycerides were significantly higher (Figures 6F&G). These physiological 

changes could be explained by the reduced expression of gluconeogenic genes like Pck1 or Pfkfb3, 

and by the increased expression of genes involved in lipid and fatty acid utilization and storage, such 

as Cd36 and PPARγ, in the absence of GR (Figure 6H). PPARγ had previously been implicated in 

circadian remodeling by HFD, in accordance with these observations (Eckel-Mahan et al., 2013). 

In sum, we found that GR alters temporal gene expression profiles by sustaining oscillations. We 

could functionally link these gene expression changes to nearby GR binding events by using 

hepatocyte-specific GR mutants. Several hundreds of genes displayed de novo GR binding and GR 

dependence on HFD. We showed that the pathways targeted by GR are mainly regulating energy 

homeostasis, and that they control circulating glucose and triglyceride levels distinctly during times of 

feeding and fasting. 

 

Ligand independent genomic responses on HFD 

To further demonstrate that this increase in DNA-bound GR was indeed due to nutritional or 

pathogenic effects directly on the chromatin level, we treated both HFD and control mice with a single 

dose of the exogenous GR ligand Dexamethasone (Dex). Animals were injected at ZT0 (lowest 

endogenous GCs), and livers were processed for GR ChIP-Seq one hour later. As expected, Dex 

treatment led to a significant increase in GR ChIP signal intensity (compared to untreated mice at 

ZT0), presumably resulting from increased occupancy in response to ligand. Interestingly, this signal 

was even higher in HFD livers, as shown in Figure 7A. We found that, compared to controls, there was 

a gain in both the number of GR ChIP-Seq peaks as well as in the signal strength after HFD feeding 
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(Figure 7B). Importantly, this confirms that we measured increased GR occupancy in the face of 

identical ligand levels. 

Furthermore, when we harvested livers 4 hours after Dex injection (at ZT4), we detected a diet-

specific differential effect on mRNA expression in obese animals (Figure 7C). RNA-Seq revealed 

several hundreds of deregulated transcripts that responded differently to GR ligand on HFD. These 

HFD-specific GC responses could be annotated to circadian rhythms, PPARα signaling, lipid and 

cholesterol metabolism (Figure 7D). 

We performed analogous experiments at the peak of GC secretion, injecting mice at ZT12 and 

harvesting control and HFD livers for ChIP- and RNA-Seq one and four hours later, respectively. Once 

more, we confirmed the increased GR ChIP-Seq signal in livers from HFD-fed mice, in spite of 

identical doses of Dex (with two different antibodies, Figure S7A). However, we did not observe major 

diet-specific mRNA changes in the Dex response at ZT16, conceivably because GR ligand levels are 

already very high at night (Figure S7B). 

Taken together, we observed an augmented response to exogenous GC treatment on HFD, with 

identical ligand doses resulting in increased chromatin occupancy of GR at both ZT0 and ZT12. Of 

note, this altered genomic GC action manifested as differential regulation of metabolic and clock-

associated gene expression programs during the fasting period. 

 

Discussion 

 

Rhythmic GR binding strengthens transcriptional clock output in mouse livers  

We find that GR binding has a distinct daily pattern closely mirroring ligand availability, with low 

endogenous GC levels leading to promoter proximal binding near ‘housekeeping’ and gluconeogenic 

genes during the day. In contrast, the nightly GC surge results in GR binding to distant metabolic 
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enhancers regulating lipid and amino acid metabolism only during the feeding phase. It appears that 

GR only reaches those distant enhancers at higher hormone concentrations, which in turn allows the 

control of these metabolic gene networks only when needed. This implies that GCs govern nutrient 

partitioning and substrate utilization during daily cycles of feeding/fasting. 

Our NGS studies show that the majority of diurnally oscillating transcripts are direct GR targets. GR 

interacts with core clock factors to enlarge and stabilize the amplitude of downstream target genes. 

Apparently, GR synchronizes 24 hour rhythms by integrating circadian clock loops with hormone 

release and by coordinating metabolic fuel shifts. GR reinforces the core Bmal1/Clock/Per/Cry and the 

ancillary Rev-erb/ROR loops and generates rhythmic outputs (Figure S2E). Our observations again 

emphasize the tight connection between mammalian circadian rhythms and metabolism. 

 

The nutritional state modifies GC action  

Surprisingly, we find that high fat diet expands the GR cistrome, mainly during the feeding phase. This 

gain in GR ChIP signal was observed despite comparable endogenous corticosterone levels. Although 

there is a discrepancy in the literature with regard to GC levels in HFD-fed mice (Auvinen et al., 2012; 

Kohsaka et al., 2007) we did not measure any effect of the diet on the amount of circulating hormones 

in our cohort. That means that nutrition changes hormone responses at the genomic level, and that we 

have uncovered a novel way of regulating GR activity independent of ligand availability. 

Our observations agree with published studies showing that HFD alters the epigenome and 

consequently enhancer activity, for example by increasing H3K27 acetylation, DNaseI hypersensitivity 

and eRNA oscillations (Guan et al., 2018; Leung et al., 2016; Siersbaek et al., 2017; Soltis et al., 

2017). Therefore, the enhanced GR occupancy might possibly benefit from increased chromatin 

accessibility. 

This conclusion is further corroborated by the fact that we detected increased GR binding and 

amplified transcriptional responses in Dex treated mice upon exposure to HFD. Our observations may 
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have wider implications for human patients being treated with GCs, as one could expect obese or 

insulin resistant individuals to respond differently to the treatment. 

 

GR & STAT5 interact during cistromic reprogramming 

Our studies identified PPARα and STAT5 as interacting with GR in the liver, but we cannot exclude 

the possibility that other nuclear receptors or transcription factors may also be cross-talking with GR. 

We focused our analysis on PPARα, for it is a well-known master regulator of hepatic lipid metabolism, 

and like GR, a fasting-induced receptor (Goldstein et al., 2017; Kersten et al., 1999). However, it is 

possible that the DR1 motif we identified is bound by other RXR-heterodimerizing nuclear receptors 

such as other PPARs, FXR or LXRs.  

The enrichment of both the STAT5 motif in the GR peaks, as well as the protein itself in the GR 

interactome, correlate well with the dramatic increase of STAT5 occupancy in HFD livers. Using liver 

specific mutants, we show that the enhanced GR binding is indeed dependent on STAT5. One 

possible explanation might be differential post-translational modifications on HFD or rather, insulin 

resistance. We could not detect any difference in STAT5 Y694 phosphorylation status, the site which 

is essential for DNA binding and transcriptional activation (Gouilleux et al., 1994), in HFD versus 

control liver extracts (data not shown). Nonetheless, we cannot rule out the presence of other 

modifications affecting STAT5 activity. At this point, we do not know whether this augmented GC-JAK-

STAT response results from altered cytokine or GH/IGF1/insulin signaling in obese mice, or from 

changes in the chromatin landscape induced by nutritional adaptation.  

 

Hepatic GR controls glucose and triglyceride metabolism 

Finally, we found that the gene programs controlled by GR’s temporal occupancy are essential for 

glucose, lipid and fatty acid metabolism during daily alternations between feeding and fasting. 
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Hepatocyte specific GR knockouts have lower levels of circulating glucose specifically at night, and 

lower serum triglycerides during the day. Concomitantly, GR mutants are prone to develop hepatic 

steatosis. GR x Stat5 liver-specific double mutant mice progress to hepatocellular carcinoma, which 

might link the GR-STAT5 signature to the development of liver cancer and disease pathology (Mueller 

et al., 2011). 

Altogether, our findings emphasize the key role GR plays for the temporal synchronization of 

metabolic rhythms in the liver, and highlight its importance during the progression of metabolic 

disease.  
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Figure 1. Differences in genomic binding of GR during the day/night cycle in mouse livers 

(A) GR occupancy at the Per1 locus for ZT0, 4, 8, 12, 16 and 20 as determined by ChIP-Seq analysis 

in mouse livers (normalized tag counts for one representative sample shown). (B) Heatmap of GR 

genome-wide binding for ZT0-20. Each row shows the normalized unique tag counts for one GR 

binding event (ChIP peak) of the union (sum of all reproducible peaks from 2 replicates for all 6 time 

points), ordered by signal strength. (C) GR ChIP peak percent distribution over the indicated genomic 

regions for the 6 time points. (D): Functional characterization of GR’s genomic occupancy during day 

and night. The 3 time points of the light phase (ZT0, 4, 8 = ‘Day’) and the dark phase (ZT12, 16, 20 = 

‘Night’) were combined into the Venn diagram. The majority of sites bound during the day (73.1%) 

were also bound at night. The table displays gene ontology analysis of the genes nearest to the 4,455 

‘Day’ binding sites and the 10,465 ‘Night only’ binding sites. (E) Motif analyses of the 4,455 ‘Day’ and 

the 10,465 ‘Night’-specific GR ChIP-sequences for co-occurring hepatic transcription factors. Data 

presented is from two biological replicates per time point (i.e. a total of 6 samples for each ‘Day’ and 

‘Night’). (F): Number of GREs in GR ChIP peaks for ‘Day’ and ‘Night’, as defined by the consensus 

sequence shown. 
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Figure 2. GR binding overlaps with core clock factors to generate transcriptional rhythms 

Phase distributions, as number of peaks per time point, for GR with BMAL1/CLOCK (A), PER1/2 (C), 

and CRY1/2 (E). Co-bound sites are solid black. Venn diagrams depict the GR union from all time 

points (14,920 sites) intersecting with unions for BMAL1 (6,184) and CLOCK (9,294) (B); PER1 

(12,534) and PER2 (20,944) (D); and CRY1 (34,581) and CRY2 (28,658) (F). Functional annotation of 

cis-regulatory sites bound by all three factors (black) is in the tables below (Koike et al., 2012). (G) 

Amplitude distribution for ZT0-20 in livers from GR-LKO (Alb-Cre x GRf/f) compared to GRf/f littermates 

(WT). 3,400 genes cycling in control mice were binned according to peak time point (4hrs). Values are 

represented as mean ± SEM (n=3 per group). (H) Phase sorted heatmap of oscillating transcripts in 

WT and GR-LKO livers for ZT0, 4, 8, 12, 16 and 20, n=3. (I) Venn diagram showing number of 

differentially regulated genes in GR-LKO during the ‘Day’ (ZT0, 4, 8) and during the ‘Night’ (ZT12, 16, 

20). Pathway annotation was performed for transcripts either up- or down-regulated in GR-LKO. 

*P<0.05, ***P<0.001 (two tailed t test). 
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Figure 3. GR cistromes are reprogrammed by HFD 

(A) Heatmap of GR genome-wide binding for ZT0-20 in livers after 12 weeks HFD. Each row shows 

the normalized unique tag counts for one GR ChIP peak of the union (sum of all reproducible peaks of 

the HFD data set), ordered by signal strength. (B) GR ChIP peak percent distribution over the 

indicated genomic regions for ZT0-20 on HFD. (C) Normalized distribution of GR ChIP-Seq tag density 

in HFD and control cistromes for the 6 time points. (D) Motif analyses of the 3,258 ‘Day’ and the 

16,954 ‘Night’-specific HFD GR ChIP-sequences show co-occurring hepatic transcription factors. (E) 

Venn diagram comparing the GR ChIP peak overlap for the sum of all 3 ‘Night’ samples (ZT12, 16, 20) 

from HFD and control livers. (F) GREAT functional annotation based on the nearest genes of the 

9,345 additional HFD GR binding sites. (G) Enriched motifs in the GR ChIP peaks gained on HFD 

during the dark phase over the GR union used as background. Data presented is from two biological 

replicates per time point. (H) Heatmap of transcripts associated with gained GR binding from figure 3D 

(9,354) and deregulated by HFD during the night (ZT12,16,20). (I) Pathway annotation for transcripts 

either up- or down-regulated in HFD livers.   

 

  



30 
 

 



31 
 

Figure 4. GR, PPARα and Stat5 signaling pathways intersect at functional enhancers 

(A) Heatmap of GR, Stat5 and PPARα genome-wide binding in control and HFD livers at ZT12. Each 

row shows the normalized unique ChIP-Seq tag counts for GR, STAT5 and PPARα centered on the 

GR peak positions and ordered by signal strength. (B) Normalized distribution of GR, STAT5, PPARα 

ChIP-Seq tag density in control and HFD livers at ZT12, at sites occupied by GR. (C) Venn diagram of 

GR (12,836 and 16,427 peaks), STAT5 (8,815 and 14,216 peaks) and PPARα (4,317 and 4,438 

peaks) cistromes at ZT12 in control and HFD, respectively. (D) Representative examples of 

normalized GR, STAT5, PPARα and H3K27ac ChIP-Seq tracks in both control and HFD at ZT12. Top: 

The Pemt locus was not affected by diet. Bottom: The Abat locus gained GR-STAT5 co-occupancy 

together with increased H3K27ac on HFD. (E) ChIP-Seq profiles for H3K27ac centered around GR 

peaks at ZT0 and ZT12 in HFD and control livers. Each row shows the normalized H3K27ac ChIP-Seq 

tag counts ordered by signal strength. The box plot below is the log2 fold change between HFD and 

control tag density of H3K27ac ZT12 signal mapped to either the ‘lost’ (3,076), ‘common’ (10,616), or 

‘gained’ (9,354) GR sites from Figure 3D. Only peaks near transcripts up-regulated by HFD during the 

night were used. P values according to Mann-Whitney test.  
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Figure 5.  Cistromic reprogramming by HFD is driven by STAT5 occupancy 

(A) GR interactomes (ChIP-MS) in HFD and control livers at ZT12. Enrichment (Log2 Fold Change) of 

GR IP samples versus IgG (n=3), was calculated for control and HFD diet samples (Fisher´s exact 

test, FDR<0.05, s0=1). (B) STAT5 ChIP-qPCR in GR-LKO (Alb-Cre x GRf/f) and WT (GRf/f) livers on 

HFD. The Socs2 locus is a positive control for STAT5 binding that was not changed by HFD; the other 

loci showed HFD-induced gained GR-STAT5 co-occupancy by ChIP-Seq. (C) GR ChIP-qPCR in 

Stat5a/b-LKO (Alb-Cre x Stat5f/f) and WT (Stat5f/f) livers on HFD. The Per1 locus is a positive control 

for GR binding that was not changed by HFD; the other loci are the same as above. Enrichment is 

calculated over a negative locus. Values are shown as mean ± SEM (n=2-6 per group), **P<0.01, 

***P<0.001 (two tailed t test).  
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Figure 6. Liver specific GR mutants show deregulation of glucose and triglyceride metabolism 

(A) Venn diagram showing number of differentially regulated genes in GR-LKO (Alb-Cre x GRf/f) during 

the ‘Day’ (ZT0, 4, 8) and during the ‘Night’ (ZT12, 16, 20) after 12 weeks HFD. (B) Amplitude 

distribution for ZT0-20 in livers from GR-LKO compared to GRf/f littermates (WT) on HFD. Values are 

represented as mean ± SEM (n=3 per group). (C) Heatmap of deregulated transcripts in GR-LKO 

during the night (ZT12,16,20) associated with ‘gained’ (9,354) GR peaks from figure 3D. Pathway 

annotation was performed for transcripts either up- or down-regulated in GR-LKO livers. (D) H&E 

staining of livers from GR-LKO mice and littermate controls after 12 weeks of high fat or control diet. 

One representative section from n=3 biological replicates is shown (scale bar = 100µM). (E) Blood 

glucose, (F) serum triglycerides, and (G) liver triglycerides from GR-LKO mice and littermate controls 

during the day (ZT0, 4, 8) or during the night (ZT12,16, 20), on high fat or control diet. Values are 

represented as mean ± SD (n=8-20 per group). (H) RNA-Seq data (normalized read counts, Rlog) for 

deregulated gluconeogenic (Pck1, Pfkfb3) and lipid metabolism (Pparγ, CD36) transcripts in GR-LKO 

mice and controls fed with high fat or control diet. Values are represented as mean ± SEM (n=3 per 

group), *P<0.05, **P<0.01, ***P<0.001 (two tailed t test).  
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Figure 7. Ligand independent genomic responses on HFD 

(A) Heatmap of GR genome-wide binding for Dexamethasone (Dex) treated and control livers, on high 

fat or control diet. Dex was injected at ZT0 and livers processed at ZT1. Each row shows the 

normalized ChIP-Seq tag counts ordered by signal strength. (B) Normalized distribution of GR ChIP-

Seq tag density, corresponding to A. (C) Volcano plot showing transcripts differentially responding to 

Dex treatment in HFD versus control (n=2, adj P<0.05). Mice were injected with Dex at ZT0 and 

analyzed at ZT4. (D) Pathway annotation of transcripts down- and up-regulated by Dex treatment in 

HFD livers compared to controls. 

  



38 
 

STAR Methods 

 

Further information and requests for resources and reagents should be directed to and will be fulfilled 

by the Lead Contact, Henriette Uhlenhaut (henriette.uhlenhaut@helmholtz-muenchen.de). 

 

Animal Experiments 

Male C57BL/6J mice were housed in a controlled environment (12h light/12h dark daily cycle, ~23°C) 

and fed either control diet (11 kcal% fat w/sucrose, Research Diets D12329) or High Fat Diet (58 

kcal% fat w/sucrose, Research Diets D12331) for 12 weeks. At 18 weeks of age, mice were sacrificed 

by cervical dislocation, and livers plus blood were collected at the indicated 4 h intervals. 

Dexamethasone (Sigma, D2915) was administered at ZT0 and at ZT12 as a single i.p. injection of 10 

mg/kg after 12 weeks of high fat or control diet. Mice were sacrificed by cervical dislocation 1 h and 4 

h later. Hepatocyte-specific Alb-Cre x GRflox/flox (Opherk et al. 2004) and Alb-Cre x Stat5flox/flox 

mice (Cui et al., 2004) and controls were placed on High Fat Diet or control diet for 12 weeks. Livers 

were collected after cervical dislocation. Glucose tolerance tests (GTT) were performed in mice fasted 

overnight. Glucose (20% D-glucose; Sigma Aldrich) was injected i.p. at 1,5 g/kg and blood glucose 

levels were determined using a glucometer (AccuCheck Aviva, Roche Diagnostics).  

Mouse experiments were performed according to the rules and guidelines established by the 

Institutional Animal Committee at Helmholtz Center Munich. Ethical approval was received from the 

local animal welfare authority (District government of upper Bavaria ROB-55.2-2532.Vet_02-14-33) 

ELISA 

Serum corticosterone was assayed by an enzyme immunoassay kit from Arbor Assays (K014-H1) 

according to manufacturer’s instructions. 

Triglyceride assay 
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For triglyceride measurements, liver tissue was first digested in ethanol / 30% KOH (2:1, v/v) at 60°C. 

Digested samples were mixed with 1M MgCl2 at a ratio of 1.08:1 (volume) and incubated on ice for 

10min followed by centrifugation. Supernatants and serum samples were measured by colorimetric 

assay (#290-63701, Wako Chemicals) following the company’s instructions. 

Histology 

For H&E staining, 6μm PFA-fixed liver paraffin sections were treated with hematoxylin and eosin Y 

(#GHS332, Sigma Aldrich) using standard procedures. Brightfield microscopy was performed with a 

Keyence BZ-9000 microscope at a 10X magnification. 

RNA isolation and sequencing 

Total RNA was isolated from 50mg of liver using QIAZOL (QIAGEN). Quality of the RNA was assayed 

using the Agilent RNA 6000 Nano Kit in a 2100 Bioanalyzer (Agilent). Libraries were prepped from 1µg 

total RNA with the Illumina TruSeq RNA library prep kit v2 chemistry in an automated system (Agilent 

Bravo liquid handling platform). Libraries were run on a HighSeq4000 sequencer (Illumina). 

Chromatin Immunoprecipitation (ChIP) 

ChIP was performed as previously described (Uhlenhaut et al. 2013, (Mir et al., 2019)). Briefly, 200mg 

of frozen liver were minced and Dounce homogenized in 0.7mg/mL DSG crosslinker (Proteochem) 

and 1% formaldehyde (Thermo Fisher Scientific). Nuclei were isolated and chromatin sonicated to a 

0.1-1kb size using a Diagenode Bioruptor. Sheared chromatin was then immunoprecipitated with α-

GR antibody (Santa Cruz, sc-1004X; Proteintech, 24050-1-AP), α-PPARα antibody (Santa Cruz, sc-

9000), α-Stat5a/b (RD System, AF2168; Cell Signaling, 94205; Abcam, ab194898), α-Stat5a/b 

(pY694/Y699) (Cell Signaling, 9351) or α-H3K27ac (Abcam, ab4729), and DNA was isolated with 

MinElute PCR Purification Kits (QIAGEN). DNA concentration was determined by using a QUBIT 

dsDNA HS kit (Thermo Fisher Scientific).  

ChIP-DNA Sequencing 
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Libraries from ChIP and input DNA were prepared with the KAPA Hyperprep Kit (Kapa Biosystems, 

KK8504). Illumina compatible adapters were synthesized by IDT (Integrated DNA Technologies) and 

used at a final concentration of 68nM. Adapter-ligated libraries were size selected (360-610bp) in a 

Pippin Gel station (Sage Science) using 2% dye free gels (Sage Science, CDF2010). Library 

concentrations were estimated by RT-PCR with the KAPA Library Quantification Kit (Kapa 

Biosystems, KK4873). Quality of the libraries was evaluated with the Agilent High Sensitivity DNA Kit 

in a 2100 Bioanalyzer (Agilent). 

ChIP-qPCR 

DNA was quantified by use of Power SYBR Green Master Mix (Life Technologies) in a ViiA 7 Real-

Time PCR System (Thermo Fischer Scientific). Primers are listed in Table S2. 

Total protein extraction 

50mg of liver tissue were homogenized in RIPA buffer (150mM NaCl, 1% NP-40, 0.5% sodium 

deoxycholate, 0.1% SDS, 50mM Tris pH 8.0) supplemented with protease and phosphatase inhibitors.  

Nuclear protein extraction 

100mg liver tissue were homogenized in buffer containing 10mM Hepes-KOH pH 7.9, 1.5mM MgCl2, 

10mM KCl, 0.5mM DTT, 0.15% NP40 with protease and phosphatase inhibitors. After centrifugation, 

pellets were washed with PBS and nuclei were lysed in 2 vol buffer (10mM Hepes-KOH pH 7.9, 

1.5mM MgCl2, 10mM KCl, 0.5mM DTT, 0.1% NP40, 20% glycerol, with protease and phosphatase 

inhibitors) during 1hr incubation (rotating).  After ultracentrifugation, the supernatants constituting the 

nuclear protein extracts were used for Western blots. 

Western blot 

10µg (total extracts) and 20µg (nuclear extracts) of lysates were loaded onto a 4-12% Bis-Tris SDS-

PAGE gel (Life Technologies) and transferred to a PVDF membrane (Bio-Rad). Western blots were 

performed according to standard procedure. We used the following antibodies: α-AKT (CST, 4685), α-
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AKT (pS473) (Santa Cruz, sc-7985), α-GR (Santa Cruz, sc-393232), α-CRY1 (Abcam, ab104736), 

and α-CRY2 (kindly supplied by Katja Lamia). Secondary antibodies were: α-rabbit IgG (Santa Cruz, 

sc-2317), α-mouse IgG (BioRad, 170-6516) and α-guinea pig IgG (Santa Cruz, sc2438). 

ChIP-MS 

For ChIP experiments followed by mass spectrometry (ChIP-MS), ChIP was performed as described 

above with minor modifications. For each biological condition, liver samples from 3 mice were pooled. 

Chromatin was sonicated to an average size of 200bp. Antibody-bait complexes were bound by 

protein G-coupled Dynabeads (Life Technologies) and washed three times with wash buffer A (50mM 

HEPES pH 7.5, 140mM NaCl, 1% Triton), once with wash buffer B (50mM HEPES pH 7.5, 500mM 

NaCl, 1% Triton) and twice with TBS. Precipitated proteins were eluted with an on-bead digest as 

described before (Hein et al., 2015). Beads were incubated for 30min with elution buffer 1 (2M Urea, 

50mM Tris-HCl (pH 7.5), 2mM DTT, 20µg/ml Trypsin) followed by a second elution with elution buffer 

2 (2M Urea, 50mM Tris-HCl (pH 7.5), 10mM Chloroacetamide) for 5min. Both eluates were combined 

and incubated over night at room temperature. Tryptic peptide mixtures were acidified with 1% TFA 

and desalted with Stage Tips containing 3 layers of C18 reverse phase material and analyzed by 

mass spectrometry. 

Peptides were separated on 50‐cm columns packed in-house with ReproSil‐Pur C18‐AQ 1.9μm resin 

(Dr. Maisch GmbH). Liquid chromatography was performed on an EASY‐nLC 1000 ultra‐high‐pressure 

system coupled through a nanoelectrospray source to a Q-Exactive HF mass spectrometer (Thermo 

Fisher Scientific). Peptides were loaded in buffer A (0.1% formic acid) and separated applying a non-

linear gradient of 5–60% buffer B (0.1% formic acid, 80% acetonitrile) at a flow rate of 250nl/min over 

105min. Data acquisition switched between a full scan and 15data‐dependent MS/MS scans. Multiple 

sequencing of peptides was minimized by excluding the selected peptide candidates for 25s. All other 

settings were set as previously described (Scheltema et al., 2014). 
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Missing values were imputed from a normal distribution applying a width of 0.2 and a downshift of 1.8 

standard deviations. Significant outliers were defined by permutation-controlled Student’s t-test (FDR 

< 0.02, s0 =1) comparing triplicate ChIP-MS samples for each antibody and biological condition. 

Statistical analysis 

Animal experiments were randomized in control and HFD treated groups, individual data point are 

represented in the plots. In all cases, two tailed tests with P values less than 0.05 were significant.  

For ChIP-qPCR, multiple t-test was performed with p<0.05 (n=2-6 per group). For differences between 

groups in Rlog counts, multiple t-test was run, with p<0.05 (n=3 per group).  

 

Bioinformatics (see Figure S1G) 

RNA-Seq: 

Pre-processing: RNA-Seq FASTQ files were mapped against the mouse mm9 genome with the STAR 

v2.4.2a aligner (Dobin et al., 2013). The GENCODE mm9 genome annotation was used. Format 

conversions were performed using samtools v1.3.1 (Li et al., 2009). The featureCounts program (Liao 

et al., 2014) was used to count reads located within an exon, do not overlap multiple features, with a 

threshold of MAPQ >= 4 and are not chimeric.   

Normalization and differential expression analysis: The read count matrix was fed into the DESeq2 

v1.23.10 program (Love et al., 2014), and variance stabilization was performed to obtain a normalized 

data matrix. Differential gene expression analysis was performed using a model that quantifies the 

effect of diet, genotype, time, and their interactions, comparing the different diet-genotype-time groups 

with each other. The Dex treatment experiment was performed at a single time point. In this case our 

design formula was: design = ~ diet + treatment + diet:treatment. The number of biological replicates is 

stated for each comparison. 
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Oscillating transcript analysis: After normalization, transcript rhythmicity was determined by JTK cycle 

(Hughes et al., 2010) through the MetaCycle R package (Wu et al. 2016). Circadian cycling was 

determined over a period of 24h and significant transcripts were selected by using an adjusted p-value 

<0.05. The groups used for the analysis were hepatocyte-specific Alb-Cre x GRfl/fl  and littermate GRfl/fl 

controls, placed on HFD feeding for 12 weeks or control diet.   

ChIP-Seq: 

Pre-processing: ChIP-Seq FASTQ files were mapped against the mouse mm9 genome with BWA 

version 7.12 using the MEM algorithm (Li and Durbin, 2010). Duplicate reads were removed using 

samtools version 0.1.19. Multi mapping reads were removed with bamtools version 2.4.0 using a read 

threshold of MAPQ >=24 (Barnett et al., 2011).  

Adjusting sequencing depth: Sequencing read depth was adjusted by down sampling each replicate 

BAM file to the replicate with the lowest read count (Table S3).  

Peak calling: Macs2 version 2.1.1 was used for peak calling on the replicates using liver genomic DNA 

as input control (Feng et al., 2011). The peak calling cutoff was set to FDR=0.05. Apart from 

generating narrow peak files, input normalized read density distributions (Bedgraph) were used for 

further analysis. Peak boundaries were set by extending the peak summit in either direction by its 

corresponding library size (calculated from the Bioanalyzer) for each replicate. 

Signal artefacts: Peaks falling within pathological repeat elements like satellites, centromeres and 

telomeric repeats including the ENCODE published black listed regions 

(https://sites.google.com/site/anshulkundaje/projects/blacklists) were removed from the peak list using 

Bedtools version v2.25.0 (Quinlan, 2014). 

Replicate reproducibility: A customized version of the ENCODE IDR pipeline was used to account for 

pair-end reads. Pseudo replicates and pairwise correlation analyses were performed among replicate 

pairs. Peaks within a 200bp summit to summit neighboring distance and ≥50% boundary overlap were 

merged and marked as confident peaks. Read density plots and Pearson correlation were also 
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calculated for each replicate to ensure reproducibility. Bedtools version v2.25.0 (Quinlan, 2014) was 

used to perform the overlap analysis. R version 3.2.3 and Bioconductor were used to create Pearson 

correlation plots. 

Peak Unions: Peak union tables with unique genomic locations from both control and HFD groups 

were created for GR, STAT5, PPARα, GR-Dex, and H3K27ac data sets. These tables were then 

combined into a unified peak union with unique ranges across the genome and containing overlapping 

HFD and control peak information, including the tag count. This table was then used to calculate the 

peak distribution across the genome and identify peaks of interest, calculating IP efficiency 

normalization factors. 

IP efficiency normalization: ChIP peaks near the promoters of non-changing genes were selected as 

‘static peaks’ (based on RNA-Seq non-differential expression across all HFD and control samples; and 

based on performance in the different ChIP experiments) (Table S4 and S5). Normalization factors for 

each replicate were calculated as follows: first, the mean of the non-changing static peaks was 

calculated for a given region of overlap between peaks (h). Then for a given region (n), the mean of 

each sample was normalized to a particular signal (hn). Then the normalization factor for each sample 

would be: Fn = summation of (hn) / total number of control peaks. The count estimate for sample (i) 

would be: nr = Fn * xi. The normalization factors for each replicate were then used to account for 

differences in IP efficiency (Table S6). This method is based on the THOR package(Allhoff et al., 

2016). 

Normalized peak union: Bedgraphs were normalized with the scaling factors obtained from the IP 

efficiency calculation. Peak calling was then performed on the normalized Bedgraphs with macs2 

version 2.1.1 using the bdgpeakcall module with a threshold of p-value 1e-5. To account for false 

positives, we selected the peaks based on their overlap with the original union. The normalized peak 

union was then created with normalized tag counts. UCSC tracks were also created using the 

normalized Bedgraphs. 
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Normalized read density heatmaps: Normalized bedgraphs were used to plot the read density map 

near the union peak centers using deepTools version 2.2.4. Replicate groups per time point were first 

merged using UCSC tools bedGraphToBigWig and bigWigMerge 

(http://hgdownload.cse.ucsc.edu/admin/exe/macOSX.x86_64/). Then the deepToolscomputeMatrix 

tool was used, followed by the plotHeatmap tool.  

Peak annotation: Peak annotation was performed with HOMER version v4.8 (Heinz et al., 2010). The 

GENCODE database for mm9 (Release M1) was used as a reference for assigning feature level 

annotation. 

Motif discovery: Two different methods were used for motif discovery: HOMER version v4.8 and a 

motif analysis based on position site specific matrix models to quantify the utilization of specific 

hormone response elements (Wilson et al., 2017; Wilson et al., 2016). The ChIP-Seq data was aligned 

using the ucsc_mm9 reference frame. For individual motif occurrences, a position specific matrix 

served to compute a log-likelihood ratio score, p values and q values. 

Pathway and GO annotation: Pathway enrichment and gene ontology annotation were performed by 

using the Enrichr and GREAT websites, respectively (Kuleshov et al., 2016McLean, 2010 #323).  

ChIP-MS: 

Raw mass spectrometry data were analyzed with MaxQuant (version 1.5.3.29) and Perseus (version 

1.5.3.0) software packages. Peak lists were searched against the mouse UniprotFASTA database 

(2015_08 release) combined with 262 common contaminants by the integrated Andromeda search 

engine. False discovery rate was set to 1% for both peptides (minimum length of 7 amino acids) and 

proteins. ‘Match between runs’ with a maximum time difference of 0.7min was enabled. Relative 

proteins amounts were determined by the MaxLFQ algorithm, with a minimum ratio count of two (Cox 

et al., 2014). 
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Accession Numbers 

The ChIP-Seq and RNA-Seq data sets of this study have been deposited in the GEO (NCBI) database 

under the SuperSeries accession number GSE108690. Secure token for reviewers: 

‘kpozmwmoxjedzwx’. Proteomics data have been uploaded to the PRIDE archive (EBI): accession 

PXD014030. 

 

Excel file 1 GR, H3K27ac, PPARα and Stat5 ChIP-Seq annotated peaks in HFD and control livers. 

Excel file 2 Differential gene expression in C57BL/6 livers on control and HFD (DESeq2). 

Excel file 3 Rhythmic gene expression in GR-LKO and WT livers, control and HFD (JTKcycle).  

Excel file 4 Peptide counts for GR ChIP-MS proteomics in control and HFD livers. 

 

The Supplement contains Figures S1-S7 and Tables S1-S6. 


