See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/336667727

Benefits of influenza vaccination on the associations between ambient air pollution and allergic respiratory diseases in children and adolescents: New insights from the Seven North...

Article i	in Environmental Pollution · October 2019 6/j.envpol.2019.113434		
CITATIONS	s	READS	
0		140	
25 auth	ors, including:		
	Kangkang Liu	Shanshan Li	
	Queensland University of Technology	Jinan University (Guangzhou, China)	
	14 PUBLICATIONS 77 CITATIONS	11 PUBLICATIONS 0 CITATIONS	
	SEE PROFILE	SEE PROFILE	
	Shyamali Chandrika Dharmage	Michael S Bloom	
P.	University of Melbourne	University at Albany, The State University of New York	
	604 PUBLICATIONS 11,528 CITATIONS	156 PUBLICATIONS 1,993 CITATIONS	
	SEE PROFILE	SEE PROFILE	
Some of	f the authors of this publication are also working on these related	l projects:	

Project Impact of lifestyle factors on human fertility View project

LISAplus Study View project

Benefits of influenza vaccination on the associations between ambient air pollution and allergic respiratory diseases in children and adolescents: New insights from the Seven Northeastern Cities study in China

Kangkang Liu, Shanshan Li, Zhengmin (Min) Qian, Shyamali C. Dharmage, Michael S. Bloom, Joachim Heinrich, Bin Jalaludin, Iana Markevych, Lidia Morawska, Luke D. Knibbs, Leslie Hinyard, Hong Xian, Shan Liu, Shao Lin, Ari Leskinen, Mika Komppula, Pasi Jalava, Marjut Roponen, Li-Wen Hu, Xiao-Wen Zeng, Wenbiao Hu, Gongbo Chen, Bo-Yi Yang, Yuming Guo, Guang-Hui Dong

PII: S0269-7491(19)32830-1

DOI: https://doi.org/10.1016/j.envpol.2019.113434

Reference: ENPO 113434

- To appear in: Environmental Pollution
- Received Date: 28 May 2019
- Revised Date: 16 October 2019
- Accepted Date: 17 October 2019

Please cite this article as: Liu, K., Li, S., Qian, Z.(M.), Dharmage, S.C., Bloom, M.S., Heinrich, J., Jalaludin, B., Markevych, I., Morawska, L., Knibbs, L.D., Hinyard, L., Xian, H., Liu, S., Lin, S., Leskinen, A., Komppula, M., Jalava, P., Roponen, M., Hu, L.-W., Zeng, X.-W., Hu, W., Chen, G., Yang, B.-Y., Guo, Y., Dong, G.-H., Benefits of influenza vaccination on the associations between ambient air pollution and allergic respiratory diseases in children and adolescents: New insights from the Seven Northeastern Cities study in China, *Environmental Pollution* (2019), doi: https://doi.org/10.1016/j.envpol.2019.113434.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2019 Published by Elsevier Ltd.

Jonuly

Benefits of influenza vaccination on the associations between ambient air pollution and allergic respiratory diseases in children and adolescents: New insights from the Seven Northeastern Cities Study in China

Kangkang Liu^{a,†}, Shanshan Li^{b,†}, Zhengmin (Min) Qian^c, Shyamali C. Dharmage^d, Michael S. Bloom^{ae}, Joachim Heinrich^f, Bin Jalaludin^g, Iana Markevych^{hif}, Lidia Morawska^j, Luke D. Knibbs^k, Leslie Hinyard^l, Hong Xian^c, Shan Liu^m, Shao Lin^e, Ari Leskinen^{no}, Mika Komppulaⁿ, Pasi Jalava^o, Marjut Roponen^o, Li-Wen Hu^a, Xiao-Wen Zeng^a, Wenbiao Hu^p, Gongbo Chen^q, Bo-Yi Yang^a, Yuming Guo^b, Guang-Hui Dong^{a*}

^a Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China

 ^b Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
 ^c Department of Epidemiology, College for Public Health and Social Justice, Saint Louis University, Saint Louis 63104, USA

^d Allergy and Lung Health Unit, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC 3052, Australia

^e Department of Environmental Health Sciences and Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, NY 12144, USA

^f Institute and Clinic for Occupational, Social and Environmental Medicine,

University Hospital, Ludwig-Maximilian-University, Munich 80336, Germany

^g School of Public Health and Community Medicine, The University of New South

Wales, Kensington, NSW 2052, Australia.

^h Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany

ⁱ Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, Munich, Ludwig-Maximilians-University of Munich, Munich, Germany

^j Queensland University of Technology, International Laboratory for Air Quality & Health, Science and Engineering Faculty, Brisbane, QLD, Australia

^k School of Public Health, The University of Queensland, Herston, Queensland 4006, Australia

¹Center for Health Outcomes Research, Saint Louis University, Saint Louis 63104, USA

^m NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100021, China

ⁿ Finnish Meteorological Institute, Kuopio 70211, Finland

^o Department of environmental and biological sciences, University of Eastern Finland, Kuopio 70211, Finland

^p School of Public Health and Social Work, Queensland University of Technology,
 Brisbane, 4059, Australia

^q Department of Global Health, School of Health Sciences, Wuhan University, Wuhan,

430000, China

*Address correspondence to:

Guang-Hui Dong, MD, PhD, Professor, Department of Preventive Medicine, School

of Public Health, Sun Yat-sen University, 74 Zhongshan 2nd Road, Yuexiu District,

Guangzhou 510080, China. Phone: +862087333409; Fax: +862087330446.

Email: donggh5@mail.sysu.edu.cn; donggh512@hotmail.com

[†]These authors contributed equally to this work and should both be list as the first author.

. sh

1 Abstract

2 Background

Little information exists on interaction effects between air pollution and influenza vaccination
on allergic respiratory diseases. We conduct a large population-based study to evaluate the
interaction effects between influenza vaccination and long-term exposure to ambient air
pollution on allergic respiratory diseases in children and adolescents.

7 Methods

8 A cross-sectional study was investigated during 2012-2013 in 94 schools from Seven Northeastern Cities (SNEC) in China. Questionnaires surveys were obtained from 56,137 9 children and adolescents aged 2-17 years. Influenza vaccination was defined as receipt of the 10 11 influenza vaccine. We estimated air pollutants exposure [nitrogen dioxide (NO₂) and 12 particulate matter with aerodynamic diameters $\leq 1 \mu m$ (PM₁), $\leq 2.5 \mu m$ (PM_{2.5}) and $\leq 10 \mu m$ (PM_{10})] using machine learning methods. We employed two-level generalized linear mix 13 effects model to examine interactive effects between influenza vaccination and air pollution 14 exposure on allergic respiratory diseases (asthma, asthma-related symptoms and allergic 15 rhinitis), after controlling for important covariates. 16

17 **Results**

We found statistically significant interactions between influenza vaccination and air pollutants on allergic respiratory diseases and related symptoms (doctor-diagnosed asthma, current wheeze, wheeze, persistent phlegm and allergic rhinitis). The adjusted ORs for doctor-diagnosed asthma, current wheeze and allergic rhinitis among the unvaccinated group

22	per interquartile range (IQR) increase in PM_1 and $PM_{2.5}$ were significantly higher than the
23	corresponding ORs among the vaccinated group [For PM1, doctor-diagnosed asthma: OR:
24	1.89 (95%CI: 1.57-2.27) vs 1.65 (95%CI: 1.36-2.00); current wheeze: OR: 1.50 (95%CI:
25	1.22-1.85) vs 1.10 (95%CI: 0.89-1.37); allergic rhinitis: OR: 1.38 (95%CI: 1.15-1.66) vs 1.21
26	(95%CI: 1.00-1.46). For PM _{2.5} , doctor-diagnosed asthma: OR: 1.81 (95%CI: 1.52-2.14) vs
27	1.57 (95%CI: 1.32-1.88); current wheeze: OR: 1.46 (95%CI: 1.21-1.76) vs 1.11 (95%CI:
28	0.91-1.35); allergic rhinitis: OR: 1.35 (95%CI: 1.14-1.60) vs 1.19 (95%CI: 1.00-1.42)]. The
29	similar patterns were observed for wheeze and persistent phlegm. The corresponding p values
30	for interactions were less than 0.05, respectively. We assessed the risks of PM_1 -related and
31	PM _{2.5} -related current wheeze were decreased by 26.67% (95%CI: 1.04%-45.66%) and 23.97%
32	(95%CI: 0.21%-42.08%) respectively, which was attributable to influenza vaccination (both p
33	for efficiency <0.05).

34 Conclusions

Influenza vaccination may play an important role in mitigating the detrimental effects of long-term exposure to ambient air pollution on childhood allergic respiratory diseases. Policy targeted at increasing influenza vaccination may yield co-benefits in terms of reduced allergic respiratory diseases.

39

40 *Keywords:* air pollutants, asthma, influenza vaccination, interaction effects, children and
41 adolescents

5

42 Introduction

43 Asthma which is the most common chronic respiratory diseases represents a high burden of disease (Soriano et al. 2017). More than 330 million people are affected, and the prevalence is 44 45 increasing every year in the world, particularly in developing countries (Campbell-Lendrum 46 et al. 2019; Tong 2019). Strong evidences exist on the detrimental impact of air pollution on 47 asthma and other allergic respiratory diseases (Keet et al. 2018; Thurston et al. 2017; Yang et al. 2018). In general, children are more vulnerable to the adverse respiratory health effects of 48 49 air pollution exposure compare with adults. This excess vulnerability to air pollution is attributed to children having immature airways and immune systems, inhaling more pollutants 50 relative to their body mass, and spending more time outdoors (Orellano et al. 2017; 51 52 Pennington et al. 2018). Another important reason is that the maternal exposure to air pollution during pregnancy may lead to childhood asthma and other allergic respiratory 53 diseases (Deng et al. 2016). Thus, exploration of the air pollution-asthma associations in 54 children and the possible preventive and control strategies is of great more significance for 55 56 decreasing the burden of allergic respiratory diseases.

57

There are growing concerns about the role of air pollution exposure in infectious diseases of public health relevance (MacIntyre et al. 2014), particularly influenza (CWS Chen et al. 2018). Influenza a global health issue often has severe morbidity and mortality, especially in high-risk populations (Watanabe et al. 2005). It is estimated that up to 85% of acute asthma exacerbations in children are associated with upper respiratory tract infections (Saraya et al.

63 2014). Influenza infection in patients with asthma may lead to severe influenza complications 64 and even death, due to the swollen and sensitive airways of asthmatic people and serious inflammation of airways and lungs from influenza infection (CDC 2017; Nicholas et al. 65 2017b). Acute asthma exacerbations due to influenza infections were account for 10% (Iikura 66 67 et al. 2015), 20.7% (Tan et al. 2003) and as high as 37.9% (Atmar et al. 1998). Though the mechanisms regarding the susceptibility of asthmatic people to virus infection are poorly 68 understood, it has been documented that virus bioaerosols (particulate matter carrying 69 70 nanoparticle-sized allergens or microorganisms) (Alonso et al. 2015; Jalava et al. 2015; Morakinyo et al. 2016) can deposit in the airways or alveoli of the lower respiratory tract. 71 And then it induce the skewing toward TH2 immunity from TH1 immunity response 72 (Message et al. 2008; Nicholas et al. 2017b; Oliver et al. 2014), which is similar to the 73 mechanisms of the detrimental effects of air pollutants (Guarnieri et al. 2014; Yang et al. 74 2017). Therefore, air pollution and influenza infection could both increase inflammatory 75 reaction and subsequent immune response, and then cause asthma attack or exacerbation or 76 77 other serious diseases.

Influenza vaccination greatly contributes to decreased morbidity and mortality due to influenza virus infections (WHO 2012). Although widely recommended for individuals at high risk, such as those with asthma, influenza vaccine uptake has not yet reached the target global coverage rate of 75% (Nair et al. 2011). Recently, a meta-analyses of 126 studies showed that pooled influenza vaccination rate was only 9.4% among general population in mainland China, while higher pooled proportions of 25.1% among children (aged 6 months

84 to17 years) (Wang et al. 2018). It is critical that influenza vaccine is recommended used for 85 preventing influenza and other chronic diseases such as asthma (Carroll et al. 2007; Glezen 2006). In terms of asthma risk, a recent review emphasized that influenza vaccination might 86 effectively protect against the risk of asthma and other respiratory diseases (Suarez-Varela et 87 88 al. 2018; Vasileiou et al. 2017). In addition, compare with the regions with low-concentration 89 of air pollution, detrimental effects of higher concentrations of air pollution exposure on respiratory health in China cannot be ignored anymore. However, no studies to date evaluated 90 91 the impact of influenza vaccination on air pollutant-respiratory disease associations in Chinese children. Therefore, we aimed to identify the hypothesis that influenza vaccination 92 modifies the association between long-term exposure to ambient air pollution and allergic 93 94 respiratory diseases in children and adolescents.

95

96 Material and methods

97 Ethics Statement

98 Ethical approval for this study was obtained from the Ethical Review Committee of Human 99 Experimentation at Sun Yat-sen University (Ethics Approval Number: 2016016). All 100 potentially identifiable information was removed to protect participants prior to initiation of 101 the retrospective analysis reported here. A written informed consent was collected from the 102 parents/guardians of each participant at the start of the study.

103 Study Site Selection and Participants Recruitment

The Seven Northeastern Cities (SNEC) study was a cross-sectional study conducted in seven 104 cities in the Liaoning province of China from April 2012 to May 2013. Liaoning is a largely 105 106 industrial area in China, with the majority of industrial companies located in the seven cities 107 represented in this study. Within the seven cities, we selected 27 administrative districts: six 108 in Shenvang, five in Dalian, four in Fushun, and three each in Anshan, Benxi, Dandong, and Liaoyang. In order to maximize the heterogeneity of the diversity of ambient air pollutants 109 110 and their concentrations, the air quality monitoring stations were chosen according to the 111 different levels of ambient air pollutant concentrations between 2009 and 2012 (Figure S1). 112 There was one local air quality monitoring station in each administrative district. We defined a 1.5 mile radius around every monitoring station as a buffer area for selecting schools, in 113 114 order to minimize the error of concentrations of air pollutants exposure. We randomly 115 selected one or two kindergartens, one or two elementary schools, and one or two middle 116 schools which were located within the buffer area of the monitoring station (dependent upon 117 the size of the schools, if the count of students of a school was less than 500, we selected 2 118 schools). Students were included in the study if they were continuous residents of their 119 current districts for at least four years. Due to Chinese requirements that children must enroll 120 in the school closest to their place of residence, all participants lived within 2 kilometers of 121 their school. We identified 68647 children in 27 administrative districts of the seven cities, of whom 59754 children completed the questionnaire survey. Excluding the missing information 122 of influenza vaccination, 56,137 children were enrolled in this study. For the analysis 123 124 presented here, we excluded children and adolescents with missing information regarding influenza vaccination. The final sample for the current study consisted of 56,137 children andadolescents (Fig 1).

127

[Figure 1 is about here]

128

129 Assessment of air pollution exposure

130 We have previously described the exposure assessment in details and a description can also be 131 found in the appendix methods (Dong et al. 2013). Concentrations of nitrogen dioxide (NO₂) 132 and particulate matter with aerodynamic diameters $\leq 1 \mu m$ (PM₁), $\leq 2.5 \mu m$ (PM_{2.5}), and \leq 133 10µm (PM₁₀) at school-level during 2009-2012 were assigned to every participant for the pollution exposure evaluation. These estimates were based on machine-learning methods 134 135 combining satellite remote sensing land use information and meteorological information at a resolution of $0.1^{\circ} \times 0.1^{\circ}$ as description in previously studies(G Chen et al. 2018a; G Chen et 136 al. 2018b; G Chen et al. 2018c). Briefly, daily particulate matters concentrations including 137 PM₁, PM_{2.5} PM₁₀ were estimated using ground-monitored PM₁, PM_{2.5} and PM₁₀, Moderate 138 Resolution Imaging Spectroradiometer (MODIS) products, aerosol optical depth data (AOD), 139 140 meteorological variables, land use information and other predictors. NO₂ concentrations were 141 estimated using satellite-derived OMI data. The ground measurement technique for pollutants 142 from air monitoring stations was carried out according to standards set by the State 143 Environmental Protection Administration of China (SEPA 1992), which are described in the supplementary materials. We developed a machine learning method (random forests) to link 144 145 the daily ground measurements of PM1, PM2.5 and PM10. 10-fold cross-validation was

performed to validate the estimation ability of the ground-level concentrations of air 146 pollutants, using previously described methods (G Chen et al. 2018b). The results of 10-fold 147 148 cross-validation were shown in Supplementary Material and Table S1. We assigned the 149 predictive air pollutants data from the 27 districts to each participant according to the home 150 addresses, which were geocoded as geographical longitude and latitude. Then the exposure parameters were calculated by averaging the daily concentration for pollutants during the 151 152 period 2009-2012. Given the air pollution level is related with the address of the participants, the exposure level of the participants kept stabled within 3-5 years. 153

154 **Questionnaire survey**

Health effects were assessed using a questionnaire from the Epidemiologic Standardization 155 156 Project Questionnaire of the American Thoracic Society (ATS-DLD-78-A) (Ferris 1978). The 157 ATS questionnaire is available in a Chinese translation and has been effectively utilized in 158 China before (Dong et al. 2011; Yang et al. 2018; Zhang et al. 2002). Before the survey 159 commenced, principals of all selected schools provided permission for the study. Teachers from each school were trained to administrator of the questionnaire and were responsible for 160 161 obtaining consent from the parents/guardians of student participants. The parents/guardians 162 were encouraged to attend a training session at the school on completing the questionnaires. 163 Alternatively, they could choose to take the questionnaire home and return it in a sealed 164 envelope after completion.

165

166 **Definitions of allergic respiratory diseases and symptoms**

Primary outcomes of interest were defined as follows: (1) doctor-diagnosed asthma: a doctor 167 had diagnosed repeated symptoms (i.e., wheezing, dyspnea, chest tightness, or nighttime or 168 169 early morning coughing); (2) current asthma: asthma paroxysm, asthma-like symptoms, or 170 asthma treatment in the last two years; (3) persistent cough: cough for more than four days 171 every week for at least three months in the past 12 months; (4) persistent phlegm: phlegm, sputum, or mucus from the chest more than four days every week for at least three months in 172 the past 12 months; (5) wheeze: wheeze or whistling when breathing regardless of whether 173 174 the child had a cold; (6) current wheeze: more than two episodes of wheezing in the last two years; and (7) allergic respiratory diseases: asthma paroxysm, asthma-like symptoms 175 (including persistent cough, persistent phlegm, or wheeze), or asthma treatment in the past 12 176 177 months. All above outcomes were dichotomized into Yes/No answers.

178

179 Influenza vaccination exposure

During the study period, the trivalent inactivated influenza vaccine had been approved and widely used for prevention of seasonal influenza infection in China. In the present study, children and adolescents were regarded as vaccinated if parents answered "yes" to the following survey question: "have you received influenza vaccine in the past three years?"

184

185 **Potential confounders**

186 Selection of covariates was guided by existing literature and the potential socioeconomic
187 confounding (Castro-Rodriguez et al. 2016; Civelek et al. 2011; Just et al. 2010). Thus,

188	covariates included: age (years), gender (boy/girl), low birth weight (Yes/No, defined as birth
189	weight < 2500 g), BMI (Body mass index, defined as weight in kilograms divided by height
190	in meters squared, kg/m ²), average temperature during period of the investigation (°C),
191	premature birth (<37 weeks/>37 weeks), breast-feeding (defined as having breastfed more
192	than 3 months; Yes/No), exercise time per week (hours/week), area of residence per person
193	(m ² /person), household income per year of the family (RMB), education of parents (>senior
194	high school/≤senior high school), environmental tobacco smoke exposure (Yes/No, defined
195	as living with families who smoke cigarettes daily in the house), and family history of allergic
196	diseases (Yes/No). We selected the covariates in the final model as confounders according to
197	the estimated effects for air pollutants in unvaccinated and vaccinated groups on the health
198	outcomes changed by at least 10% upon in the base model.
	$\sim \sigma$

A positive family history of allergies or asthma was defined as children and adolescents'
biological parents or grandparents reporting a diagnosis of hay fever, allergic conjunctivitis,
eczema, allergic rhinitis, or asthma. Children and adolescents with family history of allergies
or asthma were categorized as having an "allergic predisposition."

203

204 Statistical Analysis

We conducted the Shapiro-Wilk W test to examine the normality distribution and Bartlett test for unequal variances of the dataset. We described mean and standard deviation (SD) for continuous variables and frequency percentages for categorical variables respectively. Student's t-tests and Chi-square test for continuous and categorical variables, respectively to

209 compare the differences between the vaccinated group children and unvaccinated group 210 children. A two-level generalized linear mix effects model was used to evaluate associations 211 between health outcomes and PM₁, PM_{2.5}, PM₁₀, and NO₂ (Witte et al. 2000). Because of the high correlations between air pollutants (r > 0.70), only the single-pollutant models were used 212 213 in order to avoid multi-collinearity. We treated participants as the first-level units and the school as the second-level units. The school was as a cluster for random intercept in the 214 modeling. The details of this model are provided in the Supplementary Material and previous 215 studies (Dong et al. 2013). Influenza vaccination status was used to examine the modified 216 effects on the associations between ambient air pollution and allergic respiratory diseases. 217 218 The covariates including age, gender, obesity, low birth weight, premature birth, 219 breast-feeding status, exercise time per week, area of residence per person, household income, 220 education of parents, environment tobacco smoke exposure, family history of asthma, average 221 temperature during the time of investigation and districts for adjusting in the models. 222 In order to explore the interactive effects between each air pollutant and influenza vaccination status on children's respiratory allergic outcomes, a series of two-level logistic regression 223 224 models were built. These placed random effects on each air pollutant at the school-level, fixed effects on influenza vaccination at the individual level, and adjusted for the aforementioned 225

covariates (Dong et al. 2013). We incorporated cross-product terms between air pollutants and
influenza vaccination to investigate the two-level interaction on the multiplicative scale.
Results are presented as odds ratios (ORs) and their corresponding 95% confidence intervals
(95% CIs) to describe the adjusted associations. Meta-regression models with fixed-effects

230 within the study were built for assessing the efficiency of influenza vaccine for modifying the

risk of air pollutants on allergic respiratory diseases.

232 To evaluate the robustness of the key findings, a series of sensitivity analysis including 233 stratification by gender, allergic predisposition status, excluding indoor air pollution exposure 234 and excluding one of the districts were conducted. The details of the modeling are described in the appendix methods ("Statistical analysis"). Mixed effects modeling was carried out by 235 236 the GLIMMIX procedure in SAS v9.4 (SAS Institute Inc., Cary, NC). Meta-regression 237 modeling was carried out in R ver3.5.2. For all the tests, a two-tailed value of p < 0.05 was used to determine statistical significance, except for interaction terms and meta-regression 238 analysis (where p < 0.10 was used). 239

240

241 **Results**

The distributions of baseline characteristics of the study participants with and without 242 influenza vaccination are shown in Table 1. A total of the 56,137 children and adolescents 243 included in this analysis, 50.37% of them were boys and the average age of the participants 244 245 was 10.31 years (ranged 2-17 years). Within the sample, 6.95% of children and adolescents had a family history of asthma and 22.42% reported an allergic predisposition. There were 246 247 statistically significant differences in crude prevalence rates of allergic respiratory diseases 248 outcomes between vaccinated and unvaccinated participants, with the exception of wheeze and allergic rhinitis (Table 2). 249

250

251 [Table 1 is about ne

[Table 2 is about here]

253 Distribution of estimated air pollutants levels are summarized in Table 3. The 4-year annual 254 average PM_1 , $PM_{2.5}$, PM_{10} , and NO_2 concentrations were $47.21\mu g/m^3$, $55.08\mu g/m^3$, 255 $98.75\mu g/m^3$ and $35.43\mu g/m^3$, respectively.

256

257

[Table 3 is about here]

258

Overall, the positive associations between air pollutants and allergic respiratory diseases and 259 related symptoms were observed among all the participants, boys and girls (Table 4, 260 supplementary Table S8 and Table S9). We found statistically significant interactions 261 262 between influenza vaccination and ambient long-term air pollutants on allergic respiratory diseases and related symptoms (doctor-diagnosed asthma, current wheeze, wheeze, persistent 263 phlegm, and allergic rhinitis) (Table 4). Compared to children and adolescents who received 264 influenza vaccine, those without influenza vaccination had higher estimated ORs for all 265 associations between air pollutants and health outcomes (Table 4). The adjusted ORs for 266 267 doctor-diagnosed asthma, current wheeze and allergic rhinitis among the unvaccinated group 268 per interquartile range (IQR) increase in PM_1 and $PM_{2,5}$ were significantly higher than the 269 corresponding ORs among the vaccinated group [For PM₁, doctor-diagnosed asthma: OR: 270 1.89 (95%CI: 1.57-2.27) vs 1.65 (95%CI: 1.36-2.00); current wheeze: OR: 1.50 (95%CI: 271 1.22-1.85) vs 1.10 (95% CI: 0.89-1.37); allergic rhinitis: OR: 1.38 (95% CI: 1.15-1.66) vs 1.21

272	(95%CI: 1.00-1.46). For PM _{2.5} , doctor-diagnosed asthma: OR: 1.81 (95%CI: 1.52-2.14) vs
273	1.57 (95%CI: 1.32-1.88); current wheeze: OR: 1.46 (95%CI: 1.21-1.76) vs 1.11 (95%CI:
274	0.91-1.35); allergic rhinitis: OR: 1.35 (95%CI: 1.14-1.60) vs 1.19 (95%CI: 1.00-1.42)]. The
275	similar patterns were observed for wheeze and persistent phlegm. The corresponding p values
276	for interactions were less than 0.05, respectively. We assessed the risks of PM_1 -related and
277	PM _{2.5} -related current wheeze were decreased by 26.67% (95%CI: 1.04%-45.66%) and 23.97%
278	(95%CI: 0.21%-42.08%) respectively, which was attributable to influenza vaccination (both p
279	for efficiency <0.05).

280

[Table 4 is about here]

281

282 In stratified analysis by gender, significant interactions were mainly found for air pollutants and influenza vaccination on allergic outcomes including doctor-diagnosed asthma, current 283 284 wheeze, wheeze and allergic rhinitis in boys (Table S8-S9). For example, the significant 285 association for doctor-diagnosed asthma with PM₁₀ in the unvaccinated group (OR: 1.74, 286 95%CI: 1.46-2.07) was stronger than in the vaccinated group (OR: 1.39, 95%CI: 1.16-1.66) ($p_{\text{ for interaction}} < 0.05$). In contrast with the associations seen in boys, the interaction effects of 287 288 influenza vaccination exposure and air pollutants for girls were only statistically significant 289 for current wheeze (Table S9). Furthermore, the results from stratified analyses in age and allergic predisposition status indicated that younger children and children with allergic 290 291 predisposition were sensitivity to modification effects of influenza vaccination on the 292 associations between ambient air pollution and allergic respiratory diseases (Table S10-S14).

We did additional sensitivity analyses using di erent definitions of allergic respiratory diseases in the past three years and excluding one of 27 districts for sensitivity analysis, respectively, which indicated the similar patterns (Table S7, S15-S41).

296

297 Table 5 shows the interactions between air pollutants exposure and influenza vaccination states on allergic respiratory diseases in the past 12 months (Table 5). The interactions among 298 all the participants were statistical significant for all air pollutants and influenza vaccination 299 300 with allergic respiratory diseases in the past 12 months. The ORs and 95%CIs for the associations between air pollutant concentrations and allergic respiratory diseases were 301 consistently greater in the unvaccinated group than those in the vaccinated group. 302 303 Meta-regression analysis assessed the risks of the PM_{2.5}-related allergic respiratory diseases 304 were reduced 15.75% (95%CI: -3.04%-31.13%) attributable to influenza vaccine (Table 5) (p 305 for efficiency <0.10). In further stratified analyses by allergic predisposition, gender and excluding 306 indoor air pollution exposure, the patterns of the associations and interactions on the allergic respiratory diseases in the past 12 months persisted in all the subgroups (Fig 2, Table 307 308 S42-S44).

309

- 310
- 311
- 312

[Figure 2 is about here]

[Table 5 is about here]

313

314 **Discussion**

This study provides new evidence on the potential benefits of influenza vaccination against the detrimental health effects of long-term ambient air pollution exposure on allergic respiratory diseases. We found stronger associations of long-term exposure to air pollution with allergic respiratory diseases and related symptoms among children and adolescents who were not vaccinated against influenza compared to those were vaccinated against influenza, indicating that vaccination could decrease the detrimental effects of air pollution on allergic respiratory diseases.

In this study, we observed the prevalence rates of most of respiratory and allergic symptoms 322 were higher among vaccinated group than those among unvaccinated group. Regarding the 323 324 results, the possible explanations were as following: Firstly, Given the large sample size 325 (56137 participants) in this study, it is likely to observe the statistically significant differences 326 in the prevalence rates between the two groups. Secondly, influenza infection is associated 327 with asthma attack or severe complications (Feldman et al. 2019; Nicholas et al. 2017a). The asthmatic children's parents, especially the parents' with the history of asthma, were more 328 329 likely to be more concerns and prevent influenza infection by vaccination than those whose children without asthma. While, asthma a complicated allergic disease is influenced by many 330 331 factors, especially hereditary factor. Though influenza vaccine may prevent asthmatic children from influenza infection or asthma attack, the effectiveness of vaccine may not 332 enough to protect the children against hereditary factor. Thirdly, at the same time, we found 333 334 many studies explored the effectiveness of influenza vaccination on asthmatic people and the

impacts on asthma attack or other clinical outcomes, but the results were not fully consistent. 335 Recently a system review carried out by Eleftheria Vasileiou et al evaluated the effectiveness 336 337 and safety of influenza vaccine in asthmatic patients (Vasileiou et al. 2017). Three cohort 338 studies found the greater protective effects on asthma attacks in vaccinated group than unvaccinated group (Jaiwong et al. 2015; Kramarz et al. 2001; Watanabe et al. 2005). 339 340 Observational studies demonstrated that influenza vaccines effectiveness prevented 59%-78% of emergency visits and/or hospitalizations from asthma attacks or influenza infections 341 342 (Abadoglu et al. 2004; Sugaya et al. 1994). However, several epidemic and experimental 343 studies found there were no relationships between influenza vaccination and asthma attack or exacerbations (Kmiecik et al. 2007; Miller et al. 2003; Redding et al. 2002). A retrospective 344 345 cohort study of 800 children showed that the significantly higher risks of asthma in 346 emergency department visits and clinical visits among vaccinated group than those among 347 unvaccinated group (OR: 3.4 vs 1.9) (Christy et al. 2004). As the inconsistent results of these 348 studies, further epidemical or experimental studies are warranted.

349

The independent effects of air pollution or influenza vaccination on childhood allergic respiratory diseases have been extensively investigated (Dong et al. 2011; Goodman et al. 2017; Herbert et al. 2017; Ray et al. 2017; Yang et al. 2018). However, few studies have investigated potential effect modification by vaccination for high risk populations. A case-crossover study conducted in Taiwan, China, found that older people who were exposed to CO, NO₂, PM₁₀, or PM_{2.5} and did not receive the influenza vaccine were at greater risk of

356 acute coronary syndrome (ACS) compared to those who had received the vaccine (Huang et 357 al. 2016). A case-control study with 117 children from Tanzania showed that a higher risk for 358 severe pneumonia was associated with higher household air pollution exposure (OR: 5.5, 95% 359 CI: 1.4-22.1) and with delayed measles vaccination (OR: 3.9, 95% CI: 1.1-14.8) (PrayGod et 360 al. 2016). Although the previous studies and our study have different study designs, participant' characteristics, vaccine types, and health outcomes, findings from the previous 361 studies provide indirect support for our findings that vaccine might modify the adverse effects 362 363 of air pollution on allergic respiratory diseases. Overall, our findings provided the new some evidence on supporting the increase in influenza vaccine use for allergic respiratory diseases 364 in Chinese children and adolescents who expose to ambient air pollution. 365

366

The biological mechanisms underlying the modifying effects of influenza vaccination on 367 368 associations between air pollution exposure and asthma are not clear. One possible 369 explanation is the protection offered by influenza vaccination against asthma from influenza virus infection. Given the respiratory repercussions of an influenza virus infection, protection 370 371 from infection may also serve to protect from asthma and allergic respiratory triggers. 372 Another possibility is that particulate matters and NO₂ might induce oxidative stress, immune 373 response, and airway inflammation in asthmatic patients (Gruzieva et al. 2017; Saygin et al. 2017). The mechanism of immune response caused by air pollutant exposure may be similar 374 375 to that caused by respiratory virus infections (Nicholas et al. 2017b). Particulate matter carries 376 allergens or other microorganisms, including viruses, which are the smallest common

377 airborne aerosols with diameters less than 20 nanometers(Mentese et al. 2012). Viruses are unable to survive independently without attaching to other particles, such as PM_{2.5} or PM₁ 378 379 (Yang et al. 2011). These virus-carrying particles can be inhaled into the lower respiratory tract, which triggers an immune response and increases secretion and expression of 380 381 inflammatory cytokines. When the Th1 immune response skews towards to the Th2 immune response, the virus could exacerbate inflammation, resulting in chronic airway diseases, 382 383 asthma exacerbation, or virus infection complication(Guarnieri and Balmes 2014; Nicholas et al. 2017b). If influenza vaccine was inoculated into the body especially for high risk 384 individual, the antibody against for influenza virus will be produced. Meanwhile, 385 antibody-mediated immunity balance could be through the pathway of Th1/Th2, which might 386 387 be the same pathway of the immune response triggered by air pollutants. Then, influenza vaccine may be against the detrimental effects of particulate matters by the pathway of 388 389 immunity response. Therefore, influenza vaccination might play a role in mitigating the 390 detrimental effects of particulate matter on asthma and other allergic respiratory diseases.

391

Gender stratified analysis indicated that boys appeared to have greater effects interactions between influenza vaccination and air pollution on asthma, asthma-related symptoms, and allergic rhinitis compared to girls. The reason for the gender differences in the present study is not clear. One possible explanation is that sex hormones may play an important role in regulating the inflammatory response, as demonstrated in the mouse model(Blacquiere et al. 2010). Boys have a higher prevalence of asthma than girls during the prepubescent period due

398	to dysanapsis, smaller airway diameters resulting in immature lung function, and allergic
399	inflammation (Borish et al. 2005). Asthma in girls increases after puberty because of
400	increasing estrogen (Zein et al. 2015). Increasing sex hormones in girls may influence type
401	2-mediated or IL-17a-mediated airway inflammation. Influenza vaccination might decrease
402	the inflammatory response due to air pollution exposure (Zein and Erzurum 2015). Another
403	possible factor is that genes related to lipid metabolism may be modulated by levels of
404	testosterone in response to the influenza vaccine, leading to the differences between girls and
405	boys (Furman et al. 2014).
406	
407	Our study has several strengths. We had a large sample size and, therefore, adequate power to
408	detect modest effects. Additionally, we utilized a robust estimation of air pollution exposure,
409	with measures of environmental exposure for both home and school settings. Prior work has
410	typically only estimated environmental exposure either at home or at school. Finally, we
411	evaluated the interaction effects of PM ₁ exposure and influenza vaccination status on asthma,

413 as high surface area to volume ratio, which might result in the greater effects on respiratory tissues and adverse health outcomes (Mei et al. 2018). Thus, PM₁ exposure may play an 414 415 important role in asthma and other lower respiratory diseases.

asthma-related symptoms, and allergic rhinitis. It is reported that PM₁ particles are recognized

416

412

417 However, we should be cautious for some potential limitations of this study. First, this is a 418 cross-sectional study and we are unable to determine the temporality, i.e., whether the health

effect occurred after the pollution exposures or vaccination, which is a key criteria to assess 419 causality. Second, the ambient air pollution exposure data are assessed with machine learning 420 421 modeling, which may influence the precision of pollutant concentrations at the individual 422 level. This could lead to potential non-differential misclassification of exposure and the related bias would be towards the null. Third, there is the possibility of recall biases from 423 self-reported data on smoking, physical activity, physician diagnosis of asthma, asthma 424 symptom history, and influenza vaccination status. However, we believe that any such 425 426 misclassification would be non-differential and the results may have been under-estimated. Fourth, information regarding some potential confounding, such as asthma type, severity of 427 asthma (mild, moderate, or severe) and type of vaccine, was not available, and so residual or 428 unmeasured confounding is also a possibility. Last, the present study was conducted in areas 429 with high concentrations of air pollution in China. Thus, the findings may not be 430 generalizable to high-income countries with lower air pollutant concentrations. Nevertheless, 431 432 our results could provide reference values for countries with similar air pollution levels as well as a large sample with high pollution level to detect the pollution-vaccination interaction. 433 434 Given the above limitations of this study, further researches are warranted with better study 435 designs, more precise air pollution measurements, and adequately controlling for potential 436 confounders.

437 Conclusion

438 Our findings suggest that influenza vaccination could act as a buffer for the detrimental439 effects of air pollution on allergic respiratory diseases in children and adolescents. Policy

targeted at increasing influenza vaccination may yield co-benefits in terms of redrespiratory diseases.	luced allergic
441 respiratory diseases.	
442	
443	
444	
445 References	
446 Abadoglu, et al. 2004. Influenza vaccination in patients with asthma: Effect on the	e frequency
447 of upper respiratory tract infections and exacerbations. The Journal of asthma	a : official
448 journal of the Association for the Care of Asthma 41:279-283.	
449 Alonso, et al. 2015. Concentration, size distribution, and infectivity of airborne pa	articles
450 carrying swine viruses. PloS one 10:e0135675.	
451 Atmar, et al. 1998. Respiratory tract viral infections in inner-city asthmatic adults	s. Archives
452 of internal medicine 158:2453-2459.	
453 Blacquiere, et al. 2010. Airway inflammation and remodeling in two mouse mode	els of asthma:
454 Comparison of males and females. International archives of allergy and imm	unology
455 153:173-181.	
456 Borish, et al. 2005. Total serum ige levels in a large cohort of patients with severe	e or
457 difficult-to-treat asthma. Annals of allergy, asthma & immunology : official j	publication
458 of the American College of Allergy, Asthma, & Immunology 95:247-253.	
459 Campbell-Lendrum, Pruss-Ustun. 2019. Climate change, air pollution and noncor	mmunicable
460 diseases. Bulletin of the World Health Organization 97:160-161.	1 .1
461 Carroll, Burkimsher. 2007. Is there any evidence for influenza vaccination in child	dren with
462 astrina? Arch Dis Child 92:644-645.	What is the
405 Castro-Rounguez, et al. 2010. Kisk and protective factors for clinical of allergy and alinical immunology. In practice 4:1111	
404 evidence? The journal of anergy and chinical minumology in practice 4.1111 465 CDC 2017 Centers for disease control and prevention of united states. Elu and p	-1122.
405 CDC. 2017. Centers for disease control and prevention of united states. Fut and p	eople with
467 Chen et al 2018 Causality test of ambient fine particles and human influenza in	taiwan [.] Age
468 group-specific disparity and geographic heterogeneity. Environment internati	ional
469 111:354-361	Ionui
470 Chen et al 2018a Estimating spatiotemporal distribution of pm1 concentrations	in china
471 with satellite remote sensing, meteorology, and land use information. Enviro	nmental
472 pollution (Barking, Essex : 1987) 233:1086-1094.	
473 Chen, et al. 2018b. A machine learning method to estimate pm2.5 concentrations	across china
474 with remote sensing, meteorological and land use information. The Science of	of the total
475 environment 636:52-60.	

	Dra	nraat
JUUIIIAI		μισσι

476	Chen, et al. 2018c. Spatiotemporal patterns of pm10 concentrations over china during			
477	2005-2016: A satellite-based estimation using the random forests approach.			
478	Environmental pollution (Barking, Essex : 1987) 242:605-613.			
479	Christy, et al. 2004. Effectiveness of influenza vaccine for the prevention of asthma			
480	exacerbations. Arch Dis Child 89:734-735.			
481	Civelek, et al. 2011. Risk factors for current wheezing and its phenotypes among elementary			
482	school children. Pediatr Pulmonol 46:166-174.			
483	Deng, et al. 2016. Exposure to outdoor air pollution during trimesters of pregnancy and			
484	childhood asthma, allergic rhinitis, and eczema. Environmental research 150:119-127.			
485	Dong, et al. 2011. Gender differences and effect of air pollution on asthma in children with			
486	and without allergic predisposition: Northeast chinese children health study. PloS one			
487	6:e22470.			
488	Dong, et al. 2013. Obesity enhanced respiratory health effects of ambient air pollution in			
489	chinese children: The seven northeastern cities study. International journal of obesity			
490	(2005) 37:94-100.			
491	Feldman, et al. 2019. Estimating age-specific influenza-associated asthma morbidity in			
492	ontario, canada. Respir Med 155:104-112.			
493	Ferris. 1978. Epidemiology standardization project (american thoracic society). The American			
494	review of respiratory disease 118:1-120.			
495	Furman, et al. 2014. Systems analysis of sex differences reveals an immunosuppressive role			
496	for testosterone in the response to influenza vaccination. Proceedings of the National			
497	Academy of Sciences of the United States of America 111:869-874.			
498	Glezen. 2006. Asthma, influenza, and vaccination. The Journal of allergy and clinical			
499	immunology 118:1199-1206; quiz 1207-1198.			
500	Goodman, et al. 2017. Ambient ozone and asthma hospital admissions in texas: A time-series			
501	analysis. Asthma research and practice 3:6.			
502	Gruzieva, et al. 2017. Exposure to traffic-related air pollution and serum inflammatory			
503	cytokines in children. Environmental health perspectives 125:067007.			
504	Guarnieri, Balmes. 2014. Outdoor air pollution and asthma. Lancet 383:1581-1592.			
505	Herbert, Kumar. 2017. Ambient air pollution and asthma. The European respiratory journal			
506	49:1700230.			
507	Huang, et al. 2016. Influenza vaccination and the endurance against air pollution among			
508	elderly with acute coronary syndrome. Vaccine 34:6316-6322.			
509	Iikura, et al. 2015. The importance of bacterial and viral infections associated with adult			
510	asthma exacerbations in clinical practice. PloS one 10:e0123584.			
511	Jaiwong, Ngamphaiboon. 2015. Effects of inactivated influenza vaccine on respiratory			
512	illnesses and asthma-related events in children with mild persistent asthma in asia. Asian			
513	Pacific journal of allergy and immunology 33:3-7.			
514	Jalava, et al. 2015. Chemical and microbial components of urban air pm cause seasonal			
515	variation of toxicological activity. Environ Toxicol Pharmacol 40:375-387.			
516	Just, et al. 2010. Impact of innate and environmental factors on wheezing persistence during			
517	childhood. The Journal of asthma : official journal of the Association for the Care of			
518	Asthma 47:412-416.			

519 Keet, et al. 2018. Long-term coarse particulate matter exposure is associated with asthma among children in medicaid. Am J Respir Crit Care Med 197:737-746. 520 521 Kmiecik, et al. 2007. Influenza vaccination in adults with asthma: Safety of an inactivated 522 trivalent influenza vaccine. The Journal of asthma : official journal of the Association for 523 the Care of Asthma 44:817-822. 524 Kramarz, et al. 2001. Does influenza vaccination prevent asthma exacerbations in children? 525 The Journal of pediatrics 138:306-310. 526 MacIntyre, et al. 2014. Air pollution and respiratory infections during early childhood: An analysis of 10 european birth cohorts within the escape project. Environmental health 527 528 perspectives 122:107-113. 529 Mei, et al. 2018. Early-life exposure to three size-fractionated ultrafine and fine atmospheric particulates in beijing exacerbates asthma development in mature mice. Particle and fibre 530 531 toxicology 15:13. 532 Mentese, et al. 2012. Multiple comparisons of organic, microbial, and fine particulate 533 pollutants in typical indoor environments: Diurnal and seasonal variations. Journal of the 534 Air & Waste Management Association (1995) 62:1380-1393. 535 Message, et al. 2008. Rhinovirus-induced lower respiratory illness is increased in asthma and 536 related to virus load and th1/2 cytokine and il-10 production. Proceedings of the National 537 Academy of Sciences of the United States of America 105:13562-13567. 538 Miller, et al. 2003. T-cell responses and hypersensitivity to influenza and egg antigens among 539 adults with asthma immunized with the influenza vaccine. The Journal of allergy and 540 clinical immunology 112:606-608. Morakinyo, et al. 2016. Health outcomes of exposure to biological and chemical components 541 542 of inhalable and respirable particulate matter. International journal of environmental 543 research and public health 13: pii: E592. 544 Nair, et al. 2011. Global burden of respiratory infections due to seasonal influenza in young 545 children: A systematic review and meta-analysis. Lancet 378:1917-1930. 546 Nicholas, et al. 2017a. Susceptibility to influenza virus infection of bronchial biopsies in 547 asthma. The Journal of allergy and clinical immunology 140:309-312.e304. 548 Nicholas, et al. 2017b. Susceptibility to influenza virus infection of bronchial biopsies in 549 asthma. The Journal of allergy and clinical immunology 140:309-312 e304. 550 Oliver, et al. 2014. Viral infections and asthma: An inflammatory interface? The European 551 respiratory journal 44:1666-1681. 552 Orellano, et al. 2017. Effect of outdoor air pollution on asthma exacerbations in children and 553 adults: Systematic review and multilevel meta-analysis. PloS one 12:e0174050. 554 Pennington, et al. 2018. Exposure to mobile source air pollution in early-life and childhood 555 asthma incidence: The kaiser air pollution and pediatric asthma study. Epidemiology 556 29:22-30. 557 PrayGod, et al. 2016. Indoor air pollution and delayed measles vaccination increase the risk of 558 severe pneumonia in children: Results from a case-control study in mwanza, tanzania. 559 PloS one 11:e0160804. 560 Ray, et al. 2017. Asthma exacerbations among asthmatic children receiving live attenuated versus inactivated influenza vaccines. Vaccine 35:2668-2675. 561

562	Redding, et al. 2002. Safety and tolerability of cold-adapted influenza virus vaccine in			
563	children and adolescents with asthma. The Pediatric infectious disease journal 21:44-48.			
564	Saraya, et al. 2014. Epidemiology of virus-induced asthma exacerbations: With special			
565	reference to the role of human rhinovirus. Frontiers in microbiology 5:226.			
566	Saygin, et al. 2017. To investigate the effects of air pollution (pm10 and so2) on the			
567	respiratory diseases asthma and chronic obstructive pulmonary disease. Turkish thoracic			
568	journal 18:33-39.			
569	SEPA. 1992. State environmental protection administration of china, standardized			
570	environmental monitoring and analysis methods, sepa. Beijing, china. State			
571	Environmental Protection Administration of China.			
572	Soriano, et al. 2017. Global, regional, and national deaths, prevalence, disability-adjusted life			
573	years, and years lived with disability for chronic obstructive pulmonary disease and			
574	asthma, 1990-2015: A systematic analysis for the global burden of disease study 2015.			
575	Lancet Resp Med 5:691-706.			
576	Suarez-Varela, et al. 2018. Asthma and influenza vaccination in elderly hospitalized patients:			
577	Matched case-control study in spain. The Journal of asthma : official journal of the			
578	Association for the Care of Asthma 55:391-401.			
579	Sugaya, et al. 1994. Efficacy of inactivated vaccine in preventing antigenically drifted			
580	influenza type a and well-matched type b. JAMA : the journal of the American Medical			
581	Association 272:1122-1126.			
582	Tan, et al. 2003. Epidemiology of respiratory viruses in patients hospitalized with near-fatal			
583	asthma, acute exacerbations of asthma, or chronic obstructive pulmonary disease. The			
584	American journal of medicine 115:272-277.			
585	Thurston, et al. 2017. A joint ers/ats policy statement: What constitutes an adverse health			
586	effect of air pollution? An analytical framework. The European respiratory journal 49: pii:			
587	1600419.			
588	Tong. 2019. Air pollution and disease burden. The Lancet Planetary health 3:e49-e50.			
589	Vasileiou, et al. 2017. Effectiveness of influenza vaccines in asthma: A systematic review and			
590	meta-analysis. Clinical infectious diseases : an official publication of the Infectious			
591	Diseases Society of America 65:1388-1395.			
592	Wang, et al. 2018. Influenza vaccination coverage of population and the factors influencing			
593	influenza vaccination in mainland china: A meta-analysis. Vaccine 36:7262-7269.			
594	Watanabe, et al. 2005. Prevention of asthma exacerbation with vaccination against influenza			
595	in winter season. Allergology International 54:305-309.			
596	WHO. 2012. Vaccines against influenza who position paper - november 2012. Releve			
597	epidemiologique hebdomadaire 87:461-476.			
598	Witte, et al. 2000. Multilevel modeling in epidemiology with glimmix. Epidemiology			
599	11:684-688.			
600	Yang, et al. 2011. Concentrations and size distributions of airborne influenza a viruses			
601	measured indoors at a health centre, a day-care centre and on aeroplanes. Journal of the			
602	Royal Society, Interface / the Royal Society 8:1176-1184.			
603	Yang, et al. 2017. The environment, epigenome, and asthma. The Journal of allergy and			
604	clinical immunology 140:14-23.			

605 606	Yang, et al. 2018. Is smaller worse? New insights about associations of pm1 and respiratory health in children and adolescents. Environment international 120:516-524.
607	Zein, Erzurum. 2015. Asthma is different in women. Current allergy and asthma reports
608	15:28.
609 610	Zhang, et al. 2002. Children's respiratory morbidity prevalence in relation to air pollution in four chinese cities. Environmental health perspectives 110:961 967
010 C11	Tour ennièse entes. Environmental neatur perspectives 110.901-907.
011	
612	
613	
614	
615	
616	
617	Declaration of interests
618	We declare no competing interests.
619	Acknowledgements
620	The authors acknowledge the cooperation of participants in this study who have been very
621	generous with their time and assistance.
622	Funding
623	The study was supported by the Major Program of National Natural Science Foundation of
624	China (No. 91543208), the Science and Technology Program of Guangzhou (No.
625	201807010032, No. 201803010054), the National Natural Science Foundation of China (No.
626	81673128, No. 81703179), the National Key Research and Development Program of China
627	(No. 2016YFC0207000), the Guangdong Provincial Natural Science Foundation Team
628	Project (No. 2018B030312005), and the Guangdong Province Natural Science Foundation
629	(No. 2017A050501062, No. 2017A090905042, No. 2018B05052007). YG was supported by
629 630	(No. 2017A050501062, No. 2017A090905042, No. 2018B05052007). YG was supported by the Career Development Fellowship of Australian National Health and Medical Research
629 630 631	(No. 2017A050501062, No. 2017A090905042, No. 2018B05052007). YG was supported bythe Career Development Fellowship of Australian National Health and Medical ResearchCouncil (No. APP1107107). KL was supported by the Postdoctoral Science Foundation of

633 Author contributors

- K.L. and G.D. analyzed the data and wrote the manuscript. S.L., Z.Q., S.C.D., M.S.B., J.H.,
- 635 B.J., I.M., L.M., L.D.K., L.H., H.X., S.L., S.L., A.L., M.K., P.J., M.R., L.H., X.Z., W.H., G.C
- and B.Y. contributed to the design of the study and reviewed and edited the manuscript. Y.G.
- 637 and G.D. interpreted the data, conceived the research, provided overall supervision, and
- 638 reviewed and edited the manuscript. G.D. is the guarantor of this work and takes
- 639 responsibility for the integrity of the data and the accuracy of the data analysis.

640 ***Address correspondence to:**

- 641 Guang-Hui Dong, MD, PhD, Professor, Department of Preventive Medicine, School of Public
- 642 Health, Sun Yat-sen University, 74 Zhongshan 2nd Road, Yuexiu District, Guangzhou
- 643 510080, China. Phone: +862087333409; Fax: +862087330446.
- 644 Email: donggh5@mail.sysu.edu.cn; donggh512@hotmail.com.

645 Table 1 Distribution of basic characteristics and potential confounders among children in

646 northeast China stratified by influenza vaccination status.

647

Variables	Total	Unvaccinated	Vaccinated
Continuous Variables	Mean ± SD	Mean \pm SD	Mean \pm SD
Age	10.31±3.59	10.77±3.35	9.62±3.81
Height (cm)	143.96±21.68	146.73±20.25	139.86±23.03
Weight (kg)	39.99±16.15	41.57±15.75	37.65±16.44
Exercise time per week (hours/week)	6.71±8.01	6.70±7.91	6.40±8.15
Area of residence per person $(m^2/person)$	23.74±12.19	23.73±11.75	23.75±12.82
Categorical variables	n (%)	n (%)	n (%)
Gender			
Boys	28275 (50.37)	16848 (50.29)	11427 (50.48)
Girls	27862 (49.63)	16653 (49.71)	11209 (49.52)
Breast feeding [*]	37755 (67.26)	22898 (68.35)	14857 (65.63)
Low birth weight	2071 (3.69)	1193 (3.56)	878 (3.88)
Premature birth [*]	3049 (5.43)	1660 (4.96)	1389 (6.14)
Caesarean birth [*]	27491 (48.97)	16182 (48.30)	11309 (49.96)
Education level of parents [*]			
>Senior high school	41563 (74.04)	25149 (75.07)	16414 (72.51)
\leq Senior high school	14574 (25.96)	8352 (24.93)	6222 (27.49)
Household income per			
year (RMB) [*]			
<10 000	11602 (20.67)	6699 (20.00)	4903 (21.66)
10 000 - 30 000	20578 (36.66)	12339 (36.83)	8239 (36.40)
30 000 - 100 000	19999 (35.63)	12366 (36.91)	7633 (33.72)
>100 000	3958 (7.05)	2097 (6.26)	1861 (8.22)
Environmental tobacco smoke exposure *	26512 (47.23)	15584 (46.52)	10928 (48.28)
Family history of asthma	3899 (6.95)	2289 (6.83)	1610 (7.11)
Allergic predisposition [*]	12585 (22.42)	7707 (23.01)	4878 (21.55)

648 Abbreviations: RMB, Chinese Renminbi; SD: standard deviation.

⁶⁴⁹ ^{*}Indicates statistically significant different between children and adolescents with and without

650 influenza vaccination at p < 0.05.

Table 2 Distribution of health outcomes among children and adolescents in northeast China

652 strati	fied by influenza	a vaccination	status.
------------	-------------------	---------------	---------

653

Variables	Unvaccinated	Vaccinated	<i>p</i> -value			
variables	n=33501, n (%)	n=22636, n (%)				
Doctor-diagnosed asthma						
No	31048 (92.68)	20744 (91.64)	< 0.001			
Yes	2453 (7.32)	1892 (8.36)				
Current asthma						
No	32651 (97.46)	21936 (96.91)	< 0.001			
Yes	850 (2.54)	700 (3.09)				
Current wheeze						
No	32263 (96.30)	21607 (95.45)	< 0.001			
Yes	1238 (3.70)	1029 (4.55)				
Wheeze						
No	29594 (88.34)	19988 (88.30)	0.897			
Yes	3907 (11.66)	2648 (11.70)				
Persistent cough						
No	31489 (93.99)	20887 (92.27)	< 0.001			
Yes	2012 (6.01)	1749 (7.73)				
Persistent phlegm						
No	32613 (97.35)	21763 (96.14)	< 0.001			
Yes	888 (2.65)	873 (3.86)				
Allergic rhinitis						
No	30314 (90.49)	20428 (90.25)	0.341			
Yes	3187 (9.51)	2208 (9.75)				

654

Air pollutants	Mean	SD	Median	Minimum	Maximum	IQR	NA AQS *	WHO guideline [†]
PM_1	47.21	5.76	48.97	38.15	56.20	11.45		
PM _{2.5}	55.08	6.19	56.23	46.04	65.58	11.53	35	10
PM_{10}	98.75	9.91	101.02	75.90	114.56	17.09	100	20
NO_2	35.43	4.43	37.11	20.57	42.59	7.70	40	40
Temperat ure $(^{\circ}C)^{\ddagger}$	15.95	5.41	17.00	1.50	27.50	7.00		

Table 3 Description of ambient air pollution concentrations ($\mu g/m^3$) in northeast China. 656

657 Abbreviations: PM_1 , airborne particulates with aerodynamic diameter < 1 μ m; $PM_{2.5}$, airborne

658 particulates with aerodynamic diameter < 2.5μ m; PM₁₀, airborne particulates with

659 aerodynamic diameter < 10μm; NO₂, nitrogen dioxide; SD: standard deviation; IQR:

660 interquartile range (range from 25th to 75th percentile of district-specific concentrations);

661 NAAQS: National Ambient Air Quality Standards of China.

, o^jſ

^{*}Annual National Ambient Air Quality Standards of China in 2012; no guidelines for PM₁.

[†]World Health Organization's 2005 air quality guidelines; no guidelines for PM₁.

[†]Temperature during time of investigation.

Table 4 Adjusted ORs and 95% CIs for the associations between ambient air pollutants and

asthma, asthma-related symptoms and allergic rhinitis stratified by influenza vaccination

status.

Variables	Total OR (95% CI) ^{†*}	Unvaccinated OR (95% CI) [†]	Vaccinated OR (95% CI) [†]	<i>p</i> interaction value *	Efficiency (%)	<i>p</i> _{efficiency} value
Doctor-diag	gnosed asthma					
PM_1	1.78 (1.49,2.13)	1.89 (1.57,2.27)	1.65 (1.36,2.00)	0.048	12.70 (-13.98,33.14)	0.318
PM _{2.5}	1.70 (1.45,2.01)	1.81 (1.52,2.14)	1.57 (1.32,1.88)	0.025	13.26 (-10.92,32.18)	0.257
PM_{10}	1.60 (1.38,1.86)	1.71 (1.46,2.01)	1.46 (1.24,1.72)	0.007	14.62 (-7.31,32.08)	0.176
NO_2	1.58 (1.36,1.84)	1.70 (1.44,1.99)	1.43 (1.21,1.69)	0.006	15.88 (-6.13,33.33)	0.145
Current ast	hma					
\mathbf{PM}_1	1.78 (1.39,2.28)	1.86 (1.43,2.42)	1.67 (1.26,2.22)	0.368	10.22 (-32.14,39.00)	0.585
PM _{2.5}	1.72 (1.37,2.15)	1.80 (1.42,2.29)	1.61 (1.25,2.07)	0.267	10.56 (-26.59,36.81)	0.529
PM_{10}	1.65 (1.34,2.03)	1.73 (1.39,2.16)	1.54 (1.22,1.95)	0.262	10.98 (-22.80,35.48)	0.479
NO_2	1.64 (1.34,2.02)	1.74 (1.39,2.18)	1.51 (1.19,1.93)	0.201	13.22 (-20.73,37.63)	0.400
Current wh	ieeze					
\mathbf{PM}_1	1.32 (1.09,1.60)	1.50 (1.22,1.85)	1.10 (0.89,1.37)	0.001	26.67 (1.04,45.66)	0.043
PM _{2.5}	1.30 (1.09,1.54)	1.46 (1.21,1.76)	1.11 (0.91,1.35)	0.002	23.97 (0.21,42.08)	0.048
PM_{10}	1.28 (1.10,1.50)	1.44 (1.21,1.72)	1.10 (0.92,1.32)	0.001	23.61 (1.72,40.63)	0.036
NO_2	1.29 (1.10,1.51)	1.47 (1.23,1.75)	1.09 (0.91,1.31)	0.001	25.85 (4.46,42.45)	0.021
Wheeze						
\mathbf{PM}_1	1.25 (1.11,1.41)	1.35 (1.18,1.53)	1.11 (0.96,1.27)	0.001	17.78 (0.48,32.07)	0.044
PM _{2.5}	1.24 (1.11,1.38)	1.33 (1.18,1.50)	1.10 (0.97,1.25)	< 0.001	17.29 (1.52,30.54)	0.033
PM_{10}	1.21 (1.10,1.34)	1.30 (1.17,1.45)	1.09 (0.97,1.23)	< 0.001	16.15 (1.60,28.55)	0.031
NO_2	1.19 (1.08,1.32)	1.27 (1.14,1.42)	1.09 (0.97,1.22)	0.003	14.17 (-0.58,26.77)	0.059
Persistent c	ough					
\mathbf{PM}_1	1.35 (1.13,1.60)	1.38 (1.13,1.68)	1.32 (1.08,1.61)	0.665	4.35 (-26.72,27.81)	0.757
PM _{2.5}	1.32 (1.12,1.54)	1.36 (1.13,1.63)	1.28 (1.06,1.54)	0.514	5.88 (-22.25,27.55)	0.650
PM_{10}	1.26 (1.09,1.46)	1.28 (1.08,1.51)	1.25 (1.06,1.48)	0.806	2.34 (-23.70,22.91)	0.844
NO_2	1.24 (1.07,1.44)	1.24 (1.05,1.47)	1.24 (1.04,1.47)	0.986	0.00 (-27.28,21.44)	1.000
Persistent p	hlegm					
\mathbf{PM}_1	1.38 (1.17,1.62)	1.46 (1.23,1.74)	1.28 (1.07,1.53)	0.066	12.33 (-12.46,31.66)	0.301
PM _{2.5}	1.34 (1.16,1.56)	1.42 (1.21,1.66)	1.26 (1.07,1.48)	0.070	11.27 (-11.28,29.25)	0.301
PM_{10}	1.29 (1.12,1.47)	1.34 (1.16,1.56)	1.22 (1.05,1.42)	0.112	8.96 (-12.48,26.31)	0.385
NO_2	1.26 (1.10,1.44)	1.32 (1.14,1.53)	1.19 (1.02,1.39)	0.097	9.85 (-11.60,27.18)	0.341
Allergic rhi	nitis					
PM_1	1.31 (1.10,1.56)	1.38 (1.15,1.66)	1.21 (1.00,1.46)	0.024	12.32 (-14.12,32.64)	0.328
PM _{2.5}	1.28 (1.09,1.51)	1.35 (1.14,1.60)	1.19 (1.00,1.42)	0.026	11.85 (-12.48,30.93)	0.311
PM_{10}	1.23 (1.06,1.43)	1.30 (1.11,1.52)	1.15 (0.98,1.35)	0.015	11.54 (-10.70,29.32)	0.284
NO_2	1.22 (1.05,1.42)	1.30 (1.11,1.52)	1.12 (0.95,1.31)	0.005	13.85 (-7.86,31.19)	0.194

^{*}Adjusted by age, gender, obesity, low birth weight, premature birth, breast-feeding status,

669 exercise time per week, area of residence per person, household income, education of parents,

670 smoking exposure, family history of asthma, average temperature during investigation and671 districts.

[†]ORs were scaled to the interquartile range for each pollutant (11.45 μ g/m³ for PM₁; 11.53

673 $\mu g/m^3$ for PM_{2.5}; 17.09 $\mu g/m^3$ for PM₁₀; and 7.70 $\mu g/m^3$ for NO₂).

674 Table 5 Adjusted ORs and 95%CIs for the associations between ambient air pollution and

allergic respiratory diseases attack in the past 12 months among children and adolescents in 675

676 northeast China.

677

Variables	Total ^{†*}	Unvaccinated OR (95% CI) [†]	Vaccinated OR (95% CI) [†]	<i>p</i> interaction value	Efficiency (%)	p _{efficiency} value
PM_1	1.30 (1.11,1.51)	1.51 (1.30,1.75)	1.26 (1.07,1.47)	0.001	16.56 (-3.71,32.87)	0.103
PM _{2.5}	1.26 (1.10,1.46)	1.46 (1.27,1.68)	1.23 (1.07,1.43)	0.001	15.75 (-3.04,31.13)	0.095
PM_{10}	1.23 (1.08,1.40)	1.40 (1.23,1.59)	1.20 (1.05,1.37)	0.002	14.29 (-3.11,28.75)	0.102
NO_2	1.23 (1.08,1.40)	1.39 (1.22,1.58)	1.16 (1.02,1.33)	< 0.001	16.55 (-0.43,30.66)	0.056

678

^{*}Adjusted by age, gender, obesity, low birth weight, premature birth, breast-feeding status, 679

680 exercise time per week, area of residence per person, household income, education of parents,

681 smoking exposure, family history of asthma, average temperature during investigation and districts.

682

[†]ORs were scaled to the interquartile range for each pollutant (11.45 μ g/m³ for PM₁; 11.53 683

 $\mu g/m^3$ for PM_{2.5}; 17.09 $\mu g/m^3$ for PM₁₀; and 7.70 $\mu g/m^3$ for NO₂). 684

OULUS

Allergic respiratory diseases: asthma paroxysm, asthma-like symptoms (including persistent 685

cough, persistent phlegm, or wheeze), or asthma treatment in the past 12 months. 686

Non-influenza vaccination

Influenza vaccination

Variables	OR (95% CI)	P interaction Value
Boys		
PM1	_	0.028
PM2·5	+	0.045
PM10	_	0.045
NO2	_	0.023
Girls		
PM1	_	0.038
PM2·5	_	0.023
PM10	• •	0.030
NO2	++	0.010
Children with allergic p	redisposition	
PM1	• • • • • • • • • • • • • • • • • • •	0.023
PM2·5	• •	0.019
PM10	++	0.030
NO2	\	0.024
Children without allerg	ic predisposition	
PM1	• • • • • • • • • • • • • • • • • • •	0.025
PM2·5	• • •	0.032
PM10	• • •	0.029
NO2	++	0.007
Children excluding indo	oor exposure	
PM1		0.028
PM2·5		0.023
PM10	◆	0.046
NO2	• • • • • • • • • • • • • • • • • • •	0.051
	0.8 1 1.3	1.9

691

Fig 2 Adjusted ORs and 95%CIs for the associations between ambient air pollutants and
allergic respiratory diseases in the past 12 month residing in northeast China, stratified by
allergic predisposition and gender, respectively.

- 695 Adjusted by age, gender, obesity, low birth weight, premature birth, breast-feeding status,
- 696 exercise time per week, area of residence per person, household income, education of parents,
- 697 smoking exposure, family history of asthma, average temperature during investigation and698 districts.
- 699 ORs were scaled to the interquartile range for each pollutant (11.45 μ g/m³ for PM₁; 11.53
- 700 $\mu g/m^3$ for PM_{2.5}; 17.09 $\mu g/m^3$ for PM₁₀; and 7.70 $\mu g/m^3$ for NO₂).
- 701 Allergic predisposition: any biological parent or grandparent with diagnosed hay fever or
- allergies (including allergic dermatitis, allergic conjunctivitis, and eczema).
- 703

704 Figure legends

- 705 **Fig 1** Sampling process for Seven Northeast Cities Study in China.
- 706 Fig 2 Adjusted ORs and 95% CIs for the associations between ambient air pollutants and
- allergic respiratory diseases in the past 12 month in northeast China, stratified by allergic
- 708 predisposition, gender and excluding indoor air pollution exposure, respectively.
- Adjusted by age, gender, obesity, low birth weight, premature birth, breast-feeding status,
- 710 exercise time per week, area of residence per person, household income, education of parents,
- smoking exposure, family history of asthma, average temperature during investigation and
- 712 districts. ORs were scaled to the interquartile range for each pollutant (11.45 μ g/m³ for PM₁;
- 713 11.53 μ g/m³ for PM_{2.5}; 17.09 μ g/m³ for PM₁₀; and 7.70 μ g/m³ for NO₂).
- 714 Allergic predisposition: any biological parent or grandparent with diagnosed hay fever or
- 715 allergies (including allergic dermatitis, allergic conjunctivitis, and eczema).
- 716 **Table 1** Distribution of basic characteristics and potential confounders among children in
- 717 northeast China stratified by influenza vaccination status.
- 718 Footnotes: Abbreviations: RMB, Chinese Renminbi; SD: standard deviation.
- ^{*}Indicates statistically significant different between children and adolescents with and without
- 720 influenza vaccination at p < 0.05.
- 721 **Table 2** Distribution of health outcomes among children and adolescents residing in northeast
- 722 China stratified by influenza vaccination status.
- 723 **Table 3** Description of 4-year ambient air pollution concentrations ($\mu g/m^3$) in northeast
- 724 China.
- 725 **Table 4** Adjusted ORs and 95% CIs for the associations between ambient air pollutants and
- asthma, asthma-related symptoms and allergic rhinitis stratified by influenza vaccination
- status.
- 728 **Table 5** Adjusted ORs and 95% CIs for the associations between ambient air pollution and
- allergic respiratory diseases attack in the past 12 months among children and adolescents in
- 730 northeast China.

Highlights

- Few studies on interaction between air pollution and influenza vaccine on asthma.
- A large population-based study to assess these interaction effects in China.
- Influenza vaccine may mitigate the detrimental effects of air pollution on asthma.
- Boys seem to be more sensitive to these interaction effects than girls.

Declaration of interests

 \boxtimes The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

□The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

Journal Prent