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Abstract: The sampling patterns of the light fieldmicroscope (LFM) are highly depth-dependent,
which implies non-uniform recoverable lateral resolution across depth. Moreover, reconstructions
using state-of-the-art approaches suffer from strong artifacts at axial ranges, where the LFM
samples the light field at a coarse rate. In this work, we analyze the sampling patterns of the
LFM, and introduce a flexible light field point spread function model (LFPSF) to cope with
arbitrary LFM designs. We then propose a novel aliasing-aware deconvolution scheme to address
the sampling artifacts. We demonstrate the high potential of the proposed method on real
experimental data.
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1. Introduction

Since it was first proposed by Levoy et al. in 2006 [1], light field microscopy has proven very
useful in biological applications involving fast dynamics, due to its high speed 3D imaging
capability. The potential of the modality has been show-cased in various applications, including
live cell imaging [2], fish larvae neuro-dynamics recording [3,4], heart imaging and blood flow
monitoring [5].
The light field microscope (LFM) enables scan-less 3D imaging of fluorescent specimens

by incorporating an array of micro-lenses into the optical path of a conventional wide-field
microscope. Thus, both spatial and directional light field information is captured in a single shot,
allowing for subsequent volumetric reconstruction of the imaged sample.
Based on the integral imaging principles [6], the lenslet-based (plenoptic) devices [7] have

established plenoptic imaging as an active topic in computational imaging, enabling post-
acquisition refocusing [8–10] or 3D imaging of transparent microscopic samples [1,11]. In the
early stages, the methods for rendering extended depth of field images from plenoptic devices
were limited to lenslet resolution [8], which is the number of available micro-lenses. In recent
years, various approaches to address this limitation were proposed. Examples include variations
of the hardware to allow for attenuation masks [12] or wavefront coding techniques [13], which
demonstrated higher recoverable resolutions and extended depth of field. On the other hand,
inspired by the large amount of work on computational super-resolution in the computer vision
field [14,15], algorithms for super-resolving the light field were developed, involving multi-view
reconstruction [16,17], or explicit image formation models for plenoptic devices employing either
ray-based [18–20] or wave-based optics [13,21,22].
In [22], Broxton et al. introduced a wave-based model to describe the propagation of light

through an original plenoptic LFM setup [1], together with a 3D deconvolution method. They
demonstrate superior reconstructions in terms of lateral resolution (compared to lenslet resolution)
for most of the axial range. The improvement rate, however, is non-uniform across depth, and the
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recoverable resolution remains low near the native object plane; additionally this region exhibits
strong artifacts. This effect is due to the depth-dependent sampling patterns and induced aliasing
in light field imaging [19]. As the sample is naturally placed at the native object plane during the
acquisition, i.e. in focus, the aliasing artifacts constitute a rather prominent problem in light field
microscopy as expressed in [3,5,23], undermining the potential of the modality.

The sampling patterns and angular aliasing have previously been studied for light field imaging
systems, like camera arrays [24–27]. However, there are fundamental differences between the
aliasing in camera arrays and plenoptic devices [19], which must be acknowledged in order
to address the cause of the artifacts in LFM deconvolution. Plenoptic devices avoid angular
aliasing while introducing considerable spatial aliasing, since neighboring emitters in the scene
are projected to pixels far apart on the sensor. Ng et al. [8] analyzed aliasing in refocused light
fields, and Georgiev et al. [28] discussed the impact of the micro-lens array to sensor distance
on the sampling rate in plenoptic cameras. In [19,29], the authors studied the depth-dependent
sampling requirements in light field cameras.
In this work we study the depth-dependent sampling patterns of a light field microscope and

analyze how they introduce aliasing, in order to understand the cause of the artifacts; to the
extent of our knowledge, such an analysis has not been performed for the LFM before. We then
derive depth-dependent anti-aliasing filters and propose a novel and efficient aliasing-aware
deconvolution method for artifact-free 3D reconstruction.

Our work and [19] share the anti-aliasing priors idea in an interesting way. In [19], the authors
use light field projections of the filtering kernels directly on the micro-images to ensure correct,
non-aliased disparity maps. They then incorporate the estimated disparity in the light propagation
model and proceed to recover the 2D radiance (all-in-focus image) from a light field camera
image employing a variational Bayesian framework. This can be interpreted as an implicit
accounting for the aliasing through the disparity prior. In our work, on the contrary, we derive
the anti-aliasing filter kernels in the object space and explicitly apply them to the light field
as a correction step of our iterative aliasing-aware deconvolution, which employs a smoothing
expectation maximization scheme.

The analysis and the deconvolution scheme we propose apply to arbitrary plenoptic configura-
tions. Hence, we also derive a generalized wave-based forward light propagation model able to
characterize both original [1,22] and “focused” LFM setups. In previous works, the “focused
plenoptic” camera [30,31] design was proposed to enhance the spatial resolution of the captured
light field, compared to the original plenoptic camera [9], by manipulating the placement of the
sensor with respect to the micro-lens array (MLA) such that the micro-lenses are focused on
the objective lens. When coming to the light field microscope, due to the presence of the tube
lens, manipulating the distance between the MLA and the camera sensor immediately affects
the distance between the tube lens and the MLA such that the conjugate image of the native
object plane may be in front or behind the MLA, creating a defocused field incident on the MLA,
as opposed to the original LFM case, where the native image pane coincides with the MLA
plane. Thus, although conflicting with the established “focused plenoptic” term, we find the term
“defocused LFM” to better reflect generic LFM designs, as the recoverable resolution at a certain
depth in the object space strongly depends on the extent of the defocus generated at the MLA
plane.
We discuss the depth-dependent trade-offs in terms of recoverable lateral resolution when

comparing various LFM configurations, and evaluate the proposed reconstruction algorithm on
real experimental data to demonstrate high quality reconstructions, superior to previous work.
As a teaser, Fig. 1(c) shows the reconstruction of the USAF 1951 resolution target to compare
our proposed method (right) with the baseline method in [22] (center).
In summary, the contributions of the present work include: Analysis of the depth-dependent

sampling patterns and aliasing in light field microscopy (section 2); a generalized wave-based
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Fig. 1. (a) Ray diagram: light propagation through the light field microscope. fobj denotes
for objective focal length, ∆z represents the offset from the native object plane (NOP). A
source point o(ox, oy, oz = z) in front of the microscope objective has a conjugate image
by the tube lens at z′′. Finally, the micro-lenses create micro-images at z′′′, and the light
reaches the camera sensor, producing a raw light field image. (b) Depth-dependent aliasing
in LFM: The source points in the red group at depth z0 in front of the microscope have
completely overlapped images at the sensor plane. The points in the blue group, while being
sampled at the same rate as the points in the red group, show partially non-overlapping
images on the sensor as they are placed at depth z1. The points in the green group, on the
other side, are also placed at z1; however they are sampled at a higher rate and their images
are fully non-overlapping. (c) Reconstruction of the USAF 1951 target: Left: a light field
image of the USAF 1951 resolution target, acquired with our experimental LFM. Center:
reconstructed target using the method in [22]. Specific aliasing artifacts are present. Right:
artifact-free reconstruction using our aliasing-aware deconvolution method.

light field point spread function to characterize defocused LFM designs (section 3); a novel
and efficient aliasing-aware deconvolution method for artifact-free 3D reconstruction employing
depth-dependent anti-aliasing filters (section 4); discussion and comparison of various LFM
designs with respect to the recoverable resolution in the light field data and evaluation of the
proposed deconvolution scheme on in-vivo biological samples and phantoms (section 5).
Table 1 contains a summary of the symbols used in this paper together with their definitions.
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Table 1. List of symbols
Table 1. List of symbols

Symbol Definition Symbol Definition

LF light field FOP focused object plane (for defocused LFM)

LFM light field microscope ∆zFOP offset from the FOP

LFPSF light field point spread function do f mla distance from FOP to the objective

MLA micro-lens array ∆NOP signed distance between do f mla and fobj

M objective magnification ∆MLA signed distance between the MLA and ftl

N Aobj objective numerical aperture γz MLA magnification

fobj focal length of the objective bz blur behind the micro-lens

ftl focal length of the tube lens Bz blur on the the MLA by the tube lens

fml focal length of the micro-lens wsensz anti-aliasing filter radius at the sensor

robj objective radius wobjz anti-aliasing filter radius in object space

rtl effective tube lens radius h fw,z anti-aliasing normalized resampling kernel

pml micro-lens pitch Umla− light field incident on the MLA

s super-resolution factor λ light wavelength

deM demagnification factor k wavenumber

rml micro-lens radius Umla+ light field immediately after the MLA

dmla
tl

distance between the tube lens and the MLA Usens light field at the sensor plane

dsens
mla

distance between the MLA and the sensor plane T 2D MLA transmittance

NOP native object plane t micro-lens transmittance function

NIP native image plane Hrs Rayleigh-Sommerfeld transfer function

∆z offset from the NOP ∆x sampling interval for Hrs

MLEM Maximum Likelihood Expectation Maximization m LF sensor measurements

EMS Estimate-Maximize-Smooth algorithm v discretized object volume

i object voxel index A = (aji) light field forward operator

j sensor pixel index q iteration number

2. Aliasing in light field microscopy

2.1. The light field microscope

A light field microscope (LFM) is built by placing a micro-lens array (MLA) into the optical
path of a conventional wide-field microscope [1, 3]. Fig. 1(a) shows a ray diagram as an intuitive
overview of the light propagation through a LFM. A source point at a depth z in front of the
microscope objective has a conjugate image by the tube lens at z′′. The objective lens creates
a virtual image of the object at z′, which is not drawn here for the sake of clarity. We choose
to represent z as fobj + ∆z, since an object at depth fobj (the focal length of the objective) is
usually in focus in the wide-field microscope. In order to be consistent with the literature [3, 22],
we will call this depth, z = fobj , the native object plane (NOP) or the zero plane of the LFM.
Then ∆z represents an offset from the native object plane, and we will refer to this quantity when
talking about depth in the subsequent sections. Finally, the micro-lenses create micro-images at
z′′′, and the light reaches the camera sensor, producing a raw light field image.
Without loss of generality, Fig. 1(a) depicts a configuration where the conjugate image is

formed in front of the MLA. However, throughout the paper, our derivations are valid for arbitrary
configurations, i.e. they do not discriminate between defocused [30] and original plenoptic [1, 8]
light field imaging designs.

2. Aliasing in light field microscopy

2.1. Light field microscope

A light field microscope (LFM) is built by placing a micro-lens array (MLA) into the optical path
of a conventional wide-field microscope [1,3]. Figure 1(a) shows a ray diagram as an intuitive
overview of the light propagation through a LFM. A source point at a depth z in front of the
microscope objective has a conjugate image by the tube lens at z′′. The objective lens creates a
virtual image of the object at z′, which is not drawn here for the sake of clarity. We choose to
represent z as fobj + ∆z, since an object at depth fobj (the focal length of the objective) is usually
in focus in the wide-field microscope. In order to be consistent with the literature [3,22], we will
call this depth, z = fobj, the native object plane (NOP) or the zero plane of the LFM. Then ∆z
represents an offset from the native object plane, and we will refer to this quantity when talking
about depth in the subsequent sections. Finally, the micro-lenses create micro-images at z′′′, and
the light reaches the camera sensor, producing a raw light field image.
Without loss of generality, Fig. 1(a) depicts a configuration where the conjugate image is

formed in front of the MLA. However, throughout the paper, our derivations are valid for arbitrary
configurations, i.e. they do not discriminate between defocused [30] and original plenoptic [1,8]
light field imaging designs.
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2.2. Depth-dependent sampling patterns of the LFM

We now proceed at investigating the sampling requirements of the LFM and deriving the
depth-dependent quantities relevant for our algorithm, similar to the analysis of sampling patterns
in plenoptic cameras [19].

Figure 1(b) is meant to build an intuition on the depth-dependence of the sampling patterns of
the plenoptic microscope. The source points at z0 in front of the microscope (circled in red) have
completely overlapped images at the sensor plane. On the other side, the source points in the
blue group have partially non-overlapping images on the sensor, while being sampled at the same
rate as the points in the red group, but they originate from a different depth z1. The points in the
green group, also at z1, are being sampled at a higher rate such that their images on the sensor are
fully non-overlapping.

In order to characterize the depth-dependent nature of the sampling in light field microscopy,
let us assume for now that the micro-lenses have very small apertures and behave like pinholes.
Then we can approximate the MLA by an array of pinholes with spacing pml. The in-camera light
field at the MLA (pinholes in this context) should be band-limited with a bandwidth of f0 = 1

2pml
in order to satisfy the Nyquist criteria [32]. Higher frequencies, outside this bandwidth, would
be under-sampled by the pinhole array and appear aliased.

Since the sensor elements have a finite extent, we must look into what area the pixels effectively
integrate over. Figure 2(a) illustrates how the image at the MLA scales to the actual image that
forms under a micro-lens. For a clear visualization, we omit here the first part of the image
formation and assume we have an image of an object at z in front of the objective formed at z′ by
the objective lens. The tube lens further creates a scaled image at the conjugate image plane
(dark blue), z′′. The image at the MLA (light blue) follows from tracking the chief rays. Finally,
we pick a micro-lens and derive the micro-image behind it. By means of similar triangles, the
size of the image under a micro-lens is the size of the image at the MLA, scaled by a factor:

γz =
dsens

mla

dmla
tl

����� z′′

dmla
tl − z′′

����� . (1)

Here, dsens
mla is the distance between the MLA plane and the sensor plane, and dmla

tl is the distance
between the tube lens and the MLA plane. The scaling amount γz is depth-dependent, which
means the actual area of the light field the sensor pixels integrate over varies with the object
depth.
An interesting observation follows for telecentric microscopes (4f-systems), as in [3,22]: for

these systems, although the magnification stays constant with object depth, the blur radius at the
MLA (depicted in blue in Fig. 2(b) varies in extent with depth,

Bz = rtl

�����dmla
tl − z′′

z′′

����� . (2)

Here, rtl is the effective tube lens radius. Consequently, the depth-dependent scaling factor γz
still applies, as we can write

γz =
dsens

mla

dmla
tl

rtl
Bz

. (3)

Please note the relation to the magnification factor in [19], or the amount of refocusing in [9].
If we now drop the pinhole array approximation and consider a micro-lens with finite aperture

pml, we have to take into account the additional blur they introduce. The depth-dependent blur
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Fig. 2. (a) Micro-lens magnification: The image of an object under a micro-lens scales
according to the object depth. (b) Micro-lens blur: The geometric blur radius behind a
micro-lens is again depth-dependent. (c) Anti-aliasing filter radius over depth: In the original
LFM design [1,22] (see Fig. 3(a)), the NOP is sampled at the coarsest rate by the LFM which
implies our resampling anti-aliasing filter has the largest radius at this object depth. As
we move away from the zero plane, the LFM sampling rate increases and the anti-aliasing
requirements become milder.

under each micro-lens, depicted in red in Fig. 2(b), has a radius

bz = rml

���� 1z′′′ − 1
dsens

mla

���� , (4)

where rml =
pml
2 is the radius of the micro-lens.

We have now derived all the ingredients we need to characterize the non-aliasing requirements
of the LFM.

2.3. Anti-aliasing filters

The band-limited assumption we made in the previous section for the pinhole approximation of
the MLA means the acquired light field is the conjugate light field at z′′, convolved by a low-pass
ideal (sinc) filter with cutoff frequency 1

2pml
. We define the sinc kernel radius as the first zero

crossing of the filter, pml. Then, as every micro-image is the projection of the conjugate light
field onto the sensor, we can project the filter in the same way. Employing Eq. (1), the scaled
filter kernel has a radius of γzpml.

When we take into account the finite micro-lens apertures pml, the pixels effectively integrate
over a larger area and the aliasing is reduced with the micro-lens blur bz. Then the filter size at
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the sensor, accounting for the micro-lens blur, is:

wsensz = |γzpml − bz |. (5)

In the case where the conjugate image forms at the MLA (z′′ → dmla
tl ), we have z′′′ → 0 and

bz → ∞. However, the micro-lens blur actually converges to the size of the micro-image and
thus we restrict the maximum filter radius to rml:

wsensz = min (|γzpml − bz |, rml). (6)

We now backproject the filter into the object space. For this we introduce the super-resolution
factor, s ∈ Z, as defined in [22]. If we sample the volume at a rate of s times the lenslet resolution

Fig. 3. LFM configurations and their light propagation paths. (a) The original design as
described in [1,22]. The objective and tube lens are arranged as a 4-f (tele-centric) system.
The native object plane (NOP) is then located at fobj in front of the microscope objective,
and the native image plane (NIP) follows at ftl behind the tube lens; ftl represents the focal
length of the tube lens. The MLA is then placed at the NIP. The camera is behind the MLA
at an offset dsens

mla = fml, where fml represents the focal length of the micro-lens. (b) and
(c) Defocused LFM (similar to the focused plenoptic camera [30] design). The MLA is
now placed behind the NIP (b) or in front of it (c), such that the NOP is not focused on
the MLA. In the latter scenario, the virtual image that would form at the NIP is depicted
in dashed orange. Top: experimentally acquired LFPSF of a point source at the NOP,
o(ox, oy, oz) = (0, 0, fobj) for each setup.
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pml, then the voxels are spaced by pml
Ms , where M is the objective magnification factor. Then the

radius of our ideal filter kernel in pixels in object space is:

wobjz =
wsenszs

pml
. (7)

Figure 2(c) illustrates the scaled pinhole filter radius together with the micro-lens blur radius
and the final compensated anti-aliasing filter radius in pixels over an axial range [−100, 100]µm
for an original plenoptic LFM configuration as in Fig. 3(a). An important observation here is
that, as we move away from the zero plane, the LFM samples at a higher rate, imposing milder
anti-aliasing requirements.
Finally, we define hfw,z as the anti-aliasing normalized resampling filter. hfw,z is a depth-

dependent ideal low-pass filter and its kernel size at each depth is given by wobjz .
Since the ideal filter is of unit value for all the frequencies inside the band-limit, and zero

outside, it has infinite extent. In practice, we need to use an approximate non-ideal filter kernel,
aiming at optimizing the unity gain in the pass-band and zero gain in the stop-band. While there
are extensive filter design choices [32], for all the experiments in this paper, we obtained great
results using a Lanczos2 windowed version of the sinc kernel.

3. Generalized light field point spread function

In this section we propose a generalized forward light propagation model describing the optical
system’s impulse response for arbitrary LFM configurations (i.e. the light field point spread
function, LFPSF). Figure 3 depicts such plenoptic configurations, where the micro-lens array is
placed at the native image plane (left), behind (center) or in front of it (right). Experimentally
acquired LFSPFs are shown on top for each setup.

In order to derive the diffraction pattern of a source point o(ox, oy, oz), when the light propagates
through the LFM from the source to the camera sensor, we discuss the wavefront at intermediate
key planes in the following subsections.

3.1. Wavefront at the MLA plane

Figure 4(a) depicts a defocused LFM configuration, where the NOP (native object plane) is
imaged by the tube lens behind the MLA. However, all the derivations in this paper do apply for
arbitrary placement of the MLA relative to the tube lens, unless specified otherwise.
In order to evaluate the wavefront incident on the MLA produced by a source point in front

of the microscope, we employ Abbe imaging theory for 4-f optical systems [33]. We proceed
to find the “focused” configuration for our scenario. In Fig. 4(b) FOP represents the focused
object plane, which is the depth in the object space that is imaged exactly at the MLA by the
tube lens. This plane is then located at offset ∆NOP from the native object plane. If we introduce
∆MLA = dmla

tl − ftl to be the signed distance between the MLA plane and the tube lens, we can
write:

∆NOP =
1

M2∆MLA, (8)

where 1
M2 is the axial magnification factor [33].

We now introduce the axial coordinate dof mla = fobj + ∆NOP as the object space depth that is
focused on the MLA by our 4-f microscope. Then a source point o(ox, oy, oz = dof mla) produces
a convergent wavefront exactly at the MLA plane; see Fig. 4(b).
Having defined these quantities, we can express any source point o(ox, oy, oz) relative to the

FOP of our LFM setup as o(ox, oy, oz = dof mla + ∆zFOP), see Fig. 4(c). ∆zFOP is the depth offset
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Fig. 4. (a) Example defocused LFM configuration with dmla
tl <ftl. (b) The “focused” object

depth for our LFM in (a). FOP represents the focused object plane which is imaged exactly
at the MLA by the tube lens. FOP is then located at offset ∆NOP from NOP. Then an
object focused on the MLA by our microscope is placed at dof mla = fobj + ∆NOP in front
of the objective. (c) ∆zFOP represents the depth offset from the FOP for a source point,
o(ox, oy, oz = ∆zFOP+dof mla). (d) Optimal sensor plane coverage condition: The micro-lens
blur radius for a source point o(ox, oy, oz = dof mla) needs to match the micro-lens radius
rml, in order to ensure optimal sensor plane coverage, without overlapping micro-images. (e)
Overlapping micro-images due to violation of criteria in Eq. (18).
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from the FOP. Then we observe a defocused wavefront at the MLA plane:

Umla−(o, xmla, ymla) = deM
oz2λ2

exp
(
− iu
4 sin2(α/2)

)
·∫ α

0
P(θ) exp

(
− iu sin2(θ/2)
2 sin2(α/2)

)
J0

(
sin(θ)
sin(α)v

)
sin(θ) dθ,

(9)

which is the Debye integral for circular lens apertures. deM = dof mla
dmla

tl
is the demagnification factor,

α ≈ arcsin(NA/n) is the maximum entrance angle of the objective aperture, n is the refractive
index, λ is the wavelength of the monochromatic light we assume, P(θ) is the apodization function
of the microscope, J0 the zeroth order Bessel function of the first kind, and v, u are the normalized
radial and axial optical coordinates respectively, given by:

v =
2π
λ

√
(xmla − ox)2 + (ymla − oy)2 · sin(α),

u =
8π
λ
∆zFOP · sin2(α/2),

(10)

∆zFOP represents the depth offset from the FOP for a source point, o(ox, oy, oz = ∆zFOP + dof mla).
In order to stay consistent with the convention and for the clarity of the subsequent discussion, we
will still refer to ∆z (oz = ∆z + fobj) as the axial range of an object, via the following convenient
substitution:

∆zFOP = ∆z + ∆NOP (11)
An immediate observation follows when ∆NOP = 0, then dof mla = fobj and dmla

tl = ftl. This is the
original LFM configuration, and Eq. (9) is equivalent to the defocused PSF at the native image
plane proposed in Broxton et al. [22].

Similar to us, in [2] the authors compute the wavefront at the MLA in a defocused LFM setup.
They first model the PSF at the NIP as in [3,22] and then propagate the wavefront for a distance
of ∆MLA (the signed distance between the tube lens and the MLA plane) via Fresnel diffraction
integral. In theory this is equivalent to our approach. In practice, however, FFT-based Fresnel
propagation is implemented via its transfer function, which is a chirp function, and special
sampling regimes have to be considered. This implies not only a computational overkill, but
such requirements depend on the propagation distance and under-/over- sampling of the angular
spectra introduce artifacts in the observation plane [34].

3.2. MLA transmittance

Having computed the light field at the plane immediately before the MLA, we account now for
the effect of the MLA. The field Umla+ immediately after the MLA is given by:

Umla+(o, xmla, ymla) = Umla−(o, xmla, ymla) · T(xmla, ymla), (12)
where theMLA transmittance function T is modeled by replicating the single lenslet transmittance
in a tiled fashion as in [22]:

T = reppml,pml (t(xl, yl)), (13)
with repd,d the 2D replication operator and pml the spacing between micro-lenses. t(xl, yl) is the
complex transmittance function of a lenslet with local lenslet coordinates, (xl, yl):

t(xl, yl) = P(xl, yl)e
ik(x2l +y2l )

2fml . (14)
The exponential term is responsible for the phase change in the incident light, while P(x, y)
represents the pupil function, where P(x, y) = circpml (x, y) for circular aperture lenslets or
P(x, y) = rectpml (x, y) for squared shaped lenslets. k = 2π

λ is the wavenumber.
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3.3. MLA to sensor light field propagation

We now address the propagation of the field from the MLA plane to the camera plane. Since
we aim to model arbitrary distances between the MLA and the sensor, without restricting the
dsens

mla distance to satisfy the Fresnel number (paraxial assumption) [22], we use the more accurate
Rayleigh-Sommerfeld diffraction solution [35] to predict the light field at the sensor plane:

Usens(o, xs, ys) = F −1
{
F {Umla+(o, xs, ys)} · Hrs(fX , fY )

}
, (15)

where (xs, ys) are the image plane coordinates, F denotes the Fourier transform, and (fX , fY ) are
the spatial frequencies at the sensor plane. Hrs is the Rayleigh-Sommerfeld transfer function:

Hrs(fX , fY ) = e

(
ik ·dsens

mla

√
1−(λfX )2−(λfY )2

)
(16)

3.3.1. Sampling requirements of the Rayleigh-Sommerfeld transfer function

The transfer function in Eq. (16) is a “chirp” function; it contains a phase function whose
absolute value increases with the square of the frequency. Sampling such a function in practice is
problematic since it is not bandlimited. In [34], the authors analyze the sampling requirements
for the Rayleigh-Sommerfeld FFT-based propagation simulation and propose the following ideal
sampling criteria:

∆x =
λ

L

√
(dsens

mla )2 +
L
2

2
, (17)

where L is the side length of the source plane and ∆x is the sampling interval such that
fX ∈ [−1/2∆x, 1/2∆x] and ∆fX = 1/L.

When this criteria is not met, and the transfer function in Eq. (16) is over-/under-sampled, the
image might exhibit repeating patterns, aliasing and spike-like artifacts [34].
Since the source field Umla+ needs to match the sampling rate of the kernel Hrs when

implementing FFT-based propagation, and since the sampling requirements in Eq. (17) vary with
the dsens

mla distance, in practice, we implement a resampling strategy to satisfy these criteria.

3.4. F-number matching condition for defocused LFM setups

In order to ensure the micro-images optimally fill the sensor plane without overlapping when
acquiring light field images, the effective image-side NA of the tube lens needs to match the
effective NA of the micro-lenses.
As depicted in Fig. 4(d), it is important to notice that a point source o(ox, oy, oz = dof mla),

generates the largest response (blur) behind a micro-lens. Conversely, as we move away from
dof mla, the micro-lens blur radius, bz decreases. Thus, we only need to constrain the maximum
blur radius, bdof mla to match the micro-lens radius rml in order to ensure optimal non-overlapping
sensor plane coverage. From Fig. 4(d) it quickly follows:

rtl

dmla
tl
=

rml
dsens

mla
, (18)

where rtl represents the effective tube radius; the radius of the field distribution incident on the
tube lens by a source point at dof mla in front of the microscope. In practice, we compute the rtl
following the marginal rays:

rtl = robj

�����1 − dtl
obj

z′

����� , (19)

where z′ is obtained using the thin lens equation and dtl
obj = fobj + ftl for 4f microscopes.
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An immediate observation follows that when dmla
tl = ftl and dsens

mla = fml, we have rtl = robj

(radius of the objective lens), and Eq. (18) is equivalent to M
2NAobj

=
fml
pml

, where M is the objective
magnification and NAobj the objective numerical aperture. This is the f-number matching
condition for the original LFM [1,22].

While violations of Eq. (18) result in either suboptimal sensor plane coverage or overlapping
micro-images (see Fig. 4(e)), the LFPSF we derived in the current section allows for arbitrary
dmla

tl , dsens
mla combinations and is consequently not limited to f-number matching configurations.

4. Aliasing aware 3D deconvolution

Having discussed the non-aliasing sampling requirements of the LFM and derived the generalized
LFPSF, we now turn our attention to incorporating this prior knowledge into the reconstruction
process of computing a 3D volume from a light field image.

4.1. Discretized imaging model

Given the raw noisy light field sensor measurements acquired m = (mj)j∈J by pixels j ∈ J
(|J | = m) we seek to recover the fluorescence intensity at each discrete point in the volume which
produced these measurements.

We represent the discretized volume v by a coefficient vector (vi)i∈I with |I | = n. Note that the
sampling rate in v is dictated by the super-resolution factor s defined in the previous section. We
now denote the detection probabilities

aji = P(photon counted at sensor element j | emission occurred in voxel i) (20)

Due to the low photon counts in fluorescence microscopy, we define the number of photons
emitted at voxel i and detected by sensor element j as random variables zji with zji ∼ Poisson(viaji),
which we combine into the the iid random vector z = (zji)j∈J,i∈I .

Our measurements m = (mj)j∈J arise from zji as mj =
∑

i∈I viaji, yielding the stochastic imaging
model

m ∼ Poisson(Av), (21)
where m denotes the light field measurement, v denotes the discretized volume we seek to
reconstruct, and the operator A = (aji)j∈J,i∈I describes the light field forward model, which is
effectively determined by the discretized version of the LFPSF in Eq. (15). For each point in a
fluorescent object the image intensity is given by the modulus squared of its amplitude [33]:

aji = |Usens(o(i), xs(j))|2, (22)

where o(i) is the object space coordinate of voxel i and xs(j) is the coordinate of sensor pixel j.

4.2. Estimate-maximize-smooth algorithm

We now consider the estimation of v by maximizing the Poisson log-likelihood

L (z | v) =
∑
j∈J

∑
i∈I

viaji + zji ln viaji − ln zji!. (23)

If we look at z as the complete version of the incomplete data m, the expectation maximization
approach provides an iterative two-step scheme for increasing the likelihood of the current
estimate v. In the first step, z is estimated by computing the conditional expectation E(zij |m, v),
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and in the second step, the maximum likelihood estimate of v is found, starting from an initial
guess v0:

ẑji = mj
vq

i aji∑
l∈I vq

l ajl
(24)

vq+1
i =

vq
i∑

j∈J ajl

∑
j∈J

mjaji∑
l∈I vq

l ajl
, (25)

where q is the iteration count.
This is the well known MLEM algorithm, and Eq. (25) also corresponds to the popular

Richardson-Lucy [36] iterative update, which in matrix-vector notation reads:

vq+1 =
vq

AT1
[
AT m

Avq

]
. (26)

We now propose an additional straightforward step in which we filter the result of Eq. (24)
and Eq. (25) using the depth-dependent anti-aliasing filters hfw,z that we derived in the previous
section. Then the aliasing aware update scheme reads:

EMS: vq+1 = hfw,z ∗
vq

AT1
[
AT m

Avq

]
, (27)

where ∗ represents the convolution operator. This smoothing step is computationally insignificant
compared to the estimation and maximization steps.
The reconstructed v has a uniform lateral resolution across depths as imposed by the depth

invariant discretization we choose; see the super-resolution factor s in the previous section.
However, the non-aliasing sampling requirements of the LFM vary across depth, and the actual
details that can be recovered depend on these patterns, among other factors.

Moreover, as our model does not incorporate explicit depth priors, information from one depth
appears aliased when wrongly projected to another depth. This behavior is present from the first
iteration of the Richardson-Lucy scheme, resulting in strong artifacts at the highly under-sampled
depths where the process fails to converge. Thus, the resampling correction (by depth-dependent
filtering) we propose is absolutely necessary.

The filtering in Eq. (27) can be interpreted as projecting vq+1 to the set of true solutions, which
consists of frequencies below the bandwidth dictated by the LFM sampling requirements at each
reconstructed depth.

4.3. Convergence of the proposed scheme

In order to show convergence of our proposed algorithm, we use the results of [37], in which a
similar EMS algorithm with a smoothing kernel S is investigated. The authors in [37] demonstrate
a modified (weighted) EMS algorithm with desirable convergence properties using a weighted
smoothing kernel T = W−1SW, where W = diag(wi) and wq+1

i = s1/2i e1/2i θ
q
i . According to

Lemma in Section 5.3 in [37], S and T will have approximately the same effect if S and W satisfy
the three requirements:

1. Sji ≥ 0,∀i, j,
2.

∑
Sji = 1,

3. | wi
wj
− 1| ≤ δ when Sji , 0 for some δ>0.

In our context, si is the size of the voxel i, ei =
∑

j∈J aij and θq
i = ( vi

si
)1/2. For our smoothing

kernel, hfw,z , the first two requirements are trivially fulfilled. Regarding the third requirement, as
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we use a uniform sampling of our volume, we have si = sj∀i, j. Also ∀i, j where hfw,z is non-zero,
we have θq

i ' θ
q
j , as the effective sampling rate is higher than the kernel radius. The same

argument holds for ei and ej, since the columns ai and aj act on regions of v at most as large as
the effective sampling rate of the LFM. Thus we can conclude wi ' wj when Sji , 0 and δ small.

5. Experimental results

All experiments in this work were performed with a custom-built LFM setup, configured as a 4-f
system, combining a 0.5 NA with 20× magnification objective lens, and a tube lens with focal
length ftl = 165mm. We used a f-number matching square-shaped aperture MLA with 150µm
micro-lens pitch and 3000µm focal lengths. The pixel pitch of the sCMOS camera is 6.5µm,
yielding a total of 23 × 23 pixels behind a micro-lens.

All the results we discuss in this section were reconstructed at sensor resolution, i.e. at a
super-resolution factor s = 23, which translates to a uniform lateral resolution of 0.33µm. Note,
this refers to the sampling rate we chose for rendering the volumes and has nothing to do with the
actual details that can be recovered, which is the effective resolution of the LFM. We refer the
interested reader to existing discussions on the subject [1,31,38].

5.1. Artifact-free deconvolution

In order to show the full potential of our method and to be able to use the method [22] as a
baseline for comparison, the experiments in this section were done with the LFM in the original
plenoptic configuration, i.e. dmla

tl = ftl and dsens
mla = fml. Then the zero plane (∆z = 0µm) has a

conjugate image exactly at the MLA and is the most under-sampled, exhibiting the most artifacts.
As the first experiment, a USAF 1951 resolution target was imaged at ∆z = 0µm using the

LFM, see Fig. 1(c) (left) for the raw light field image. Figure 1(c) shows the reconstruction using
the baseline method from [22] (center), and it is obviously riddled with the typical zero plane
artifacts. Conversely, Fig. 1(c) (right) shows the reconstruction of the same light field image with
our proposed aliasing-aware algorithm, exhibiting a natural appearance with no artifacts.

To further characterize the recoverable lateral resolution of our light field microscope configu-
ration, we performed an analysis similar to [22]. We imaged and subsequently reconstructed the
USAF target over a depth range of [−80, 80]µm, with 1µm steps. We then computed the contrast
measure:

C =
Imax − Imin
Imax + Imin

(28)

for each region of interest on the USAF target, from element 6.1, representing a spatial frequency
of 64[lp/mm] to element 7.6 with spatial frequency 228[lp/mm].
In Fig. 5, we show, for both the baseline method [22] in (a) and our proposed method in (b),

the lateral MTF by plotting the contrast of different line pair regions in the USAF reconstruction,
over the axial position, together with example single plane reconstructed images. In (a), due to
the presence of artifacts, the drop in resolution near the zero plane is not discernible, as artifacts
are perceived as high contrast features. Conversely, in (b), the contrast plots match the expected
resolution profile.
While in the state-of-the-art deconvolution [22], the aliasing artifacts make it difficult to

quantify the lateral recoverable resolution in the highly affected axial ranges, when using our
proposed EMS scheme, due to the smoothing step, the resolution can be reliably measured.
However, although visually improved in quality, in terms of actual details, the effective resolution
is ultimately limited by the sampling patterns and the PSF of the system. We encourage the reader
to zoom into the example reconstructed USAF images in Fig. 5(a) and 5(b) for comparison.
As discussed in Section 3, when moving away from ∆z = 0µm, we need milder anti-aliasing

filters to remove the artifacts while keeping the details in the reconstruction. This effect is
illustrated in Fig. 6, which shows the reconstruction of an eyeball of a zebrafish larvae (5 days
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Fig. 5. Lateral resolution limits: Lateral MTF for the USAF 1951 resolution target for
the [−80, 80]µm depth range together with example single plane reconstructed images.
(a) Baseline deconvolution [22]: Aliasing artifatcs are present in the ∆z = [−25, 25]µm
producing high contrast score in this range, even though the resolution is low. Artifacts
are visible in the shown reconstructed images at ∆z = −15,−5, 0µm. (b) Aliasing-aware
deconvolution: The aliasing artifacts are not visible anymore in the reconstructed images
at ∆z = −15,−5, 0µm and the MTF plot now matches the expected resolution profile. The
resolution can be reliably measured also around the zero plane due to the smoothing step.
Outside of the critical range, we observe very similar profiles for both methods.
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post fertilization, expressing green fluorescent proteins) over a depth range of [−50, 50]µm; due
to space constraints we only show several lateral slices through the volume.

Fig. 6. 3D reconstruction of a zebrafish eye over an axial range ∆z = [−50, 50]µm. (a),
(b): maximum intensity projections. (c), (d): lateral slices through the volume. The
reconstruction with the baseline method in [22] shows strong specific aliasing artifacts (red
arrows) at depth planes close to the zero plane, while they fade out as we move further
away from this plane. In comparison, our aliasing-aware deconvolution scheme completely
removes all the artifacts.

Figures 6(a) and 6(c) show the reconstruction with the baseline method in [22] and the artifacts
are strongly present at depths close to the zero plane, while they fade out as we move further
away from this plane, see for example the slice at ∆z = 25µm. In Figs. 6(b) and 6(d) we show the
reconstruction of the same light field data using our proposed method. The depth-dependent filter
radius is shown in Fig. 2(c); note here how the kernel radius drops as the artifacts fade away. Our
deconvolution produces superior artifact-free results compared to the reference method without
over-smoothing, as the depth-dependent filter is dictated by the sampling requirements of the
LFM. Both reconstructions (Fig. 6) were obtained after 8 iterations of the corresponding update
schemes.

Figure 7 shows a reconstructed cardiomyocyte organoid labelled with the calcium dye Fluo4-
AM. Such organoids are an emerging platform for clinical trials, enabling high-throughput studies
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(both logistically and ethically since they are not organisms), along with possible direct clinical
applicability, since they are derived from human stems cells. Contrary to traditional cell-cultures
they are extended across all three dimensions and they have interesting temporal dynamics like
cell-signaling and, specifically for heart-organoids, movements.

Fig. 7. 3D reconstruction of a cardiomyocyte organoid over an axial range ∆z = [0, 50]µm.
(a), (b): maximum intensity projections. (c), (d): lateral slices through the volume. The
reconstruction with the baseline method in [22] shows strong specific aliasing artifacts (red
arrows) at depth planes close to the zero plane, while as we move away from this plane,
the artifacts are less visible. Our aliasing-aware deconvolution method shows superior
artifact-free results.

For the reference method [22], reconstruction artifacts are again strongly present (Figs. 7(a)
and 7(c)) around ∆z = 0µm, while gradually fading out further away; see the slice at ∆z = 50µm.
In the corrupted regions, a subsequent data analysis is not only troublesome, but rather unreliable.
In comparison, our proposed method, specifically treats these artifacts via our depth-dependent
resampling strategy (Figs. 7(b) and 7(d)). Again 8 iterations were performed for both methods.

5.2. Defocused LFM design

In this section we evaluate the defocused LFM setup. For this purpose, we place the micro-lens
array at a distance dmla

tl , ftl from the tube lens, while keeping the tele-centricity as before (see
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Figs. 3(b) and 3(c)). The dsens
mla distance will then follow from Eq. (18) to ensure the micro-images

optimally cover the sensor plane.
Figure 8 shows the reconstruction of a zebrafish eye (a different sample from the one in Fig. 6),

over an axial range ∆z = [−40, 40]µm, from LF images acquired when dmla
tl >ftl and dmla

tl <ftl. In
order to perform deconvolution on these images, we used the LFPSF we derived in Section 3.
to describe the forward imaging model. In Fig. 8(b) we show the reconstruction using the
classic Richardson-Lucy scheme, as in Eq. (26). While in the original LFM configuration the
reconstructed samples show prominent aliasing artifacts around ∆z = 0µm due to the coarse
sampling in this region, here, in the defocused LFM design we observe the artifacts pushed to the
edges of our axial range. This effect is due to the displacement of the MLA from the native image
plane, ∆MLA, which effectively translates into a proportional axial shift of the depth dependent
lateral sampling rates in the object space by ∆NOP, see Eq. (8). This means an axial range ∆z in
front of a defocused LFM setup is sampled in the same way the ∆zFOP range would be sampled
by the original LFM setup with the same settings.

Table 2. Data set acquisition parameters of our experimental LFM setup together with the
corresponding reconstructed axial ranges. Light blue: original LFM design. Light red: defocused

LFM.

Table 2. Data set acquisition parameters of our experimental LFM setup together with the
corresponding reconstructed axial ranges. Light blue: original LFM design. Light red: defocused
LFM.

Data set ftl dmla
tl

(mm) dsens
mla

(mm) ∆z (µm) ∆NOP (µm) ∆zFOP = ∆z + ∆NOP (µm)

USAF 165 165 3.0 0 0 0

Fish eye 165 165 3.0 [−50, 50] 0 [−50, 50]
Organoid 165 165 3.0 [0, 50] 0 [0, 50]

Fish eye (>) 165 181 2.985 [−40, 40] -40 [−80, 0]
Fish eye (<) 165 147 3.016 [−40, 40] 45 [5, 85]
Spheres (>) 165 175 2.990 [−45, 45] -25 [−70, 20]
Spheres (=) 165 165 3.0 [−45, 45] 0 [−45, 45]
Spheres (<) 165 151 3.012 [−45, 45] 35 [−10, 80]

In Fig. 9, we imaged 1µm fluorescent beads in agarose with the LFM in the three configurations
depicted in Fig. 3. Fig. 9(a) (top) shows the acquired LF image for the original plenoptic design
(dmla

tl
= ftl), together with the 3D reconstruction using our proposed method in Fig. 9(b) (top).

Fig. 9(a) (middle) and (bottom) illustrate the acquired LF image for the defocused design with
dmla
tl

> ftl and dmla
tl

< ftl , respectively, alongside the 3D reconstructions in Fig. 9(b) (middle)
and (bottom). The red rectangle highlights two micro-spheres at the zero plane of the LFM
(∆z = 0). While, in the original LFM setup (top) they are only reconstructed at the lenslet
resolution, in Fig. 9 (middle) and (bottom) they appear better resolved. On the other side, the
dashed arrow, for example, points to a sphere placed at the FOP plane in the defocused dmla

tl
> ftl

(middle) case. While in this case it can only be recovered at lenslet resolution, in Fig. 9 (top) and
(bottom) we observe it at higher resolution. Analogous discussion applies to the other beads. Just
as we have seen for the fish eye in Fig. 8, while one LFM configuration performs well at spatially
resolving certain depths in the axial range, it does so at the cost of other depths, which is also
the case when imaging away from the zero plane with the original LFM. In order to extend the
resolvable range in the 3-D reconstructions, such LFM configurations can be complementary,
which supports and motivates the work towards multi-focus [39, 40] or dual-camera [5, 41]
plenoptic setups.

6. Discussion

While we showed good results using a Lanczos2 windowed ideal filter (with depth-dependent
cut-off frequencies) as the anti-aliasing resampling strategy, more advanced sampling-specific
interpolation schemes should be considered to cope with the highly irregular sampling patterns
of the LFM across depth, i.e. depth-dependent filter shapes in addition to the proposed
depth-dependent filter sizes.

Although we improve the visual appearance of the 3D reconstructed objects by addressing the
sampling artifacts, the effective lateral resolution is still limited by the depth-dependent sampling
rate. We showed that defocused LFM designs better resolve the near native object plane range,
while sacrificing resolution at other depth ranges by axially shifting the sampling patterns; similar
to imaging away from the zero plane with the original LFM design. In this regard, the LFM in
any of the configurations, introduces depth-dependent trade-offs in terms of resolution by design.

In order to improve on these limitations, hybrid systems have been proposed, combining a light
field microscope with a wide-field acquisition [42], or splitting the optical path and image with
complementary focused LF systems [5, 41]. Such dual-/multi-camera setups aim at achieving

Table 2 contains the system parameters for all the data sets we discuss in this paper, together
with the relevant reconstruction settings. The Fish eye(>) and Fish eye(<) entries correspond to
the dmla

tl >ftl and dmla
tl >ftl configurations in Fig. 8, respectively. Reconstructing the [−40, 40]µm

axial range in both situations is equivalent, in terms of recoverable resolution, to reconstructing
the [−80, 0]µm and [5, 85]µm in the original LFM setup (see ∆zFOP column); effectively shifting
the zero plane by ∆NOP. This explains the strongest artifacts in Fig. 8(b) being at the right
most end of the axial range (∆zFOP = [−80, 0]µm) when dmla

tl >ftl, and at the left most end of
the axial range (∆zFOP = [5, 85]µm) for the dmla

tl <ftl case. In Fig. 8(c) we show the artifact-free
deconvolution obtained using our Estimate-Maximize-Smooth scheme, and in Fig. 8(d) we
illustrate z-slices of the reconstructed volumes every 5µm. We perceive better spatially resolved
features in the range [0, 40]µm for the dmla

tl >ftl setup, while in the dmla
tl <ftl case this range appears

blurred and the [−40, 0]µm range is resolved better.
In Fig. 9, we imaged 1µm fluorescent beads in agarose with the LFM in the three configurations

depicted in Fig. 3. Figure 9(a) (top) shows the acquired LF image for the original plenoptic design
(dmla

tl = ftl), together with the 3D reconstruction using our proposed method in Fig. 9(b) (top).
Figure 9(a) (middle) and (bottom) illustrate the acquired LF image for the defocused design with
dmla

tl >ftl and dmla
tl <ftl, respectively, alongside the 3D reconstructions in Fig. 9(b) (middle) and

(bottom). The red rectangle highlights two micro-spheres at the zero plane of the LFM (∆z = 0).
While, in the original LFM setup (top) they are only reconstructed at the lenslet resolution, in
Fig. 9 (middle) and (bottom) they appear better resolved. On the other side, the dashed arrow,
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Fig. 8. Defocused LFM: 3D reconstruction of a zebrafish eye over an axial range ∆z =
[−40, 40]µm. (a) LF images acquired when dmla

tl >ftl and dmla
tl <ftl. (b) The reconstruction

using the Richardson-Lucy scheme shows artifacts around the FOP plane of each setup. The
defocused LFM is effectively an axially shifted (by ∆NOP; see Table 2) version of the original
LFM; the zero plane behavior is now appearing at the FOP plane. (c) The artifact-free
reconstruction using our aliasing-aware deconvolution method. (d) Lateral slices through the
reconstructed volume. The two defocused LFM configurations demonstrate higher resolved
features at complementary axial ranges; marked with smileys.
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Fig. 9. Defocused LFM: 3D reconstruction of fluorescent beads in agarose over an axial
range of ∆z = [−45, 45]µm. (a)Acquired LF images. (b) The reconstructed volumes using
our method for the original plenoptic design with dmla

tl = ftl (top) and the defocused LFM
with dmla

tl >ftl (middle) and dmla
tl <ftl (bottom). The red and blue highlights suggest how

different features at different depths are better resolved in one configuration than in the others.
No plenoptic design is generally better or worse.
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for example, points to a sphere placed at the FOP plane in the defocused dmla
tl >ftl (middle) case.

While in this case it can only be recovered at lenslet resolution, in Fig. 9 (top) and (bottom) we
observe it at higher resolution. Analogous discussion applies to the other beads. Just as we have
seen for the fish eye in Fig. 8, while one LFM configuration performs well at spatially resolving
certain depths in the axial range, it does so at the cost of other depths, which is also the case when
imaging away from the zero plane with the original LFM. In order to extend the resolvable range
in the 3-D reconstructions, such LFM configurations can be complementary, which supports and
motivates the work towards multi-focus [39,40] or dual-camera [5,41] plenoptic setups.

6. Discussion

While we showed good results using a Lanczos2 windowed ideal filter (with depth-dependent
cut-off frequencies) as the anti-aliasing resampling strategy, more advanced sampling-specific
interpolation schemes should be considered to cope with the highly irregular sampling patterns
of the LFM across depth, i.e. depth-dependent filter shapes in addition to the proposed
depth-dependent filter sizes.

Although we improve the visual appearance of the 3D reconstructed objects by addressing the
sampling artifacts, the effective lateral resolution is still limited by the depth-dependent sampling
rate. We showed that defocused LFM designs better resolve the near native object plane range,
while sacrificing resolution at other depth ranges by axially shifting the sampling patterns; similar
to imaging away from the zero plane with the original LFM design. In this regard, the LFM in
any of the configurations, introduces depth-dependent trade-offs in terms of resolution by design.

In order to improve on these limitations, hybrid systems have been proposed, combining a light
field microscope with a wide-field acquisition [42], or splitting the optical path and image with
complementary focused LF systems [5,41]. Such dual-/multi-camera setups aim at achieving
highly uniform sampling and subsequently isotropic resolution.
Alternatively, employing an array of lenslets with mixed focal lengths introduces more

irregularity in the sampling patterns and allows increased depth of field [39,40]. [13] also
demonstrates higher lateral resolutions over extended depth of field by introducing phase masks
into the optical path of the LFM and thus creating highly variant PSFs for different depths.
Interestingly, in [29], the authors discuss denser and more uniform sampling patterns in light
field photography by incorporating lens aberrations and misalignment into the imaging model.

In order to improve the effective resolution, all of these approaches target, in one way or another,
the depth-dependent nature of light field sampling. We believe, however, that a setup-specific
anti-aliasing resampling strategy is still necessary in deconvolution schemes for such approaches.
Finally, now that we can eliminate the troublesome artifacts with our proposed method, it

becomes feasible to improve the deconvolution method by including other image priors, such as
edge-enhancing regularization; previously, such regularization only enhanced the artifacts.

7. Conclusion

In this work we address one of the current challenges in 3D reconstruction of light field microscopy
data, the aliasing artifacts. We perform an analysis of the aliasing-free sampling requirements of
the LFM to derive depth-dependent anti-aliasing filters. We also derive a generalized wave-based
LFPSF to propose a novel aliasing-aware deconvolution scheme that applies to arbitrary LFM
designs. We compare the capabilities of the original and defocused LFM designs in terms
of recoverable lateral resolution at various axial ranges and demonstrate the superior quality
reconstruction performance of our method using experimental data from phantoms and in-vivo
biological samples.
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8. Implementation and datasets

The example datasets shown in section 5. together with the implementation of the methods
described in this paper are available as part of our 3D reconstruction framework for light field
microscopy oLaF, available at: https://gitlab.lrz.de/IP/olaf.
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