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Abstract   346 

Elevated serum urate levels correlate with cardio-metabolic traits and can cause gout. 347 

Understanding mechanisms that control serum urate levels may help to develop novel gout 348 

therapies and provide insights into correlations between serum urate and cardio-metabolic 349 

traits. We performed a large-scale trans-ethnic genome-wide study of serum urate among 350 

457,690 individuals and identified 183 loci (147 novel) that improve risk prediction of gout in an 351 

independent sample of 334,880 individuals. Urate-associated variants and genes were prioritized 352 

through complementary computational approaches including co-localization with gene 353 

expression in 47 tissues. Experimental validation showed that HNF4A, a transcriptional master-354 

regulator in liver and kidney, increased transcription of the major urate transporter ABCG2, and 355 

that HNF4A p.Thr139Ile is a functional variant. These results suggest that transcriptional co-356 

regulation of HNF4A target genes may contribute to the complex regulation of serum urate levels 357 

and the significant genetic correlations we identified between serum urate and numerous cardio-358 

metabolic traits.  359 

 360 

 361 

 362 

 363 

  364 
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Introduction  365 

 366 

Serum urate levels reflect a balance between uric acid production and its net excretion via kidney 367 

and intestine. Elevated serum urate levels, hyperuricemia, are correlated with components of 368 

the metabolic syndrome as well as with cardiovascular and kidney disease. Hyperuricemia can 369 

cause kidney stones and gout, the most common form of inflammatory arthritis1,2. Gout attacks 370 

are a highly painful inflammatory response to the deposition of urate crystals in hyperuricemia, 371 

and are a significant cause of morbidity, emergency room visits, and related health care costs3. 372 

Although gout has become a major public health issue, it is undertreated because of low 373 

awareness, inappropriate prescription practices of the most commonly used drug, allopurinol4 374 

and poor patient adherence5. A better understanding of the mechanisms controlling serum urate 375 

levels may not only help to develop novel medications to treat and prevent gout, but may also 376 

provide insights into regulatory mechanisms shared with urate-associated cardio-metabolic risk 377 

factors and diseases.  378 

Serum urate levels have strong heritable component, with a genetic heritability of 30%-379 

60% in diverse populations, after controlling for age and sex6-11. Candidate gene and early 380 

genome-wide associations studies (GWAS) have identified three genes as major determinants of 381 

serum urate levels: SLC2A9, ABCG2, and SLC22A127,12-18. While SLC2A9 and ABCG2 harbor 382 

common variants of relatively large effect19, SLC22A12 contains many rare or low-frequency 383 

variants associated with lower serum urate levels20. The largest GWAS meta-analyses of serum 384 

urate performed to date identified 28 associated genomic loci among European ancestry (EA) 385 

individuals21 and 27 among Japanese individuals22. Genes mapping into the associated loci often 386 

encode for urate transporters or their regulators in kidney and gut, as well as for genes relevant 387 

to glucose and lipid metabolism, central functions of the liver where uric acid is generated.  388 

Previous GWAS efforts of serum urate have not performed statistical fine-mapping 389 

coupled to functional annotation and differential gene expression across tissues. Such 390 

approaches benefit from expanding publicly available large datasets, and enable the use of novel 391 

methods to prioritize target tissues, pathways, as well as potentially causal genes and 392 
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variants23,24. Here, we perform large-scale trans-ethnic GWAS meta-analyses of serum urate 393 

among 457,690 individuals and identify 183 associated loci that improve risk prediction of gout 394 

in an independent sample of 334,880 individuals. Through comprehensive data integration, we 395 

prioritize target variants, genes, tissues and pathways that contribute to the complex regulation 396 

of serum urate levels. Proof-of-principle experimental verification shows that HNF4A, a 397 

transcriptional master regulator in the liver and kidney proximal tubule, increases transcription 398 

of ABCG2, which encodes a major urate transporter, and that the prioritized HNF4A p.Thr139Ile 399 

variant is a functional allele. These results validate our prioritization workflow and support the 400 

idea that transcriptional co-regulation of HNF4A target genes contributes to the significant 401 

genetic correlations we identify between serum urate and numerous cardio-metabolic traits and 402 

diseases.   403 

 404 

Results 405 

 406 

Meta-analyses for discovery and characterization of serum urate-associated loci  407 

Overview 408 

We developed an automated analysis workflow to collect and integrate results from 74 GWAS of 409 

serum urate from five ancestry groups participating in the CKDGen Consortium. We carried out 410 

trans-ethnic meta-analyses to obtain general insights into the genetic underpinnings of serum 411 

urate and gout, and used EA-specific analyses to dissect loci into genes and pathways as well as 412 

to identify genetic correlations with other traits and to evaluate gout risk prediction (Error! 413 

Reference source not found.). 414 

Trans-ethnic meta-analysis identifies 183 loci associated with serum urate  415 

The primary trans-ethnic GWAS meta-analysis included 457,690 individuals (EA, n=288,649; East 416 

Asian ancestry [EAS], n=125,725; African Americans [AA], n=33,671; South Asian ancestry [SA], 417 

n=9,037; and Hispanics [HIS], n=608). Mean serum urate levels across studies ranged from 4.2 to 418 

7.2 mg/dl (Error! Reference source not found.). Study-specific GWAS of serum urate were 419 
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performed based on genotypes imputed using references panels from the 1000 Genomes Project 420 

or the Haplotype Reference Consortium (Methods, Error! Reference source not found.). 421 

Following standardized study-specific quality control and variant filtering, we combined study-422 

specific results using inverse-variance weighted fixed effect meta-analysis. There was no 423 

evidence of un-modeled population stratification (LD Score regression intercept=1.01; λGC=1.04). 424 

After additional post-meta-analysis variant filtering, 8,249,849 SNPs were available for 425 

downstream analyses (Methods).  426 

We identified 183 loci that contained at least one SNP associated at genome-wide 427 

significance (p≤5x10-8). A locus was defined as +/-500 kb around the index SNP, the SNP with the 428 

lowest p-value (Error! Reference source not found., Error! Reference source not found.). Of 429 

these loci, 36 contained a SNP reported as an index SNP in previous GWAS of serum 430 

urate13,15,17,18,21,22,25,26; the remaining 147 ones were considered novel (Error! Reference source 431 

not found.). Absolute effect sizes ranged from 0.28 mg/dl per effect allele of rs3775947 (known 432 

SLC2A9 locus) to 0.017 mg/dl at rs11940694 (novel KLB locus), with small effects on average 433 

(mean absolute effect 0.038 mg/dl, SD 0.033). Regional association plots for the 183 loci are 434 

shown in Error! Reference source not found..  435 

Using a summary statistics-based approach (Methods), index SNPs at all 183 loci 436 

explained an estimated 7.7% of the trait variance, as compared to 5.3% of variance explained 437 

when restricting to 26 index variants previously reported from EA populations21. In a large 438 

participating pedigree-study from the general population, the 183 lead SNPs explained 17% of 439 

serum urate genetic heritability (h2=37%, 95% credible interval: 29%, 45%), which is a substantial 440 

increase over the 5% genetic heritability explained by the three major loci SLC2A9, ABCG2 and 441 

SLC22A12 (Error! Reference source not found.; Methods). 442 

Characterization of heterogeneity correlated with ancestry  443 

Most trans-ethnic index SNPs showed homogeneous effects, as indicated by the low values of 444 

the I2 statistic (median 2%, interquartile range 0-14%; Error! Reference source not found.A). 445 

Fourteen of the 183 index SNPs from the primary trans-ethnic meta-analysis showed evidence of 446 

ancestry- associated heterogeneity when tested using a meta-regression approach (Methods, 447 
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Panc-het<2.7x10-4=0.05/183), all of which had an I2 value of >25% (Figure 1, Supplementary Table 448 

3A). Three principal components generated from a matrix of mean pairwise allele frequency 449 

differences between studies were sufficient to separate the self-reported ancestry groups (Error! 450 

Reference source not found.). The most significant ancestry-associated heterogeneity was 451 

observed for the index variant rs3775947 at SLC2A9 (Panc-het=1.5x10-127), consistent with observed 452 

effect size differences in the ancestry-specific meta-analyses (0.34 mg/dl [EA], 0.26 mg/dl [AA], 453 

0.17 mg/dl [EAS], 0.41 mg/dl [HIS], 0.21 mg/dl [SA]) and previous reports of population 454 

heterogeneity of genetic effects at this locus27. We identified nine significant (p<5x10-8) loci using 455 

meta-regression that did not overlap with the significant loci from the primary fixed-effects trans-456 

ethnic meta-analysis. Of these, the index SNPs at SLC2A2 and KCNQ1 were also genome-wide 457 

significant in EAS (Supplementary Table 3B). The overwhelming majority of significant loci in this 458 

study, however, showed no heterogeneity correlated with ancestry. Results from ancestry-459 

specific meta-analyses of EA, AA, EAS and SA are summarized in Supplementary Tables 4 to 7, 460 

respectively, as well as in the Supplementary Information. The EA-specific meta-analysis 461 

identified 123 genome-wide significant loci (Supplementary Table 4) and was used for 462 

downstream analyses, detailed below.  463 

Sex-stratified meta-analyses of serum urate GWAS  464 

Male sex is a known, strong correlate of serum urate levels and risk factor for gout. We therefore 465 

performed secondary, sex-specific meta-analyses of urate to evaluate whether the urate-466 

associated index SNPs showed sex-specific differences. After multiple-testing correction, six of 467 

the 183 trans-ethnic index SNPs showed significant effect differences by sex: SLC2A9, ABCG2, 468 

CAPN1, GCKR, IDH2, and SLC22A12 (Pdiff<2.7x10-4=0.05/183; Supplementary Table 8). A formal 469 

test for differences in SNP effects on urate levels between men and women across the genome 470 

identified significant (Pdiff<5x10-8, Methods) SNPs in SLC2A9 and ABCG2 (Supplementary Figure 471 

5), both of which have previously been reported7,14,15,21, and additional SNPs suggestive of sex 472 

differences (Pdiff<1x10-5, Error! Reference source not found.).  473 

 474 

Epidemiological and Clinical Landscape 475 
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Urate-associated SNPs are associated with gout  476 

To assess the relationship of the 183 trans-ethnic index SNPs with the complex disease gout, we 477 

investigated their effects in a trans-ethnic meta-analysis of gout from 20 studies with a total of 478 

763,813 participants, including 13,179 with gout (Methods, Error! Reference source not found., 479 

Supplementary Table 1). Genetic effects were highly correlated (Spearman correlation 480 

coefficient 0.87, Supplementary Figure 6A), and 55 SNPs were significantly associated with gout 481 

(p<2.7x10-4, 0.05/183), supporting the causal role of hyperuricemia in gout. In agreement with 482 

previous findings21, the largest odds ratio (OR) for gout was observed at ABCG2 (rs74904971, OR 483 

2.04, 95% confidence interval [CI] 1.96-2.12, P=7.7x10-299). The genetic effect magnitudes were 484 

generally higher at lower minor allele frequency (MAF), with the exceptions of a few large-effect 485 

SNPs with >10% MAF that mapped into loci encoding urate transporters with known major 486 

effects on urate levels: SLC2A9, ABCG2, and SLC22A1220 (Supplementary Figure 6B). 487 

 488 

A genetic risk score for urate improves risk prediction for gout  489 

We evaluated whether a weighted urate genetic risk score (GRS) from independent SNPs 490 

improved risk prediction of gout when added to demographic information in a large, independent 491 

sample of 334,880 individuals from the UK Biobank, including 4,908 with gout (see Methods). 492 

Across categories of the urate GRS, gout prevalence increased from 0.1% in the lowest category 493 

(3.61-4.17 mg/dl) to 12.9% in the highest category (6.15-6.44 mg/dl; Figure 2A, Supplementary 494 

Table 10). In comparison to individuals in the most common GRS category (4.74-5.02 mg/dl), the 495 

age- and sex-adjusted OR of gout ranged from 0.09 (95% CI 0.02-0.37, P=7.8x10-4) in the lowest 496 

category to 13.6 (95% CI 7.2-25.7, P=1.4x10-15) in the highest category, corresponding to a >100-497 

fold range (Figure 2B, Supplementary Table 10). Of note, 3.5% of the population in the highest 498 

three categories of the GRS (≥ 5.87 mg/dL) had a greater than 3-fold increased risk for gout 499 

compared to the most common GRS category. This effect size is comparable to a modest effect 500 

size for a monogenic disease (OR >3)28, but much more prevalent in the general population.  501 

Risk prediction models were built by regressing gout status on the GRS alone (“genetic 502 

model”), on age and sex (“demographic model”), and finally on the GRS adjusting for age and sex 503 
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(“combined model”) in a training sample consisting of 90% of the individuals. These models were 504 

then used to predict gout status in the remaining testing set. The genetic model was a moderately 505 

accurate predictor of gout status (area under the receiver operating characteristics curve 506 

[AUC]=0.68), weaker than the demographic model (AUC=0.79). The combined model led to a 507 

statistically significant increase in prediction accuracy (AUC=0.84, DeLong’s test Z=-8.43, p-value 508 

<2.2x10-16; Figure 2C). These observations are consistent with the GRS representing a life-long 509 

predisposition to higher urate levels. Because the GRS can be calculated from birth, it may have 510 

utility in identifying individuals with a higher genetic risk for gout without knowledge of 511 

additional information. This could allow compensatory lifestyle choices to be made earlier in life, 512 

reducing the risk of developing this highly painful disease.   513 

 514 

High genetic correlations of serum urate with multiple cardio-metabolic traits  515 

Serum urate has been positively correlated with many cardio-metabolic risk factors and 516 

diseases29. We assessed genome-wide genetic correlations between serum urate and 748 517 

complex traits using the EA-specific meta-analysis results and cross-trait LD score regression 518 

(Methods). We identified significant (p<6.6x10-5=0.05/748]) associations with 214 complex traits 519 

or diseases (Supplementary Table 11). The highest positive genetic correlation coefficient (rg) 520 

with a non-urate trait was observed with gout (rg=0.92, p=3.3x10-70), followed by traits 521 

representing components of the metabolic syndrome: triglycerides in small HDL (rg=0.50), 522 

HOMA-IR (rg=0.49), and fasting insulin (rg=0.45). Significant positive genetic correlations were 523 

also observed for other cardio-metabolic risk factors or diseases, including waist circumference, 524 

obesity, and type 2 diabetes (Figure 3). The largest negative correlations were observed with 525 

HDL-cholesterol related measurements, consistent with observed associations between high HDL 526 

levels and lower cardiovascular risk, and with eGFR (rg=-0.26, p= 1.4x10-9), consistent with 527 

reduced renal urate excretion at lower eGFR. The genome-wide genetic correlations between 528 

serum urate and other complex traits and diseases display a remarkable similarity to the 529 

observed associations of serum urate levels with cardio-metabolic traits in epidemiological 530 

studies29. 531 
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Identification of enriched tissues and pathways  532 

To identify molecular mechanisms and tissues of importance for urate metabolism, and to 533 

provide potential clues into the observed genetic correlation with other traits and diseases, we 534 

investigated which tissues, cell types and systems may be significantly enriched for the 535 

expression of genes mapping into the urate-associated loci (Methods). Based on all SNPs with 536 

P<1x10-5 from the trans-ethnic meta-analysis, we identified significant enrichment (false 537 

discovery rate [FDR] <0.01) for 19 physiological system entries, three tissues, and two cell types 538 

(Supplementary Table 12). The strongest enrichment was observed for kidney (P=9.5x10-9) and 539 

urinary tract (P=9.9x10-9), both within the urogenital system, consistent with the kidney’s 540 

prominent role in controlling serum urate concentrations. There were several other significant 541 

entries in the endocrine and digestive system including liver, the major site of urate production. 542 

Interestingly, a novel significant enrichment was also observed for entries in the musculoskeletal 543 

system, specifically for synovial membrane, joint capsule, and joints (Figure 4A), the localization 544 

of highly painful gout attacks.  545 

We next tested for cell-type groups with evidence for enriched heritability based on cell-546 

type specific functional genomic elements using stratified LD score regression and the EA-specific 547 

meta-analysis results to match the ancestry of the LD score estimates (Methods). The strongest 548 

heritability enrichment was observed for kidney (11.5-fold), followed by liver (5.39-fold) and 549 

adrenal/pancreas (5.37-fold; Supplementary Table 13). This approach complemented the gene-550 

expression based approach and also supported kidney and liver as major organs of urate 551 

homeostasis. Results were similar when using trans-ethnic meta-analysis summary statistics 552 

(data not shown).  553 

Lastly, we tested whether any gene sets were enriched for variants showing association 554 

with serum urate in the trans-ethnic meta-analysis at P<10-5 (Methods). Significant enrichment 555 

(FDR <0.01) was observed for 383 reconstituted gene sets (Supplementary Table 14). As many 556 

of these contained overlapping groups of genes, we used affinity propagation clustering 557 

(Methods) to identify 57 exemplar gene sets (Supplementary Table 15), including a prominent 558 

group of inter-correlated gene sets related to kidney and liver development, morphology and 559 

function (Figure 4B). Together, these analyses underscore the prominent role of the kidney and 560 
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liver in regulating serum urate concentrations and implicate the kidney as a major target organ 561 

for lowering of serum urate. 562 

 563 

Prioritization of urate loci using statistical fine-mapping, function annotation, and gene 564 

expression 565 

To prioritize targets for translational research, we established a workflow to couple statistical 566 

fine-mapping of urate-associated loci to functional annotation and a systematic evaluation of 567 

tissue-specific differential gene expression. 568 

Statistical fine-mapping prioritizes candidate SNPs 569 

To identify independent and potentially causal variants, summary statistics-based fine-mapping 570 

was performed based on genome-wide significant loci identified in the EA-specific meta-analysis, 571 

because the method relies on LD estimates from an ancestry-matched reference panel whose 572 

sample size should scale with that of the GWAS (Methods)30. Fine-mapping identified 114 573 

independent SNPs (r2<0.01) in 99 genomic regions. Most regions contained only one independent 574 

signal, nine contained two independent SNPs, the ABCG2 locus contained three and the SLC2A9 575 

locus four independent SNPs (Supplementary Table 16). For each of these 114 independent 576 

SNPs, we computed 99% credible sets representing the set of SNPs which collectively account for 577 

99% posterior probability of containing the variant(s) driving the association signal31. The 99% 578 

credible sets contained a median of 16 SNPs (IQR 6-57), and six of them only a single variant, 579 

mapping in or near INSR, RBM8A, MPPED2, HNF4A, CPT1C, and SLC2A9 (Supplementary Table 580 

16). Among the 28 small credible sets (≤5 SNPs), several mapped in or near genes with an 581 

established role in regulating urate levels such as SLC2A9, PDZK1, ABCG2, SLC22A11, and 582 

SLC16A9. These credible sets contain the most supported candidate causal variants based on 583 

association signals and greatly reduce the number of candidate variants for experimental follow-584 

up studies.  585 

To further refine the credible set SNPs, we annotated them with respect to their 586 

functional consequence and regulatory potential (Methods). Missense SNPs with posterior 587 

probabilities >50% for driving the association signals or mapping into small credible sets were 588 
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identified in ABCG2, UNC5CL, HNF1A, HNF4A, CPS1, and GCKR (Supplementary Table 17, Figure 589 

5A). All missense SNPs except the one in GCKR had a CADD score >15 (Methods), thereby directly 590 

implicating the affected gene and SNP as potentially causal. In support, functional effects have 591 

already been demonstrated experimentally for variants rs2231142 (Gln141Lys) in ABCG2, 592 

rs742493 (p.Arg432Gly) in UNC5CL, and rs1260326 (p.Leu446Pro) in GCKR (Table 1). Non-exonic 593 

variants with posterior probabilities of >90% and mapping into open chromatin in enriched 594 

tissues (Methods) were identified in RBM8A, SLC2A9, INSR, HNF4A, PDZK1, NRG4, UNC5CL, and 595 

AAK1 (Supplementary Figure 7, Supplementary Table 17). When complemented by evidence of 596 

differential gene expression, these SNPs may represent causal regulatory variants and their 597 

potential effector genes.  598 

Gene prioritization via gene expression co-localization analyses 599 

To systematically assess differential gene expression, we tested for co-localization of the urate 600 

association signals with expression quantitative trait loci (eQTL) in cis across three kidney tissue 601 

resources and 44 GTEx tissues (Methods). High posterior probability for co-localization (H4≥0.8, 602 

Methods) supports a trait-associated variant acting through modulation of gene expression in 603 

the tissue where co-localization is identified. The eQTLs from the three kidney tissue resources 604 

were based on glomerular and tubulo-interstitial portions of micro-dissected kidney biopsies 605 

from 187 CKD patients and healthy kidney tissue sections of 96 additional individuals (Methods). 606 

We identified high posterior probability for co-localization with 13 genes in kidney tissue (Figure 607 

6), the tissue with the strongest enrichment of signals for urate-associated variants. Whereas co-608 

localization of some genes was restricted to kidney (SLC17A4, BICC1, UMOD, GALNTL5, NCOA7), 609 

other genes showed co-localization across tissues (e.g., ARL6IP5). The direction of change in gene 610 

expression with higher urate levels could vary for the same gene across tissues. For instance, 611 

whereas alleles associated with higher serum urate at the SLC16A9 locus were associated with 612 

higher gene expression in kidney, they were associated with lower expression in other tissues 613 

such as aorta, pointing towards tissue-specific regulatory mechanisms32.  614 

Details on each of the 13 candidate genes with high posterior probability of a shared 615 

variant underlying the associations with urate and gene expression in kidney are summarized in 616 



 
 

19 

Supplementary Table 18. Significant co-localization signals identified across all 47 tissues are 617 

illustrated in Supplementary Figure 8 and revealed additional novel insights such as co-618 

localization or the urate association signal with expression of NFAT5 in subcutaneous adipose 619 

tissue emphasizing its role in adipogenesis33, or with expression of PDZK1 in colon and ileum, 620 

important sites of urate excretion. Lastly, we investigated whether any EA-specific index SNPs 621 

contained in the 99% credible sets or their proxies (r2>0.8) were reproducibly associated with 622 

gene expression in trans in whole blood or peripheral blood mononuclear cell, with results 623 

presented in the Supplementary Information and Supplementary Table 19. 624 

 625 

HNF4A activates ABCG2 transcription and HNF4A p.Thr139Ile is a functional variant 626 

We performed proof-of-principle experimental studies to validate the workflow for prioritizing 627 

potentially causal genes and variants, as well as to facilitate insights into the observed genetic 628 

correlations of urate levels and cardio-metabolic traits. HNF1A and HNFA4 were selected because 629 

they were implicated as causal genes, and because they encode for master regulators of 630 

transcription in kidney proximal tubule cells and liver, and shared transcriptional regulation 631 

across tissues can potentially explain observed genetic correlations34. 632 

  We first tested whether HNF1A and HNF4A affected the transcription of the ABCG2 gene, 633 

which encodes for a urate transporter of major importance in humans. ABCG2 contains both 634 

HNF1A and HNF4A binding sites in its promoter region (Figure 5B) and represented the locus with 635 

the highest risk for gout in our screen. We used a luciferase reporter assay in HEK 293 cells 636 

transiently expressing a construct containing the human ABCG2 promoter (-1285/+362) 637 

upstream of the firefly luciferase gene to assess its transactivation by HNF4A and HNF1A proteins 638 

(Methods, Supplementary Figure 9A). Co-expression of HNF4A significantly increased the ABCG2 639 

promoter-driven luciferase activity, and the activation was dependent on the transfected HNF4A 640 

expression vector dose and corresponding levels of HNF4A protein (Figure 5C, Supplementary 641 

Figure 9B). No increase of luciferase activity occurred with pGL4 vector without the ABCG2 642 

promoter (Supplementary Figure 9D and 9E). Next, we tested the functional relevance of the 643 

prioritized missense p.Thr139Ile allele in HNF4A (NM_178849.2, isoform 1, Methods). Its location 644 

within the hinge/ DNA binding domain (DBD) (Figure 5D, Supplementary Figure 9F, PBD: 4IQR)35 645 
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supports potentially altered interactions with targeted promoter regions. The isoleucine 646 

substitution at HNF4A p.Thr139Ile significantly increased the transactivation of the ABCG2 647 

promoter and commiserate luciferase activity as compared to the wildtype threonine (Figure 5E, 648 

Supplementary Figures 9C) without altering HNF4A protein abundance. Thus, HNF4A can 649 

activate ABCG2 transcription, and HNFA4 p.Thr139Ile is a functional variant. Increased activation 650 

of the urate excretory protein ABCG2 by the allele encoding the isoleucine residue should result 651 

in lower serum urate levels, which is consistent with our observations from the GWAS. Results 652 

for HNF1A indicated that the observed association of this locus with serum urate is unlikely to 653 

occur via activation of ABCG2 (Figure 5C).   654 

 655 

 656 

Discussion  657 

 658 

This large trans-ethnic GWAS meta-analysis of serum urate levels based on 457,690 individuals 659 

represents a four-fold increase in sample size over previous studies21,22,36 and resulted in the 660 

identification of 183 urate-associated loci, 147 of which were novel. A genetic urate risk score led 661 

to significant improvements of gout risk prediction in a large independent sample of 334,880 662 

persons, 3.5% of whom had a gout risk comparable to a modest Mendelian disease effect size. 663 

Genome-wide genetic correlation analyses suggested a shared genetic component or co-664 

regulation not only with gout, but also a wide range of cardio-metabolic traits and diseases that 665 

reflected known observational correlates of serum urate. Tissue- and cell-type specific 666 

enrichment analyses supported kidney and liver, the sites of urate excretion and generation, as 667 

key target tissues. Comprehensive fine-mapping and co-localization analyses with gene 668 

expression across 47 tissues deliver a comprehensive list of target genes and SNPs for follow-up 669 

studies, of which we experimentally confirmed HNF4A p.Thr139Ile as a functional allele involved 670 

in transcriptional regulation of urate homeostasis.  671 

A major challenge of GWAS is to ascertain the causal gene(s) and/or variants driving each 672 

association signal in order to gain novel insights into disease-relevant mechanisms and pathways, 673 

and to highlight potential avenues to improve disease treatment and prevention. The datasets 674 
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generated in this study represent an atlas of candidate SNPs, genes, tissues and pathways 675 

involved in urate metabolism that will enable a wide range of follow-up studies. Out of the many 676 

novel and biologically plausible findings, we highlight three vignettes in which co-localization of 677 

the serum urate and tissue-specific gene expression signals provided new insights into urate 678 

metabolism: first, co-localization helped to prioritize genes in association peaks that previous 679 

GWAS could not resolve: for example, the association signal at chromosome 6p22.2 contains the 680 

genes encoding four members of the SLC17 transporter family (SLC17A1, SLC17A2, SLC17A3, and 681 

SLC17A4). Systematic testing of co-localization across genes and tissues supported a shared 682 

variant underlying the urate association signal and differential gene expression only for SLC17A4 683 

in kidney, with higher expression associated with higher serum urate. Previous experimental 684 

studies have implicated SLC17A4 as a urate exporter in intestine37, and our data support its yet 685 

unappreciated role in urate transport in the human kidney. Second, co-localization with gene 686 

expression provided insights into tubular transport processes that are indirectly connected to 687 

urate transport: for example, the gene product of the candidate ARL6IP5 has been shown to 688 

modulate activity of the glutamate transporter SLC1A138,39, dysfunction of which causes 689 

aminoaciduria40; and deletion of the candidate NCOA7 in mice results in distal renal tubular 690 

acidosis41. Third, it is noteworthy that co-localization of the urate association signal was observed 691 

with differential expression of MUC1, BICC1 and UMOD in kidney. Rare mutations in all three 692 

genes are known to cause cystic kidney diseases42-44, pointing towards a shared mechanism with 693 

respect to their association with urate.  694 

Another noteworthy finding from this well-powered study are the significant genetic 695 

correlations with many other, especially cardio-metabolic traits, with directions matching 696 

expectation from known observational associations45. While the almost perfect genetic 697 

correlation with gout reflects a causal relationship, other genetic correlations may reflect co-698 

regulation or broader pleiotropic effects. Many of the moderately but significantly correlated 699 

traits reflect central (dys-)functions of the liver or their consequences, including carbohydrate 700 

metabolism, diabetes and obesity, as well as lipid metabolism. Together, these findings suggest 701 

a shared genetic regulation of metabolic processes in the liver, such as urate generation and lipid 702 

metabolism, or an indirect effect of hepatic energy metabolism on urate levels via purine 703 
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metabolism. Likewise, significant genetic correlations with kidney-related traits such as eGFR 704 

may reflect shared regulation of processes in the kidney, the major site of urate excretion. 705 

Evidence for co-regulation is supported by the observation that many urate loci that share 706 

associations with other metabolic and kidney function traits encode for transcription factors with 707 

major roles in these tissues such as MLXIPL, TCF7L2, HNF1A, HNF4A. Another novel candidate 708 

discovered in this screen is KLF10, encoding for a transcription factor with an important role in 709 

the control of hepatic energy metabolism. <here include a sentence about the omnigenic 710 

hypothesis that with sufficient power, all genes active in an trait-relevant tissue will be picked 711 

up, which could account for the genetic correlations with traits that are also readouts of hepatic 712 

or renal metabolism  interpretation of observed pleiotropy as the potential manifestation of 713 

co-regulation of processes that occur in the same trait-relevant tissue >  714 

HNF4A is a powerful illustration of the proposed shared genetic regulation of metabolic 715 

processes and excretion of resulting waste products in multiple epithelia types. Mutations in 716 

HNF4A cause maturity onset diabetes of the young (MODY1)46 reinforcing its critical role in 717 

hepatic and metabolic processes, and this study shows that HNF4A also controls the transcription 718 

of ABCG2, the key urate secretory transporter in both gut and kidney epithelium (PMID 719 

24441388).47 Intriguingly, the HNF4A T139I functional variant described here increases 720 

transcription of the ABCG2 transporter and associates with reduced serum urate levels, is located 721 

in a region of the HNF4A protein harboring many of MODY1 mutations (ref). Yet, unlike the severe 722 

MODY1 missense mutations [R127W, D126Y, and R125W],35 the T139I does not cause MODY, but 723 

instead increases the risk of type 2 diabetes mellitus, possibly through a tissue specific loss of 724 

HNF4A’s phosphorylation at T139.46,48 These data point to additional complexity when 725 

interpreting shared associations with possible tissue and gene specific role for HNF4A mutations 726 

in altering metabolic pathways and urate homeostasis. 727 

In the kidney, nuclear HNF4A, indicative of transcriptional activity, is exclusively detected 728 

in the proximal tubule cells49 and has been reported to regulate the expression of SLC2A9 isoform 729 

150 and PDZK151. Kidney-specific deletion of HNF4A in mice phenocopies Fanconi renotubular 730 

syndrome.52 Detailed kidney tissues transcriptomic analyses support HNF4A to drive a proximal 731 

tubule signature cluster of 221 co-expressed genes including many candidate genes for urate 732 
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metabolism and transport49. In addition to HNF4A, HNF4G, and HNF1A, ten genes in this cluster 733 

also map into urate-associated loci (A1CF, CUBN, LRP2, PDZK1, SERPINF2, SLC2A9, SLC16A9, 734 

SLC17A1, SLC22A12 and SLC47A1).  735 

Despite many strengths of this study, some limitations warrant mention. The numbers of 736 

individuals of ancestries other than European or East Asian were still small, highlighting the value 737 

of studying more diverse populations. Focusing on SNPs present in the majority of studies 738 

emphasizes those that may be of greatest importance globally over population-specific variants. 739 

General limitations of the field that are not specific to our study are that statistical fine-mapping 740 

approaches based on summary statistics from meta-analyses cannot clearly prioritize functional 741 

variants in regions of very tight LD, as illustrated by the ABCG2 locus, and are influenced by the 742 

presence of results in the individual contributing studies. Moreover, only few regulatory maps 743 

from important target tissues such as synovial membrane and kidney are available, but we were 744 

able to evaluate differential gene expression in three separate kidney datasets. The generation 745 

of additional regulatory and expression datasets across disease states, developmental stages and 746 

more cell types in the kidney and other metabolically active organs represents an important 747 

research avenue for the future.  748 

In summary, this large-scale genetic association study of serum urate generated an atlas 749 

of candidate SNPs, genes, tissues and pathways involved in urate metabolism and its shared 750 

regulation with multiple cardio-metabolic traits that will enable a wide range of follow-up 751 

studies. 752 

  753 
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 754 

Online Methods 755 

Overview of GWAS methods 756 

We used a distributive model for study-specific GWAS with meta-analyses conducted centrally. 757 

An analysis plan was circulated to all participating studies accompanied by custom shell and R 758 

scripts for phenotype generation (https://github.com/genepi-freiburg/ckdgen-pheno). Study-759 

specific GWAS were conducted after a centralized review of the phenotype summary statistics. 760 

Study-specific GWAS results were checked using GWAtoolbox53, including p-value inflation, allele 761 

frequency distribution, imputation quality, and completeness of genotypes. Custom scripts were 762 

used to compare imputed allele frequencies to those of ancestry-matched reference panels and 763 

to visualize variant positions. In addition, quality metrics, including genomic control factor54, 764 

were compared across studies for consistency. The participants of all studies provided written 765 

informed consent. Each study had its research protocol approved by the corresponding local 766 

ethics committee. 767 

Phenotype definition, genotyping and imputation in participating studies 768 

The primary study outcome was serum urate in mg/dL. The laboratory methods for measuring 769 

serum urate in each study are reported in Supplementary Table 1. Prevalent gout was analyzed 770 

as a secondary outcome to examine whether urate-associated SNPs conferred gout risk. Gout 771 

cases were ascertained based on self-report, intake of urate-lowering medications, or 772 

International Statistical Classification of Diseases and Related Health Problems (ICD) codes for 773 

gout (Supplemental Table 1).  774 

 Each study performed genotyping separately and applied study-specific quality filters 775 

prior to phasing and imputation (Supplementary Table 2). In each study, haplotypes were 776 

estimated using MACH55, ShapeIT56, Eagle57 or Beagle58. Imputation of genotypes was conducted 777 

using reference panels from the Haplotype Reference Consortium (HRC) version 1.159, 1000 778 

Genomes Project (1000G) phase 3 v5 ALL, or the 1000G phase 1 v3 ALL60 and ImputeV261, 779 

minimac362, PBWT 63, the Sanger59, or the Michigan Imputation Server62. The imputed genetic 780 
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dosages were annotated using NCBI b37 (hg19). Each study provided an imputation quality for 781 

each variant: ImputeV2 info score, the MACH/ minimac RSQ or the SNPTest info score. 782 

 783 

Study-specific association analysis 784 

Each study performed ancestry-specific association analysis of serum urate by generating age- 785 

and sex-adjusted residuals of serum urate and regressing the residuals on SNP dosage levels, 786 

adjusting for study-specific covariates such as study centers and genetic principal components, 787 

assuming an additive genetic model. Gout was analyzed as a binary outcome adjusting for age, 788 

sex, genetic principal components, and study-specific covariates. Software used for these 789 

regression analyses were EPACTS (Test q.emmax for family based studies and q.linear otherwise; 790 

<https://genome.sph.umich.edu/wiki/EPACTS>, SNPTest64, RegScan65, RVTEST66, PLINK 1.9067, 791 

Probabel68, GWAF6, GEMMA 25, mach2qtl69 and R. Family-based studies used methods that 792 

accounted for relatedness. 793 

Trans-ethnic, ancestry-specific, and sex-stratified meta-analyses 794 

GWAS results from each study were pre-filtered to retain biallelic SNPs with imputation quality 795 

score >0.6 and minor allele count (MAC) >10 before inclusion into meta-analysis. Fixed effects 796 

inverse-variance weighted meta-analysis was performed using METAL70 with modifications to 797 

output higher precision (six decimal places). Genomic control was applied for each study. The 798 

genomic inflation factor GC
54 was calculated to assess inflation of the test statistics. For each 799 

meta-analysis result (trans-ethnic, ancestry-specific, and sex-specific), we excluded SNPs that 800 

were present in <50% of the studies or with a total MAC <400. For ancestry-specific meta-801 

analysis, we additionally excluded SNPs with heterogeneity >95% as indicated by I2 to remove 802 

signals that were driven by a small number of studies within each ancestry. Genome-wide 803 

significance was defined as p-value <5x10-8. The LD score regression intercept was calculated to 804 

assess the evidence for undetected population stratification71.  Between-study heterogeneity 805 

was assessed using the I2 statistic72.  806 

In the urate trans-ethnic meta-analysis, 8,249,849 of the 40,534,360 autosomal SNPs 807 

analyzed by METAL were retained for downstream characterization after post-meta-analysis 808 
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filtering. Ancestry-specific meta-analyses were conducted for European ancestry (EA), African 809 

American, East Asian ancestry, and South Asian ancestry using the same methods and variant 810 

filters as the trans-ethnic meta-analysis. In the EA-specific urate meta-analysis, 8,217,339 of the 811 

24,830,632 autosomal SNPs analyzed by METAL were retained for downstream analysis; the LD 812 

score regression intercept was 1.0. 813 

  Secondary meta-analyses were performed separately in men and women, using the same 814 

analytical approaches. To test for significant difference of association between males and 815 

females, we used a two-sample t-test (mBeta – fBeta) / (sqrt(mSE^2 + fSE^2)), where mBeta and fBeta 816 

were beta coefficients in males and females, respectively, and mSE and fSE were the standard 817 

errors among males and females, respectively.  818 

 819 

Initial determination of genome-wide significant loci 820 

For each meta-analysis results, we scanned the results to search for genome-wide significant 821 

SNPs (p-value <5x10-8) and defined a locus as a +/-500 kb interval containing at least one genome-822 

wide significant SNP and used the SNP with the lowest p-value in the interval as the index SNP. 823 

An ancestry-specific locus was defined as a genome-wide significant locus in an ancestry-specific 824 

meta-analysis of which the index SNP did not map into within the +/-500 kb intervals of any 825 

genome-wide significant loci in the trans-ethnic meta-analysis.  826 

 827 

Proportion of phenotypic variance explained and estimated heritability 828 

The proportion of phenotypic variance explained by index SNPs was calculated as the sum of the 829 

variance explained by each index SNP calculated as: 𝛽2 (
2𝑝(1−𝑝)

𝑣𝑎𝑟
), where 𝛽 is the beta coefficient 830 

and 𝑝 is the MAF of the SNP, and 𝑣𝑎𝑟 is the phenotypic variance. For this study, we used the 831 

variance of the age- and sex-adjusted residuals of serum urate in European-ancestry participants 832 

of the ARIC study as the estimate of the phenotypic variance (1.767).  833 

Heritability of age- and sex-adjusted urate was estimated using the R package 834 

‘MCMCglmm’73 in the Cooperative Health Research In South Tyrol (CHRIS) study,74 a participating 835 

pedigree-based study of EA individuals (186 up-to-5 generation pedigrees, totaling 4373 836 
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individual).75 We estimated: a) overall heritability, b) heritability excluding index SNPs in three 837 

major urate loci (SLC2A9, ABCG2, and SLC22A12), and c) heritability excluding index SNPs in all 838 

genome-wide significant loci in the present study. These three estimates were obtained for the 839 

trans-ethnic and EA meta-analyses results by running 1,000,000 MCMC iterations (burn in = 840 

500,000) based on previously described settings.75 The difference between the overall heritability 841 

and the heritability excluding the index SNPs in the present study represents the heritability 842 

explained by the significant loci in the present study. 843 

Trans-ethnic meta-regression  844 

Prior to conducting trans-ethnic meta-regression, we applied the same study-specific SNP filters 845 

as those in the trans-ethnic meta-analysis using METAL (imputation quality score >0.6 and MAC 846 

>10). An additional filter for minor allele frequency (MAF) >0.0025 was also applied to reduce the 847 

influence of very rare SNPs that passed the MAC filter in very large studies. Trans-ethnic meta-848 

regression was conducted using the MR-MEGA software package76, which models ancestry-849 

associated heterogeneity in the allelic effect as a function of principal components (PCs) of a 850 

matrix of mean pairwise allele frequency differences between GWAS studies. Due to software 851 

requirements, the minimum number of cohorts for each SNP had to be greater than the number 852 

of PCs plus two. Consequently, any SNPs that were present in five or fewer cohorts was excluded 853 

from this analysis. 854 

The effect and P-value of each SNP on the phenotype was reported after accounting for 855 

heterogeneity. Additional P-values were reported per-SNP for heterogeneity correlated with 856 

ancestry (Panc-het) and residual heterogeneity (Pres-het). Index SNPs from the METAL meta-analysis 857 

with Panc-het<5x10-8 in MR-MEGA were considered to have significant ancestry-associated 858 

heterogeneity. 859 

Effect of urate-associated index SNPs on gout and risk prediction for gout 860 

To evaluate the association of the trans-ethnic SNPs with the clinical disease gout, we carried out 861 

trans-ethnic meta-analyses of gout using METAL with the same study-specific filtering criteria as 862 

the urate trans-ethnic meta-analysis. No post-meta-analysis filtering was performed since the 863 

trans-ethnic meta-analysis of gout was only used to assess the association between trans-ethnic 864 
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urate index SNPs and gout. For the index SNPs in the trans-ethnic meta-analysis of serum urate, 865 

we computed the Spearman correlation between their effects on urate and gout.  866 

 The association between a genetic urate risk score constructed from the 114 independent 867 

serum urate-associated SNPs identified among individuals of EA (see fine-mapping section below) 868 

and gout was assessed in a large, independent sample from the UK Biobank (Project 20272)77. 869 

The sample was filtered to select only those in the White British ancestry subset, removing 870 

individuals with a kinship coefficient greater than 0.0313 and cases of sex chromosome 871 

aneuploidy or mismatch between genomically-inferred and self-reported sex. Gout cases were 872 

identified by self-report at the inclusion visit, and individuals who developed gout afterwards 873 

were excluded as controls using gout-specific ICD codes. The final dataset for analysis included 874 

334,880 individuals, of which 4,908 were classified as gout cases. 875 

The genetic risk score (GRS) was constructed as the sum of the additive imputed dosage 876 

of the alleles associated with higher urate levels (“risk alleles”), weighted by the genetic effect of 877 

the risk allele on serum urate. The sample was divided into ten bins at evenly spaced intervals 878 

between the lowest and highest values of GRS. The lowest bin did not contain any gout cases and 879 

was therefore combined with its adjacent bin. Gout status was regressed on GRS bin in a logistic 880 

model, including age and sex as covariates with the bin containing the largest number of 881 

individuals as the reference group. 882 

To investigate the usefulness of the GRS for the prediction of gout, the sample was divided 883 

randomly into a training set containing 90% of the sample and a testing set containing the 884 

remainder. Logistic regression models were run regressing gout on GRS (genetic model), age and 885 

sex (demographic model) and GRS with age and sex (combined model). Each of these models was 886 

then used to predict gout status in the testing set and the performance of the model assessed by 887 

comparing to true gout status using Area Under Curve (AUC) in a Receiver Operating 888 

Characteristic (ROC) curve.  889 

 890 

Genetic correlation 891 
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To assess the genetic correlation between serum urate and other traits in EA, we conducted 892 

cross-trait LD score regression71 using LD hub78 with the EA-specific urate meta-analysis results 893 

as input. A total of 746 genetic correlation estimates with serum urate were obtained out of 831 894 

GWAS summary results hosted at LD Hub, excluding two previous serum urate GWAS results. For 895 

presentation, the 212 significantly correlated traits (p<6.7x10-5=0.05/746) were grouped into 9 896 

categories based on the trait names and labels and presented in a Circos plot. 897 

Functional Enrichment 898 

To assess gene-set and tissue enrichment, we performed the Data-Driven Expression Prioritized 899 

Integration for Complex Traits analysis (DEPICT) version 1 release 19479. DEPICT performs gene 900 

set enrichment analysis by testing whether genes in 14,461 reconstituted gene sets were 901 

enriched in GWAS-associated SNPs. These reconstituted gene sets were generated based on 902 

similarity analysis from co-regulation of gene expression of 77,840 samples, manually curated 903 

gene-sets, molecular pathways from protein-protein interaction screening, and gene sets from 904 

mouse gene knock-out studies. Tissues and cell type enrichment was conducted in DEPICT by 905 

assessing the gene expression levels of the genes in the associated regions in 37,427 samples 906 

quantified using the Affymetrix U133 Plus 2.0 Array platform. The tissue and cell types were 907 

mapped to 209 MeSH first level terms including physiological systems, tissues and cells.  908 

All variants with urate association p-values <1x10-5 in the trans-ethnic meta-analysis 909 

results were used as input. Independent index SNPs were identified using Plink 1.967 clump 910 

command within 500 kb flanking regions and r²>0.1 in the 1000 Genomes phase1 version 3 data 911 

excluding the MHC region (chr6:25–35 Mb). False discovery rates (FDRs) were computed using 912 

500 repetitions, and p-values were computed using 5,000 permutations from 500 null GWAS sets 913 

adjusting for gene length.   914 

Affinity Propagation Clustering 915 

Affinity propagation clustering (APC)80 implemented in the R package ‘APCluster’81 was used to 916 

further cluster the urate-related network of reconstituted gene sets containing similar 917 

combinations of genes with similarity assessed by the probability of the gene’s membership in 918 

the gene set. DEPICT reports the top ten genes assigned to each gene set with a z-score 919 
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representing the probability of that gene’s inclusion within the set. This information was 920 

converted into a matrix of genes by pathways, where each element contained a z-score. APC was 921 

applied to the similarity matrix derived from this data using a tuning parameter of 0.5 as per the 922 

package defaults. The algorithm reports a single data point from each cluster as an ‘exemplar’ 923 

which best represents the points within that cluster. A correlation matrix was calculated from Z-924 

score of each gene within the exemplar gene sets. 925 

LD score regression for functional enrichment 926 

Urate heritability enrichment in 10 cell types in EA was assessed using stratified LD score 927 

regression82 with the EA-specific urate meta-analysis results as the input. The 10 cell types were 928 

collapsed from 220 cell-type specific annotations for four histone marks: H3K4me1, H3K4me3, 929 

H3K9ac, and H3K27ac. Stratified LD score regression estimates the SNP heritability of urate 930 

contributed by the SNPs linked to the histone marks in each cell type. The enrichment of a 931 

category is defined as the proportion of SNP heritability in that cell type divided by the proportion 932 

of SNPs in the same cell type.    933 

Statistical fine-mapping of genome-wide significant loci in European ancestry 934 

To identify potential causal variants in genome-wide significant loci, we perform fine-mapping in 935 

EA given that UKBB genotypes were able to serve as the reference panel with sufficiently large 936 

sample size30. First, we performed quality control on the UKBB genotypes obtained using 937 

Application ID 2027, Dataset ID 8974. We excluded individuals who withdrew consent and 938 

removed individuals with mismatched reported and genetic sex, variant missingness >5%, and 939 

who represented outliers for variant heterozygosity or along the first two principal components 940 

from a principal component analysis seeded with the HapMap phase 3 release 2 populations as 941 

reference. We retained only one member of each pair of individuals with a, pair-wise identity-by-942 

descent statistic ≥0.1875. Altogether 13,558 individuals with 16,969,363 SNPs were selected as a 943 

random subset used as the LD reference panel for fine-mapping. 944 

Second, neighboring loci with correlated index SNPs (r2 ≥0.2) in genome-wide significant 945 

loci from the EA-specific meta-analysis were combined into independent regions. Third, for each 946 

independent region, we performed GCTA independent SNP selection with r2 threshold of <0.01 947 
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to identify independent signals83. If a region had more than one independent SNP, for each 948 

independent SNP, we further conducted conditional analysis controlling for all other 949 

independent SNPs using GCTA to generate conditional betas and standard errors for calculating 950 

posterior probabilities. Finally, in each independent region, posterior probabilities for each SNP 951 

being causal were calculated using a Bayesian methods31 and 99% credible set were formed by 952 

including SNPs with 99% posterior probabilities of containing the causal variant(s).  953 

 954 

Annotation of the variants in the credible sets 955 

We annotated  SNPs in the credible sets for their exonic effect,  Combined Annotation Dependent 956 

Depletion (CADD) score, and occurrence in DNaseI-hypersensitive sites (DHS) from the 957 

Encyclopedia of DNA Elements (ENCODE) and Roadmap Epigenomics Consortium projects84,85. 958 

The exonic effect and CADD score were obtained using SNiPA v3.2 (March 2017)86.   SNiPA 959 

presented the CADD score as PHRED-like transformation of the C score, which was based on 960 

CADD release v1.3 downloaded from http://cadd.gs.washington.edu/download. A CADD score of 961 

15 is used to distinguish potential pathogenic variants from background noise in clinical genetics, 962 

and represents the median value of all non-synonymous variants in CADD v1.087,88. 963 

Co-localization analysis of cis-eQTL and urate-associated loci 964 

Co-localization of gene expression analysis was conducted using EA-specific urate meta-analysis 965 

results, cis-eQTL results from micro-dissected human glomerular and tubulo-interstitial kidney 966 

portions from 187 individuals in the NEPTUNE study89, as well as 44 tissues in the GTEx Project 967 

version 6p release32. For each locus, we identified all genes and all tissue gene pairs with reported 968 

eQTL within ±100 kb of each GWAS index SNP. The region for each co-localization test was 969 

defined as the eQTL cis window in the underlying studies89,90. We used the default parameters 970 

and prior definitions set in the ‘coloc.fast’ function from the R package ‘gtx’ 971 

(https://github.com/tobyjohnson/gtx), which is an adapted implementation of Giambartolomei’s 972 

colocalization method24. Evidence for co-localization was defined as H4 ≥0.8, which represents 973 

the posterior probability that the association with serum urate and gene expression is due to the 974 

same underlying variant. In addition, co-localization of serum urate was also performed with 975 

http://cadd.gs.washington.edu/download
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gene expression quantified using RNA sequencing of the healthy tissue portion of 99 kidney 976 

cortex samples from the Cancer Genome Atlas (TCGA)91. First, all genes that shared eQTL variants 977 

with GWAS index SNPs within ±100 kb were extracted. Then the posterior probability of co-978 

localization was assessed including eQTLs within the cis-window (±1Mb from the transcription 979 

start site) for each gene using the R coloc package24 with default values for the three prior 980 

probabilities. 981 

Trans-eQTL annotation by LD mapping  982 

We performed trans-eQTL annotation by LD mapping using the 1000Genomes, phase 3 European 983 

reference for LD with a cut-off of r2>0.8. The SNPs in this analysis included index SNPs in EA-984 

specific meta-analysis with >1% posterior probability. Due to small effect sizes, only large trans-985 

eQTL studies with sample size >1,000 individuals were considered, namely92-96 , the latter 986 

updated by a larger sample size and combining two studies (LIFE-Heart97, and LIFE-Adult98) with 987 

a total sample size of 6,645. To improve stringency of results, we only report inter-chromosomal 988 

trans-eQTLs showing gene expression association p-values <5x10-8 in at least two of the above 989 

mentioned independent sample sets.  990 

Experimental study 991 

Promoter Binding Site Predictions. Using the JASPAR 2018 database99,100, frequency matrices 992 

were downloaded for transcription factor binding sites of both vertebrate and human sequences 993 

(HNF1A: MA0046.1 and MA0046.2; HNF4A: MA0114.1 and MA0114.2). These matrices were then 994 

used to query the promoter region of ABCG2 (-1285/+362)101 by means of the LASAGNA 2.0102 995 

transcription factor binding site search tool with default parameters and a p value cutoff of 0.01.  996 

Site-Directed Mutagenesis. HNF1A and HNF4A clones were purchased from GeneCopoeia, (EX-997 

A7792-M02 and EX-Z5283-M02 respectively) and were mutagenized using the QuikChange 998 

Lightning Site Directed Mutagenesis kit (Agilent Technologies, #210518) per manufacturer’s 999 

instructions using PAGE purified primers.  1000 

(HNF1A-A98V-Forward: CCCTGAGGAGGCGGTCCACCAGAAAGCCG;  1001 

HNF1A-A98V-Reverse: CGGCTTTCTGGTGGACCGCCTCCTCAGGG;  1002 
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HNF4A-T139I-Forward: GACCGGATCAGCATTCGAAGGTCAAGC;  1003 

HNF4A-T139I-Reverse: GCTTGACCTTCGAATGCTGATCCGGTC). 1004 

Luciferase Assay. HEK293T cells were seeded in white walled 96 well plates coated with Poly-L-1005 

lysine at roughly 12,500 cells per well. Cells were transfected 18 hours later with either the ABCG2 1006 

promoter (-1285/+362) upstream of a firefly luciferase in the pGL4.14 vector (Promega, #E699A), 1007 

or the pGL4.14 vector without promoter construct, as well as GFP expressing vector used as an 1008 

internal control (pEGFP-C1, Clontech)103 using X-tremeGeneTM 9 DNA Transfection Reagent 1009 

(Roche Diagnostics, #6365787001). Transfection cocktails were prepared per manufacturer’s 1010 

specifications either with or without transcription factor using the following ratio: 0.6 g 1011 

promoter construct, 0.2g transcription factor, and 0.05g GFP. When no transcription factor 1012 

was used, pcDNA3.1 was substituted, and if more than one transcription factor was used, 0.1g 1013 

of each was used such that the sum of those transcription factors was equal to 0.2g DNA. 1014 

Approximately 48 hours after transfection, cells were rinsed with 1x PBS, then lysed using Passive 1015 

Lysis Buffer (Promega) for 15 minutes. During this incubation, GFP measurements were taken 1016 

using a CLARIOstar microplate reader (BMG Labtech). Next, 30l of Luciferase Reagent 1017 

(Promega, E297A&B) were added to each well, and the plate was incubated for an additional 20 1018 

minutes at room temperature. Finally, luciferase activity was measured using the CLARIOstar 1019 

microplate reader taking the average over 6 seconds.   1020 
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Table 1: Genes implicated as causal via identification of missense variants with high probability of driving the urate association 1021 

signal. Genes are included if they contain a missense variant with posterior probability of association of >50% or mapping into a small 1022 

credible set (≤5 variants). 1023 

Gene SNP #SNPs 
in set  

SNP 
PP 

consequence CADD DHS Gout p-
value (EA) 

Brief summary of literature and gene function 

ABCG2 rs2231142 4 0.41 p.Gln141Lys 
(NP_004818.2) 

18.2 ENCODE 
epithelial 

1.21E-290 Encodes a xenobiotic and high-capacity urate membrane transporter expressed in kidney, liver and 
gut. Causal variants have been reported for gout susceptibility (#138900) and the Junior Jr(a-) blood 
group phenotype (#614490). The locus was first identified in association with serum urate through 
GWAS (PMID:18834626) and confirmed in many studies since. The common causal variant Q141K 
has been experimentally confirmed (PMID:19506252) as a partial loss of function.  

UNC5C
L 

rs742493 4 0.95 p.Arg432Gly 
(NP_775832.2) 
 
(within Death 
domain) 

21.0 ENCODE 
epithelial 

2.73E-01 Encodes for the death-domain-containing Unc-5 Family C-Terminal-Like membrane-bound protein. 
Suggested as a candidate gene for mucosal diseases, with a role in epithelial inflammation and 
immunity (PMID:22158417). Experiments using human HEK293 cells showed that UNC5CL can 
transduce pro-inflammatory programs via activation of NF-
do so than the 432Arg one (PMID:22158417). 

HNF1A rs1800574 2 0.92 p.Ala98Val 
(NP_000536.5) 

23.4 
 

1.83E-02 Encodes a transcription factor with strong expression in liver, guts and kidney. Rare mutations cause 
autosomal-dominant MODY type III (#600496). Locus found in GWAS of T2DM (PMID:22325160) and 
blood urea nitrogen (PMID:29403010). Together with HNF4-alpha, it was first recognized as master 
regulator of hepatocyte and islet transcription. Knockout mice show proximal tubular dysfunction 
(Fanconi syndrome). HNF1A enhanced promoter activity of PDZK1, URAT1, NPT4 and OAT4 in 
human renal proximal tubule cell-based assays (PMID:28724612), supporting a role in the 
coordinated expression of components of the urate “transportosome”.  

HNF4A rs1800961 1 1.00 p.Thr139Ile 
(NP_000448.3) 

24.7 ENCODE 
pancreas 

7.43E-03 Encodes another nuclear receptor and transcription factor that controls expression of many genes, 
including HNF1A and other overlapping target genes. Rare mutations cause autosomal-dominant 
MODY type I (#125850) and autosomal-dominant renal Fanconi syndrome 4 (# 616026). Shown to 
regulate expression of SLC2A9 and other members of the urate "transportosome" in cell-based 
assays (PMID 25209865, PMID:30124855). The GWAS locus has been reported for multiple cardio-
metabolic traits and T2DM (PMID:21874001). 

CPS1 rs1047891 84 0.84 p.Thr1412Asn 
(NP_001116105.
1) 

22.1 
 

5.66E-02 Encodes mitochondrial carbamoyl phosphate synthetase I, which catalyzes the first committed step 
of the urea cycle by synthesizing carbamoyl phosphate from ammonia, bicarbonate, and 2 
molecules of ATP. Rare mutations cause autosomal-recessive carbamoylphosphate synthetase I 
deficiency (#237300). In addition to hyperammonemia, this disease features increased synthesis of 
glutamine, a precursor of purines. Elevated uric acid excretion has been reported in patients with 
hyperammonemia (PMID:6771064). GWAS locus for eGFR (PMID:26831199), homocysteine 
(PMID:23824729), urinary glycine concentrations (PMID: 26352407). 

GCKR rs1260326 2 0.67 p.Leu446Pro 
(NP_001477.2) 

0.1 ENCODE 
kidney 

4.09E-41 Encodes a regulatory protein prominently expressed in the liver that inhibits glucokinase. Identified 
in previous GWAS of urate (PMID:23263486) and multiple other cardio-metabolic traits. The 446L 
protein was shown to be less activated than 446Pro by physiological concentrations of fructose-6-
phosphate, leading to reduced glucokinase inhibitory ability (PMID:19643913). 

Abbreviation: pp, posterior probability; DHS, DNases hypersensitivity site; CADD, Combined Annotation Dependent Depletion phred score; EA, European ancestry. 1024 
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 1180 

Figure Legends 1181 

Figure 1: Trans-ethnic GWAS meta-analysis identifies 183 loci associated with serum urate 1182 

Outer ring: Dot size represents the genetic effect size of the index SNP at each labeled locus on 1183 

serum urate. Blue band: –log10(P) for association with serum urate, by chromosomal position 1184 

(GRCh37 (hg19) reference build). Red line indicates genome-wide significance (P=5×10-8). Blue 1185 

gene labels indicate novel loci, gray labels loci reported in previous GWAS of serum urate. Green 1186 

band: –log10(P) for association with gout, by chromosomal position. Red line indicates genome-1187 

wide significance (P=5×10-8). Inner band: Dots represent index SNPs with significant 1188 

heterogeneity and are color-coded according to its source: green for ancestry-related 1189 

heterogeneity (p-anc-het<2.7×10-4 [0.05/183]), red for residual heterogeneity (p-res-het <2.7×10-1190 

4), and yellow for both (p-anc-het and p-res-het <2.7×10-4). Loci are labeled with the gene closest 1191 

to the index SNP. 1192 

 1193 

Figure 2: A genetic risk score (GRS) for serum urate improves gout risk prediction. (A) Histogram 1194 

of the urate GRS among 334,880 European ancestry participants of the UK Biobank. The Y axes 1195 

show the number of individuals (left) and the prevalence of gout (right), the X axis shows bins of 1196 

the urate GRS; (B) Y axis displays the age- and sex-adjusted odds ratio of gout by GRS bin (X axis), 1197 

comparing each other bin to the most prevalent one; (C) Comparison of the receiver operating 1198 

characteristic (ROC) curves of different prediction models of gout: genetic (GRS only; red), 1199 

demographic (age + sex; green), and combined (GRS + age + sex; blue). Y-axis: sensitivity, X-axis: 1200 

specificity 1201 

 1202 

Figure 3: Serum urate shows widespread genetic correlations with cardio-metabolic risk factors 1203 

and diseases. 1204 
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The Circos plot shows significant genome-wide genetic correlations between serum urate and 1205 

214 complex traits or diseases (p<6.6x10-5), with bar height proportional to the genetic 1206 

correlation coefficient (rg) estimate for each trait and coloring according to its direction (dark 1207 

blue, rg>0; light blue, rg<0). Traits and diseases are labeled on the outside of the plot, and grouped 1208 

into nine different categories. Each category is color-coded (inner ring, inset). The greatest 1209 

genetic correlation was observed with gout (rg=0.92, p=3.3x10-70). Genetic correlations with 1210 

multiple cardio-metabolic risk factors and diseases reflect their known directions from 1211 

observational studies. 1212 

 1213 

Figure 4: Genes expressed in urate-associated loci are enriched in kidney tissue and pathways. 1214 

(A) Grouped physiological systems (X-axis) that were tested individually for enrichment of 1215 

expression of genes in urate-associated loci are shown as a bar plot, with the –log10(P-value) on 1216 

the Y-axis. Significantly enriched systems are labeled and highlighted in blue (false discovery rate 1217 

[FDR] <0.01). (B) Correlated (r > 0.2) meta-gene sets that were strongly enriched for genes 1218 

mapping into urate-associated loci (FDR <0.01). Thickness of the edges represents the magnitude 1219 

of the correlation coefficient, node size, color and intensity represent the number of clustered 1220 

gene sets, gene set origin, and enrichment p-value, respectively. 1221 

 1222 

Figure 5: Prioritization of p.Thr139Ile at HNF4A and functional study of HNF4A regulation of 1223 

ABCG2 transcription. 1224 

(A) Graph shows credible set size (X-axis) against the posterior probability of association (PPA; Y-1225 

axis) for each of 1,453 SNPs with PPA >1% in 114 99% credible sets. Triangles mark missense 1226 

SNPs, with size proportional to their Combined Annotation Dependent Depletion (CADD) score. 1227 

Blue triangles indicate missense variants mapping into small (≤5 SNPs) credible sets or with high 1228 

PPA (≥50%). (B) Predicted HNF1A or HNF4A binding sites in the promoter region of ABCG2, the 1229 

consensus affinity sequence, and the p value of likely matches. (C) Relative luciferase activity and 1230 

transactivation of ABCG2 promoter in cells transfected with variable amount of HNF1A or HNF4A 1231 
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constructs. ± SD, n=3 independent experiments, * p<0.01. (D) Position of p.Thr139Ile (T139I) in 1232 

DNA binding domain / hinge region within HNF4A homodimer structure (PBD 4IQR). (E) Relative 1233 

luciferase activity and transactivation of ABCG2 promoter in cells transfected with variable 1234 

amount of constructs of wild-type HNF4A (threonine) or isoleucine at position 139. ± SD, n=3 1235 

independent experiments, * p<0.01. 1236 

 1237 

Figure 6: Co-localization of urate-association signals with gene expression in cis in kidney 1238 

tissues 1239 

Serum urate association signals identified among European ancestry individuals were tested for 1240 

co-localization with all eQTLs where the eQTL cis-window overlapped (±100 kb) the index SNP. 1241 

Genes with ≥1 positive co-localization (posterior probability of one common causal variant, H4, 1242 

≥0.80) in a kidney tissue are illustrated with the respective index SNP and transcript (Y-axis). Co-1243 

localizations across all tissues (X-axis) are illustrated as dots, where the size of the dots indicates 1244 

the posterior probability of the co-localization. Negative co-localizations (posterior probability of 1245 

H4 <0.80) are marked in gray, while the positive co-localizations are color-coded based on the 1246 

predicted change in expression relative to the allele associated with higher serum urate. 1247 

 1248 

Table 1: Genes implicated as causal via identification of missense variants with high probability 1249 

of driving the urate association signal. Genes are included if they contain a missense variant with 1250 

posterior probability of association of >50% or mapping into a small credible set (≤5 variants). 1251 

  1252 
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