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Abstract

Despite the wealth of empirical and theoretical studies, the origin and maintenance of cooperation is still an

evolutionary riddle. In this context, ecological life-history traits which affect the efficiency of selection may play

a role, though these are often ignored. We consider here species such as bacteria, fungi, invertebrates and plants

which exhibit resting stages in the form of a quiescent state or a seedbank. When quiescent, individuals are

inactive and reproduce upon activation, while under seed bank parents produce offspring remaining dormant for

different amount of time. We assume weak frequency-dependent selection modeled using game-theory and the

prisoners dilemma (cooperation/defect) as payoff matrix. The cooperators and defectors are allowed to evolve

different quiescence or dormancy times. By means of singular perturbation theory we reduce the model to a one-

dimensional equation resembling the well known replicator equation, where the gain functions are scaled with

lumped parameters reflecting the time scale of the resting state of the cooperators and defectors. If both time

scales are identical cooperation cannot persist in a homogeneous population. If, however, the time scale of the

cooperator is distinctively different from that of the defector, cooperation may become a locally asymptotically

stable strategy. Interestingly enough, in the seedbank case the cooperator needs to be faster than the defector,

while in the quiescent case the cooperator has to be slower. We use adaptive dynamics to identify situations

where cooperation may evolve and form a convergent stable ESS. We conclude by highlighting the relevance

fo these results for many non-model species and the maintenance of cooperation in microbial, invertebrate or

plant populations.
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1. Introduction

After years of intensive research, the question how evolutionary forces generate and stabilize cooperation is still

not fully understood. In a naive setting, cooperation is prone to exploitation of defecting individuals. The

defectors have an advantage in e.g. feeding on a public good produced by cooperators, which alone carry the

costs for the public good production. Thus, the defectors are able to grow faster than the cooperators, and
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eventually out-compete them. This conflict between group- and personal benefit is often termed the tragedy

of the commons (West et al., 2006; Asfahl and Schuster, 2016). In a homogeneous population, cooperation will

get lost (Hofbauer and Sigmund, 1998). Cooperation among higher animals which have individuality can be

based on direct and indirect reciprocal altruism (Trivers, 1971; Schino and Aureli, 2010; Nowak, 2006). In other

cases, as in bacteria or plants, most approaches that explain the persistence of cooperation and altruism are

based on multilevel selection and assortmentn (Price, 1970; Okasha, 2009). In these cases, the population is

not homogeneous, but partitioned in locally interacting subunits. Assortment of cooperators counteract the

tragedy of the commons. In homogeneous populations it is, however, difficult to find simple mechanisms that

allow for cooperation to develop or to persist. Kin selection, the ability of cooperators to recognize other

cooperating individuals and to support only them, is one way out (West et al., 2007b,a; West and Gardner,

2010). Stable mechanisms for kin selection (that are not based on multilevel selection and assortment) are

difficult. An approach is a “greenbeard”-gene, a marker gene for cooperators (West and Gardner, 2010). Co-

operators will be only responsive to greenbeards. This marker gene may be faked by “falsebeards” that carry

some marker resembling the greebeard-marker and are therefore accepted by cooperators (West and Gardner,

2010). At least partially, the success of quorum sensing relies on kin selection (Asfahl and Schuster, 2016).

Another idea is to punish non-cooperators. For example, the use of bactericides can be considered as such a

strategy (West and Gardner, 2010). Smith introduced an elegant idea: plasmids could be carrier of cooperating

genes, and defectors are infected with these plasmids. In this way, defectors become cooperators (Smith, 2001).

Nevertheless, there is also a counter-argument: if plasmids can mutate and become defector-plasmids, this lead

to destroy the cooperation (Mc Ginty et al., 2011).

Using the same idea as the inhomogeneity effect on maintenance of cooperation, in a homogeneous population, we

propose conceptually that cooperation is maintained if sufficient uncoupling occurs in time in the reproduction

and competition between cooperators and defectors. The aim of the present paper is to explore the effect of such

inhomogeneous time scales within a given population. Many species do exhibit for example resting stages as life-

history traits. Many bacteria hibernate in a persister or sporulation state. In that state, the metabolism is low,

such that the persister cells will not reproduce, but they are also less susceptible to antibiotics (Balaban et al.,

2004). Another form of hibernating states are seeds that rest in the soil (Honnay et al., 2008). Both strategies

can be considered as bet-hedging strategies that allow the population to survive an unpredictable and hostile

time period (Evans and Dennehy, 2005; Beaumont et al., 2009; Lennon and Jones, 2011). In this study, we

investigate the interaction between cooperation and hibernation. We first develop an ecological model for

the two situations, in the spirit of the replication equation (Hofbauer and Sigmund, 1998). Two strategies are

present in the population, and the two types (cooperators/defectors) are allowed to have a different resting stage

strategy, i.e. time scale. The model in the present case has not only two components (the active populations)

but four (also the resting population components have to be taken into account). The population growth,

however, is assumed to be the same for both types. This assumption allows to reduce the system by singular

perturbation theory to a one-dimensional equation. The resulting equation has a remarkable similarity to the
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name meaning (quiescence) meaning (seedbank)

xi active population above ground population

yi resting population seed population

N = x1 + x2 total active pop. total above ground pop.

βi reproduction rate seed production rate

αi become quiescent -

µx,i death (active indiv.) death (above ground)

µy,i death (resting indiv.) death (seeds)

γi become active germinate

ω small parameter (weak selection) small parameter (weak selection)

g(., .) frequency dependence frequency dependence

Π payoff matrix payoff matrix

c costs for cooperation costs for cooperation

b cooperation benefit cooperation benefit

Table 1: Meaning of variables and parameters in the quiescence and the seedbank model.

replicator equation - only two new constants appear, that reflect the time scales of the two types. We discuss

the circumstances that allow cooperation to persist in this system.

This first part focus on the ecological time scale. In the second part, we use adaptive dynamics in order

to investigate if evolution promotes cooperation. Here we consider the evolutionary time scale, where rare

mutations and selection lead to change the parameters of the system. We find that the strategy to defect is

always an evolutionary stable state. This strategy, however, can be convergent unstable, such that a small

perturbation is able to start an evolutionary dynamics that increases cooperation in the system. Thereto, the

time scale of the resting state has to change with the degree of cooperation. Interestingly enough, seedbanks

and quiescence require completely different dependencies: the cooperating, quiescent individuals have to stay

longer in the resting state, while cooperator seeds need to germinate earlier than their defector counterparts.

2. Model

We discuss a model for quiescence and one for seedbanks in parallel, as these as well as the analysis closely

resembles each other. Lengthy derivations are deferred to the appendix. In both models we describe the amount

of individuals of two different types (or genotypes) interacting in the population. The types are found in an

active subpopulation (metabolic active population for quiescence, and above-ground population for seedbanks).

We denote this active subpopulation by xi (i = 1, 2). The quiescent population/seeds are denoted by yi. We

aim at a replicator equation (Hofbauer and Sigmund, 1998). Therefore we choose our basic model to be linear

(all individuals are independent, in particular, no competition). In reproduction, a weak interaction between
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the two types takes place. That is, the reproduction rate βi of type i is modified by an additive term ωgi(x1, x2)

that expresses the effect of frequency-dependent selection on type i. As usual for weak selection, ω is small. It

is later possible to use ω as a small parameter in a singular perturbation approach and to reduce the dimension

of the system.

In the quiescence model, the active individuals in the population can reproduce, becomes resting (quiescent), or

die. The quiescent individuals become active (wake up) at a certain rate while death also occurs (parameters

are found in table 1). The model equations read

ẋi = (βi + ωgi(x1, x2))xi − αixi − µx,ixi + γiyi (1)

ẏi = αixi − γiyi − µy,iyi (2)

In the seedbank model, only the above-ground population reproduces. The offspring are seeds which can

enter the seedbank and remain dormant for some amount of time depending the seed germination rate. The

above-ground individuals and the seeds die at specific rates. We have

ẋi = γiyi − µx,ixi (3)

ẏi = (βi + ωgi(x1, x2))xi − µy,iyi − γiyi (4)

We model the frequency-dependent interaction by a payoff-matrix Π of a 2-player, 2 strategy game, as it is often

done to address cooperation (Hofbauer and Sigmund, 1998). We denote by ei the i’th unit vector, and define

the payoff of type i,

gi(x1, x2) = eTi Π


 x1

x2


 1

x1 + x2

where this term is only defined if the total active population N = x1 + x2 > 0. Later on we use the convention

that x1 denotes the population of cooperators, and x2 that of defectors.

2.1. Basic properties, projection, and neutral model

We have gi(ζ x1, ζ x2) = gi(x1, x2) if ζ > 0. That is, the model equations are homogeneous of degree one.

Asymptotically, they tend to grow exponentially (Müller and Kuttler, 2015). If ω = 0, the equations for the

two types become uncoupled and the models become linear. Standard arguments show that the asymptotic

exponentially growth rate λ
(q)
i (for the quiescent model and genotype i) is given by the larger root of the

characteristic equation

pq(λ
(q)) = (λ

(q)
i )2 − (βi − αi − µx,i − γi − µy,i)λ

(q)
i − (βi − αi − µx,i)(γi + µy,i)− αiγi = 0, (5)

while the exponent λ
(s)
i for the seedbank model and genotype i is determined by the larger root of

ps(λ
(s)) = (λ

(s)
i )2 + (µx,i + γi + µy,i)λ

(s)
i + µx,i (γi + µy,i)− βiγi = 0 (6)

The exponents are always real as the matrices of the linear models are M-matrices (Berman, 2014).
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In order to further investigate the long term behavior, in particular for ω > 0, we project the equations in

defining new coordinates (recall that N = x1 + x2)

x̂i = xi/N, ŷi = yi/N.

Note that x̂1 + x̂2 = 1, such that we only need an equation for x̂1; if x̂2 appears below, it always refers to

x̂2 = 1− x̂1.

We obtain for the quiescence model

d

dt
x̂1 = (β1 + ωg1(x̂1, x̂2)) x̂1 − α1x̂1 − µx,1x̂1 + γ1ŷ1 − x̂1

d

dt
ln(N) (7)

d

dt
ŷi = αix̂i − γiŷi − µy,iŷi − ŷi

d

dt
ln(N) (8)

d

dt
ln(N) =

2∑

i=1

(
(βi + ω gi(x̂1, x̂2)− αi − µx,i)x̂i + γiŷi

)
(9)

and for the seedbank model

d

dt
x̂1 = −µx,1x̂1 + γiŷ1 − x̂1

d

dt
ln(N) (10)

d

dt
ŷi = (βi + ωgi(x̂1, x̂2)) x̂i − µy,iŷi − γiŷi − ŷi

d

dt
ln(N) (11)

d

dt
ln(N) =

2∑

i=1

(
− µx,ix̂i + γiŷi

)
(12)

In the following, let always ∗ ∈ {q, s}, depending on the model considered (quiescence/seedbank). As we know

that for ω = 0 the subpopulations for types 1 and 2 do not interact and grow exponentially, we find:

Corollary 2.1. For ω > 0, ω small enough, x̂1, ŷ1 tend to zero and x̂2 tends to 1 if λ∗
2 > λ∗

1. If, in turn,

λ∗
2 < λ∗

1, then x̂1 tends to one while x̂2, ŷ2 tend to zero.

That is, the (weak) frequency dependent selection only has an influence on the dynamics if λ
(∗)
1 = λ

(∗)
2 . In this

case, both types grow (for ω = 0) at the same rate. We are inclined to talk about a neutral model in this case.

Definition 2.2. We call the model neutral if λ
(∗)
1 = λ

(∗)
2 .

For the neutral model, we drop the index (as λ
(∗)
1 = λ

(∗)
2 ) and just write λ(∗). Also the next proposition supports

our notion of neutrality: A line of stationary points appears. The fitness of the two types are completely

equivalent, such that they persist in arbitrary relative frequencies. This line is transversally stable, that is, any

trajectory with positive initial conditions eventually tends to a point on this line.

Proposition 2.3. If ω = 0 and the models are neutral, there is a line of stationary points in the projected

models that is transversally stable. This line is given by x̂1 ∈ [0, 1], x̂2 = 1− x̂1, and ŷi = ŷequii (x̂1) with

Quiescence model:

ŷequii (x̂1) :=
−βi + αi + µx,i + λ(q)

γi
x̂i (13)
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Seedbank model:

ŷequii (x̂1) :=
µx,i + λ(s)

γi
x̂i (14)

Proof: For ω = 0, both subpopulations (xi, yi) evolve independently, and tend to an exponentially growing

population. We consider eqn. (7) resp. (10) to infer ŷi in terms of x̂i (where we take into account that
d
dt
ln(N) is –

in the exponentially growing solution – just the corresponding exponent). Let us focus on the first subpopulation.

If the initial value is larger zero, we find its limiting behavior characterized by the fraction of active and resting

population, given by some variables x̌1, y̌1 ≥ 0, x̌1 + y̌1 = 1 and c1 > 0 such that

e−λ(∗) t(x1(t), y1(t)) → c1 (x̌1, y̌1).

The same for population 2. Hence, for t → ∞,

x̃i(t) =
xi(t)

x1(t) + x2(t)
→

ci
c1 + c2

x̌i, ỹi(t) →
ci

c1 + c2
y̌i.

The solution tends in the long run to the line of stationary points. �

3. Weak selection

If ω > 0 but small, the singular perturbation theory (O’Malley, 2012) provides the appropriate framework to

discuss the dynamics. We expect a solution to converge O(ω)-close to the line of stationary points on a fast

time scale, and consequently to move slowly on an invariant manifold, again O(ω)-close to the line of stationary

points. We are in particular after this slow long term behavior. As the long-term dynamics is expected to stay

ω-close to the line of invariant points, we introduce new coordinates (x̃1, ỹ1, ỹ2),

x̃1(t) = x̂1(t), ŷi(t) = ŷequii (x̂1(t)) + ωỹi(t). (15)

and the abbreviation x̃2 = 1− x̃1.

Proposition 3.1. The neutral quiescence model for ω > 0 reads (defining i = 2 if i = 1 and vice versa)

d

dt
x̃i = ω

[
x̃i (1− x̃i)

{
gi(x̃1, x̃2)− gi(x̃1, x̃2)

}
+

{
γi (1 − x̃i)ỹi − γi x̃i ỹi

}]
(16)

d

dt
ỹi =

βi − αi − µx,i − λ(q)

γi
x̃i gi(x̃1, x̃2) (17)

+

(
βi − αi − µx,i − λ(q) − γi − µy,i −

d

dt
ln(N)

)
ỹi

d

dt
ln(N) = λ(q) + ω

2∑

j=1

(
gj(x̂1, x̂2)x̃j + γj ỹj

)
(18)

Proof: Appendix A.1.
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Proposition 3.2. The neutral seed bank model for ω > 0 reads (defining i = 2 if i = 1 and vice versa)

d

dt
x̃i = ω

(
γi (1 − x̃i) ỹi − γi x̃iỹi

)
(19)

d

dt
ỹi = gi(x̃1, x̃2) x̃i −

(
µy,i + γi + µx,i + λ(s) +

d

dt
ln(N)

)
ỹi (20)

d

dt
ln(N) = λ(s) + ω

2∑

i=1

γi ỹi (21)

Proof: Appendix B.1.

Note that the models are now in the standard form for singular perturbation theory. We first consider the

fast time scale, taking ω → 0. Then, ˙̃xi = 0, d
dt
ln(N) = λ(∗), and the equation for ỹi becomes linear. As the

constants of the linear equation are negative (Appendix A.2 for the quiescence model, Appendix B.1 for the

seedbank model), ỹi saddle fast on their stationary point,

ỹ
(∗)
i = A

(∗)
i gi(x̃1, x̃2) x̃i/γi

where the lumped parameters A
(∗)
i read for the quiescence model

A
(q)
i = −

βi − αi − µx,i − λ(q)

βi − αi − µx,i − γi − µy,i − 2λ(q)
(22)

while that for the seedbank model are given by

A
(s)
i =

γi
µy,i + γi + µx,i + 2λ(s)

= 1 +A
(s′)
i , A

(s′)
i = −

µx,i + µy,i + 2λs

µx,i + γi + µy,i + 2λs
. (23)

The numerator as well as denominator of (22) are negative (Appendix A.2) such thatA
(q)
i are negative. However,

as the variables ỹi only indicate the first order deviation from the line of stationary points, they are allowed to

be negative – ŷi are still positive, and the solution is biologically meaningful. In any case, 1+A
(s′)
i and 1+A

(q)
i

are non-negative for λ(∗) > 0.

To obtain the dynamics on the slow manifold, we plug this quasi-stationary state into the equation of x̃1, and

find the following corollary.

Corollary 3.3. The dynamics of the reduced system on the slow manifold in evolutionary time scale T = ω t

is given by

d

dT
x̃1 = x̃1 (1− x̃1)

{
g1(x̃1, 1− x̃1)

(
1 + A

(∗)
1

)
− g2(x̃1, 1− x̃1)

(
1 +A

(∗)
2

)}
. (24)

Note that we simply obtain a generalized replicator equation, where in contrast to the system without inner

time scale, the gain functions gi(x̃1, x̃2) are modified by constants A
(∗)
i that are caused by the quiescent state

respectively the seedbank. If A
(∗)
i = 0 we are back in the standard case (Hofbauer and Sigmund, 1998). This

observation is in line with previous findings indicating that models with seedbanks can be well approximated

by models without seedbanking, but with rescaled parameters (Blath et al., 2013, 2015; Koopmann et al., 2017;

Heinrich et al., 2018).
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3.1. Prisoners dilemma and time scales

We first note that the functions gi(x̃1, x̃2) are linear. Apart of the stationary states x̃1 = 0 and x̃1 = 1, there

is at most one more interior stationary state. In case that this interior stationary state does not exist, we find

directional selection, and any trajectory tends to a boundary equilibrium. If the interior stationary state is

present, either it is unstable (disruptive selection, each boundary equilibrium is locally asymptotically stable),

or locally stable (balancing selection, all trajectories in the interior tend to the interior stationary state).

We investigate the prisoners dilemma (Hofbauer and Sigmund, 1998), given by the payoff matrix

Payoff-Matrix =


 b− c −c

b 0




where we assume for now that b > c > 0. Hence,

g1(x̃1, x̃2) = −c x̃2 + (b− c) x̃1 = b x̃1 − c, g2(x̃1, x̃2) = bx̃1. (25)

The generalized replicator equation in that case reads

d

dT
x̃1 = x̃1 (1 − x̃1)

{
(b x̃1 − c)

(
1 +A

(∗)
1

)
− bx̃1

(
1 +A

(∗)
2

)}
.

The sign of the curled bracket determines the stability of the equilibria. We obtain at once the following

corollary.

Corollary 3.4. In both model, the strategy to defect (stationary point x̃1 = 0) is for all parameter choices

locally asymptotically stable. If

b
(
A

(∗)
1 −A

(∗)
2

)
≤ c

(
1 +A

(∗)
1

)

this strategy is even globally stable (directional selection). In the other case,

b
(
A

(∗)
1 −A

(∗)
2

)
> c

(
1 +A

(∗)
1

)
, (26)

the strategy to cooperate (stationary point x̃1 = 1) is locally asymptotically stable. In this case, there is a unstable

inner equilibrium (disruptive selection).

Balancing selection, i.e. coexistence of cooperators and defectors in a locally asymptotically stable stationary

point, cannot happen.

Condition (26) can never be satisfied for A
(∗)
i = 0. That is, in the classical replicator equation, cooperators

cannot persist in the long run. Cooperation will also die out if the time scale of both types are equal (A
(∗)
1 =

A
(∗)
2 ). Only if quiescence resp. seedbanks are present in the system, and the time scale for the resting state is

distinctively different for the two types such that the coefficient A for the cooperator is larger than that for the

defector, cooperation may become (locally) stable.

The basic assumption in the present theory is the neutrality of the two types. The time scale of the seed-

bank/quiescence state is in particular determined by γ. If we fix all parameters but α (quiescent model) resp.
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µx (seedbank model), the condition that λ(∗) is fixed and constant superimposes a dependency of γ and α (resp.

µx): If we vary γ, we are able to determine α = α(γ) (resp. µx = µx(γ)), s.t. λ
(∗) stays constant. It is now

possible to discuss the dependency of A(∗) on the time scale of the seedbank/quiescent state, given by γ.

Proposition 3.5. Let γ0 > 0 and α0 > 0 (µx,0 > 0) correspond to a growth rate λ0 > 0.

Quiescence: α(γ) > 0 is well defined and non-negative for γ > 0. A(q) = A(q)(γ) is monotonousness decreasing

in γ, and A(q)(γ) ∈ [0,−1].

Seedbank: There is a γ̂0 > 0 such that µx(γ) is well defined and non-negative for γ > γ̂0. A(s′) = A(s′)(γ) is

monotonousness increasing in γ, and A(q)(γ) ∈ [0,−1].

The proof is given in appendix Appendix A.3 and Appendix B.3. All in all, in order to satisfy A
(∗)
1 −A

(∗)
2 > 0,

we choose A
(∗)
i = A(γi), and γ1 < γ2 for te quiescence model (resp. γ1 > γ2 fr the seedbank model). The time

scale of the defector (γ2) needs to be faster (resp. slower) than that of the cooperator (γ1).

The fitness of the population is only determined by the active population; in case of the quiescence model, we

have
d

dt
ln(xi) = βi + ωgi(x1, x2)− αi − µx,i + γiyi/xi

while that for the seedbank model reads

d

dt
ln(xi) = γiyi/xi − µx,i.

In both cases, we find that the fitness is increased if he ratio γi yi/xi (resting over active population, scaled

by the rate to become active or to germinate, respectively) is increased. As γi yi/xi = A
(∗)
i g(x̃1, x̃2), this

observation explains why large A(∗) for the cooperators does favor their maintenance. The resting state acts an

amplifier for (weak, frequency-dependent) selection effects.

In quiescence, reproduction goes to the active population. In order to increase the ratio of resting and active

population (by the weak selection term) the resting population should become slower. In seedbanks, the

reproduction directly supplies the below-ground population. In that case, seeds should germinate faster.

4. Adaptive Dynamics

Until now we mainly focused on the ecological time scale addressing the question of which type (cooperator

and defector) out-competes the other in a population. We turn from ecology to evolution by assuming that the

resting strategies of cooperators and defectors can now evolve over time. We assume that from time to time

rare mutants appear in a population of residents (cooperators or defectors). If the mutants can spread and take

over, evolution does a step: The parameters of the resident population changes. That is, while the dynamics of

interactions within the population is interesting on the ecological time scale, the change of parameters (traits)

themselves can be driven by evolutionary dynamics. The main tool to study such evolutionary change in our
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(deterministic) setting is Adaptive Dynamics (Geritz et al., 1997; Diekmann, 2004). As terms are sometimes

used in slightly different ways, we recall some definitions. An unbeatable strategy (a strategy that cannot be

invaded by other strategies, at least if they are close) is called an evolutionary steady state ESS. An ESS is called

evolutionary convergent stable if Adaptive Dynamics predicts that strategies close-by are driven towards the

ESS by evolutionary forces (here selection), and evolutionary unstable if evolutionary forces will drive strategies

away.

In our setting, a trait is characterized by the time scale of the quiescent state/seedbank (represented by A(∗)(γ)),

and the degree of cooperativeness, which is described by the generated benefit b. The production of benefits

comes with costs for the producing individual, with larger benefits being more costly. The generic cost parameter

is defined as c = C(b) for some function C. The natural assumptions are C(0) = 0 (no benefit, no cost), and

C′(b) ≥ 0 (costs are non-decreasing with the benefit value). Te trait of an individual is completely characterized

by the tuple (b, A(∗)).

Under the assumption of trait independence, the evolution of resting state and cooperation would be uncoupled.

However, genetic features such as genetic linkage of the genes underpinning the traits or genetic pleiotropy,

or trade-off functions would link the evolution of both traits (resting stage and cooperation). Mutations at

the underlying genes affect therefore A(∗) and b. For simplicity, we assume here one single gene controlling

cooperation and the time scale of the resting state (quiescence or dormancy), so that A(∗) is a function of b

(A(∗) = A(b)). It is thus sufficient to know b to characterize the complete trait, (b,A(b)). We want to compute

the functions A(b) of quiescence/seedbank time scales and C(b) of costs/benefits for which cooperation is

favoured.

If the resident has trait br and a time scale given by Ar = A(br), while that of the mutant has trait bm (time

scale Am = A(bm)), then the payoff matrix reads

Payoff-Matrix = Π =


 br − C(br) bm − C(br)

br − C(bm) bm − C(bm)


 .

If only the resident is present, then x1 = 1. We aim to know two different properties of the mutant: (a) Can the

mutant invade the resident? (b) Is the mutant able to outcompete the resident, and to take over the system?

Proposition 4.1. Define Ar = A(br), Am = A(bm), and

G(x1; br, bm) = (1 +Ar)

{
C(bm)− C(br)

}
+ (Ar −Am)

{
(br − bm)x1 + bm − C(bm)

}
.

Then, the generalized replicator equation reads

ẋ1 = x1 (1− x1)G(x1; br, bm).

The mutant can invade if G(1; br, bm) < 0. The mutant can take over if G(1; br, bm) < 0 and G(0; br, bm) < 0.

10



Proof: We have

g1(x1, x2) = (br − C(br))x1 + (bm − C(br))x2 = (br − bm)x1 + bm − C(br)

g2(x1, x2) = (br − C(bm))x1 + (bm − C(bm))x2 = (br − bm)x1 + bm − C(bm).

The function G(x1; br, bm), as defined above, is nothing else but G(x1; br, bm) = g1(x1, x2)(1+Ar)−g2(x1, x2)(1+

Am), and hence the generalized replicator equation is given by ẋ1 = x1(1 − x1)G(x1; br, bm). The remaining

statements of this proposition are a direct consequence of the linearity of G in x1. �

Based on this proposition, we can (at least partially) answer our original question. If we assume that the

resident has trait b, we find a criterion that mutant with (slightly/infinitesimal) larger b are able to take over.

Proposition 4.2. If

(b− C(b))A′(b) > C′(b) (1 +A(b)) (27)

then Adaptive Dynamics predicts b to increase under the pressure of evolutionary forces.

Proof: We show that the inequality given above implies G(1; b, b+ ε) < 0 and G(0; b, b+ ε) < 0 for ε > 0, while

for ε < 0 the reversed inequalities hold true. Consider the Taylor expansion of G(x1; b, b+ ε) w.r.t. ε. First of

all, G(x1; b, b) ≡ 0. Next, the derivative of G(x1; b, b) w.r.t. b at b = b is given by

∂

∂b
G(x1; b, b)

∣∣∣∣
b=b

= (1 +A(b))C′(b) − A′(b) (b − C(b)) < 0

where we used the assumption of the proposition in the last inequality. Note that the zero’th and the first order

term are independent on x1. As G(x1; b, b+ ε) = ∂

∂b
G(x1; b, b)

∣∣∣∣
b=b

ε+O(ε2), and the derivative is negative, the

result follows. �

Theorem 4.3. The strategy b = 0 cannot be invaded by any strategy b > 0. If C′(0) > 0, b = 0 is evolutionary

convergent stable. If C′(0) = 0, C′′(0) sufficiently small, and A′(0) > 0, it is evolutionary unstable.

Proof: First of all,

G(1; 0, bm) = (1 +Ar)C(bm)− (Ar −Am)C(bm) = (1 +Am)C(bm) > 0 for bm > 0

Proposition 4.1 indicates that no mutant with bm > 0 can invade the strategy br = 0. The strategy b = 0 is an

ESS. Furthermore, for b = 0, we have b− C(b) = 0, and hence

∂

∂b
G(x1; b, b)

∣∣∣∣
b=b=0

= (1 +A(0))C′(0).

If C′(0) > 0, proposition 4.2 shows that the ESS is evolutionary convergent stable. Let us assume that C′(0) = 0

and A′(0) > 0. Then C(b) = 1
2C

′′(0)b2 +O(b3), and C′(b) = C′′(0)b+O(b2), s.t.

(b− C(b))A′(b) − C′(b) (1 +A(b)) = b(A′(0)− C′′(0)(1 +A(0))) +O(b2).

11
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Figure 1: Pairwise Invasion Plot, PIP, with b as trait. Dark region: Mutant can invade. (a) C(b) = κ1 b s.t. C′(0) = κ1 > 0. (b)

C(b) = κ2 b2, s.t. C′(0) = 0. Model: Quiescence. Remaining parameters: κ1 = 1/2, κ2 = 1, β = 1, µx = 0.1, µy = 0.1

Hence for b and C′′(0) sufficiently small but positive we have (b−C(b))A′(b) > C′(b) (1+A(b)). Proposition 4.2

proves that the ESS b = 0 is evolutionary unstable. �

We exemplify the last theorem. We choose the function A(b), paralleling inequality (27),

A′(b) = ζ
C′(b)

b− C(b)
(1 +A(b)), A(b0) = A0.

Here, we choose ζ > 1, such that A(b) satisfies the strict inequality (27) in case that b−C(b) > 0. We still have

the freedom to select C(b); we use two different functions, to exemplify the situations C′(0) > 0 resp. C′(0) = 0.

Case 1: C(b) = κb, where κ ∈ (0, 1) (most natural case).

The solution of the ODE for A(b) reads

A(b) = (1 +A0)

(
b

b0

)ζ κ

1−κ

− 1

That is, we always have A(0) = −1. Recall that our quiescent/seedbank model do not produce any function

A(b), but there are restrictions. Let us take the quiescence model as a reference. In order to translate the

b-dependent function A(b) into the original quiescence model with parameter function A(γ), we need to map b

to γ by the condition

A(γ) = A(γ(b)) = A(b).

We know that A(γ) has only a bounded range (appendix Appendix A.3). We simply cut γ(b) is A(b) leaves

the range of A(b): if A(b) < A(0), we take γ(b) = 0, and if A(b) > A(∞), then γ = ∞ (does not happen often).

For the existence of an ESS with b > 0 it is important that there is an interval for b, where we can satisfy

A(b) = A(γ(b)).
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Case 2: C(b) = κ b2.

In this case we obtain A(b) = (1 +A0)
(

1−b0
1−b

)2 ζ κ

− 1. We can use b0 = 0 as reference, and have

A(b) = (1 +A0)

(
1

1− b

)2 ζ κ

− 1

such that A(0) = A0. Again, we use the quiescence model as a reference. Since A(γ) is between 0 and

A(∞) ∈ (0,−1), A0 is negative, but larger than −1. Hence, A(b) is increasing. If A exceeds 0, there is no

solution of A(b) = A(γ) any more.

The Pairwise Invasion Plots (PIP) for these two cases in the quiescent model are presented in figure 1. In both

cases, these is a convergence stable ESS with cooperation (b > 0).In line with the theorem above, trait b = 0

is a convergent stable ESS in case 1 (C′(0) > 0), while it is convergent unstable in case 2 (C′(0) = 0). In the

latter case, a small initial perturbation leads to an increasing amount of cooperation. While the cooperation is

increasing, A(b) is increasing, the time scale of the resting state given by γ decreases. Therefore, the higher the

degree of cooperation, the longer becomes the quiescent state and conversely the shorter is the seedbank.

5. Discussion

We investigate a model for quiescence or seedbanks, augmented by cooperation. We find that the system

with weak frequency-dependent selection can be reduced to a generalized replicator equation. Comparing

this equation with the classical replicator one, additional constants that express the time scale of the resting

states of the respective types are found. Our main results state that in contrast to the classical results, for

which cooperation is never (locally asymptotically) stable, the resting stages may lead to a stabilization and

maintenance of cooperation in our models. This result is in line with simulation studies indicating that the

co-evolution of age and time scales may foster cooperation (Wu et al., 2009; Rong et al., 2010; Liu et al., 2012;

Rong et al., 2013). Ultimately, the cooperating type needs to be slower than the defector in the quiescent

model and faster in the seed bank model for this stabilizing effect to occur. Note that this observation is

counter intuitive for quiescence, as the red queen assumption (Hauert et al., 2002; Decaestecker et al., 2007)

indicates that in general the species with the smallest generation time has an advantage and can out-compete

the slower species (as we find in the seed bank model). However, in some cases of host-parasite coevolution,

the host may outcompete the parasite despite having longer generation time, an effect termed as the red-king

hypothesis (Bergstrom and Lachmann, 2003; Damore and Gore, 2011). In this scenario, the hosts do set the

stage and the possible outcomes and as such can be seen as potential defectors. The parasite, which reproduces

several times within a host, is therefore forced to cooperate. Note that in the Red King theory, the parasites live

within the hosts and thus hosts’ and parasites’ roles are not exchangeable. In the present study, the mechanisms

that stabilize cooperation seem to be slightly different because cooperators and defectors are symmetric in most

of their life-history traits aspects.

It is particularly interesting that the time scales of quiescence and seedbank should vary in opposite directions

13



to promote and maintain cooperation. We explain this result by the difference timing in offspring production

and when these offspring are present in the active population and thus under selection. In the quiescent model,

all offspring are produced and enter the active population after the parent individual exists the quiescent state.

In the seedbank model, offspring are produced when the parent is in the active population, but they become

dormant and the offspring will germinate and enter the active population at different future time points. In

other words, the competition between offspring of a given parent is immediate in the quiescent model while it

is delayed in the seedbank. As cooperation is favored when its frequency is high enough so that cooperators

do out-compete defectors, dormancy should be short for enough cooperators to be present at the same time,

while this condition is fulfilled in the quiescence as several offspring directly enter the active population. In

order to be maintained, cooperators should evolve compared to defectors 1) longer quiescent times, or 2) shorter

dormancy times. In both models the evolution of quiescence or dormancy results in a higher fraction of the

population that is resting, amplifying the beneficial effects of weak selection. If the defectors have a smaller

resting fraction, their amplification factor is smaller than that of the cooperators, and cooperation can prevail.

Using adaptive dynamics, we also show that in our populations with resting stages, 1) cooperation can appear,

and 2) evolution leads to different optimal quiescent or dormancy strategies for cooperators and defectors. It is

of interest to discuss the plausibility of these two events to happen and to be observed in natural systems.

We show that cooperation appears spontaneously if the resident trait without any cooperation (b = 0) is, due

e.g. to a small perturbation, replaced by a trait with a little cooperation (b > 0 but small) assuming the

costs for cooperation being very small (C′(0) = 0). The latter prerequisite could seem at first hard to satisfy

in any real world system. In fact, some systems would meet these requirements. If bacteria use metabolic

prudence (Schuster et al., 2013; Boyle et al., 2015), they produce the public good at time periods at which

other resources are the limiting factor (for growth) than the resources needed for producing the public good. In

this case, the public good production does not superimpose a growth rate reduction, and thus the costs for the

public good production vanish (or at least are very small). We speculate that this scenario at the initial state

would allow the increase of public good production. The degree of cooperation is then expected to grow until

a convergent stable ESS is reached. At the ESS, a certain public good production and a certain time scale for

the resting stages are observed, and this combination would allow cooperation not only to develop but also to

persist. Though, eventually the costs would increase later on and further evolution of the resting stages would

occur.

Once cooperation can evolve and be maintained, defectors and cooperators do evolve different optimal quiescent

or dormancy strategies. We are not aware of empirical observations or experimental evolution studies support-

ing our hypothesis. Future studies on bacteria experimental evolution could manipulate the rates of dormancy

(Beaumont et al., 2009; Lennon and Jones, 2011) or quiescence by e.g. manipulating the environmental variable

such as resources over time or generating artificially seedbanking by freezing samples at regular time intervals.

Such approach could be used in systems where bacteria are already used to study the evolution of coopera-

tion (Schuster et al., 2013; Boyle et al., 2015). In natural systems, we conjecture that the partners of symbiotic
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systems such as Angiosperms and Gymnosperms and their mycorhizal fungi (Strullu-Derrien et al., 2018) may

be good models to assess the existence of seedbanks and differential dormancy in cooperators or defectors. One

would expect, for example, that the more cooperating strains of mycorrhizal fungi would show shorter dormancy

times than the more defective strains.

Finally, we highlight that the present approach is based on the assumption that public good production and

time scales are strongly intertwined, which may not always be true in all biological systems. Nevertheless, we

propose a novel hypothesis for the evolution and maintenance of cooperation in an homogeneous system by the

evolution of resting stages (quiescence or seedbanks).
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Appendix A. System for singular perturbation theory – Quiescence

Appendix A.1. Transformation of the system

d
dt
ln(N):

d

dt
ln(N) =

2∑

i=1

(
(βi + ω gi(x̂1, x̂2)− αi − µx,i)x̂i + γiŷi

)

= λ(q) + ω
2∑

j=1

(
gj(x̂1, x̂2)x̃j + γj ỹj

)

˙̃x1:

d

dt
x̃1 = (β1 + ωg1(x̂1, x̂2)) x̂1 − α1x̂1 − µx,1x̂1 + γ1ŷ1 − x̂1

d

dt
ln(N)

= (β1 + ωg1(x1, x2)) x̃1 − α1x̃1 − µx,1x̃1 + γ1

(
−β1 + α1 + µx,1 + λ(q)

γ1
x̃1 + ωỹ1

)
− x̃1

d

dt
ln(N)

= ω x̃1

{
g1(x̃1, x̃2) −

2∑

i=1

(
gi(x̃1, x̃2)x̃i + γiỹi

)}
+ ωγ1ỹ1

= ω x̃1

{
g1(x̃1, x̃2) − g1(x̃1, x̃2) x̃1 − g2(x̃1, x̃2)(1 − x̃1)

}
+ ω

{
γ1 (1− x̃1) ỹ1 − γ2 x̃1 ỹ2

}

= ω

[
x̃1 (1− x̃1)

{
g1(x̃1, x̃2)− g2(x̃1, x̃2)

}
+

{
γ1 (1− x̃1)ỹ1 − γ2 x̃1 ỹ2

}]
.

Let i = 2 if i = 1 and vice versa. For symmetry reasons,

d

dt
x̃i = ω

[
x̃1 x̃2

{
gi(x̃1, x̃2)− gi(x̃1, x̃2)

}
+

{
γi x̃i ỹi − γi x̃i ỹi

}]
.

˙̃yi:

d

dt
ŷi = αix̂i − γiŷi − µy,iŷi − ŷi

d

dt
ln(N) = αix̃i −

(
γi + µy,i +

d

dt
ln(N)

)
ŷi

⇒ ω
d

dt
ỹi = −

−βi + αi + µx,i + λ(q)

γi

d

dt
x̂i + αix̃i −

(
γi + µy,i +

d

dt
ln(N)

)
ŷi.

Then,

ω
d

dt
ỹi = −

−βi + αi + µx,i + λ(q)

γi

(
ω

[
x̃1 x̃2

{
gi(x̃1, x̃2)− gi(x̃1, x̃2)

}
+

{
γi x̃i ỹi − γi x̃i ỹi

}])

+αix̃i −

(
γi + µy,i +

d

dt
ln(N)

)(
−βi + αi + µx,i + λ(q)

γi
x̂i + ωỹi

)

= −
−βi + αi + µx,i + λ(q)

γi

(
ω

[
x̃1 x̃2

{
gi(x̃1, x̃2)− gi(x̃1, x̃2)

}
+

{
γi x̃i ỹi − γi x̃i ỹi

}])

−
x̃i

γi

(
−αiγi + (γi + µy,i + λ(q))(−βi + αi + µx,i + λ(q))

)

−ω

(
−βi + αi + µx,i + λ(q)

γi

)
x̂i

2∑

j=1

(
gj(x̂1, x̂2)x̃j + γj ỹj

)
− ω

(
γi + µy,i +

d

dt
ln(N)

)
ỹi

With the characteristic equation for λ(q)

(λ
(q)
i )2 − (βi − α1 − µx,i − γi − µy,i)(λ

(q)
i )− (βi − α1 − µx,i)(γi + µy,i)− αiγi = 0
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the O(ω0)-term in this equation becomes zero. Dividing by ω yields

d

dt
ỹi = −

−βi + αi + µx,i + λ(q)

γi

(
x̃1 x̃2

{
gi(x̃1, x̃2)− gi(x̃1, x̃2)

}
+ x̃i

2∑

j=1

(
gj(x̃1, x̃2)x̃j + γj ỹj

)

+

{
γi x̃i ỹi − γi x̃i ỹi

})
−

(
γi + µy,i +

d

dt
ln(N)

)
ỹi

=
−βi + αi + µx,i + λ(q)

γi

([
x̃i gi(x̃1, x̃2) + x̃i (γ1ỹ1 + γ2ỹ2) +

{
γi x̃i ỹi − γi x̃i ỹi

}])

−

(
γi + µy,i +

d

dt
ln(N)

)
ỹi

= −
−βi + αi + µx,i + λ(q)

γi

(
x̃i gi(x̃1, x̃2) + γi ỹi

)
−

(
γi + µy,i +

d

dt
ln(N)

)
ỹi

= −
−βi + αi + µx,i + λ(q)

γi
x̃i gi(x̃1, x̃2) +

(
βi − αi − µx,i − λ(q) − γi − µy,i −

d

dt
ln(N)

)
ỹi

Appendix A.2. Quiescence, fast system

Take ω to zero. x̃i will not change any more, and d
dt
ln(N) = λ(q). Then, ỹi satisfy linear equations. The factor

in front of ỹi is negative: Let

A = βi − αi − µx,i − γi − µy,i.

We show that A < 2λ(q), that is, A/2 < λ(q).

Proposition Appendix A.1. We have the inequalities

2λ(q) > βi − αi − µx,i − γi − µy,i (A.1)

λ(q) > βi − αi − µx,i. (A.2)

If λ(q) > 0, we have additionally

λ(q) < βi − µx,i. (A.3)

Proof: Recall that

pq(λ) = λ2 − (βi − αi − µx,i − γi − µy,i)λ− (βi − αi − µx,i)(γi + µy,i)− αiγi

= −(βi − αi − µx,i − λ)(λ + γi + µy,i)− αiγi.

If we plug in A/2 into the characteristic equation for the quiescence model, we find

pq(A/2) = A2/4−A2/2− (βi − α1 − µx,i)(γi + µy,i)− αiγi

=
−1

4
((βi − αi − µx,i − (γi + µy,i))

2 + 4(βi − α1 − µx,i)(γi + µy,i))− αiγi

=
−1

4
(βi − αi − µx,i + γi + µy,i)

2 − αiγi < 0.

As λ(q) is the larger root (which we know to be real) of the polynomial, and the squared term has a positive sign,

A/2 < λ(q). Hence A− 2λ(a) < 0.
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Second, we show the inequality

βi − αi − µx,i − λ(q) < 0

We use the same approach as above, and inspect pq(.) at βi − αi − µx,i.

pq(βi − αi − µx,i) = (βi − αi − µx,i)
2 − (βi − αi − µx,i) (βi − αi − µx,i − γi − µy,i)

−(βi − α1 − µx,i)(γi + µy,i)− αiγi

= −αiγi < 0.

As above, the inequality is an immediate consequence of pq(βi − αi − µx,i) < 0.

In order to show the third inequality, we first note that λ(q) > 0 implies βi − µx,i > 0: Therefore, we start with

the observation that the roots of pq(λ) read

λ± =
1

2

[
βi − α1 − µx,i − γi − µy,i ±

√
(βi − α1 − µx,i + γi + µy,i)2 + 4αiγi

]
.

If βi − α1 − µx,i + γi + µy,i > 0,

λ− <
1

2

[
βi − α1 − µx,i − γi − µy,i − (βi − α1 − µx,i + γi + µy,i)

]
< −γi − µy,i < 0

and if βi − α1 − µx,i + γi + µy,i < 0 (and hence βi − α1 − µx,i < −γi − µy,i ),

λ− <
1

2

[
βi − α1 − µx,i − γi − µy,i + (βi − α1 − µx,i + γi + µy,i)

]
< βi − α1 − µx,i < 0.

In any case, λ− < 0. Hence λ
(q)
i > 0 implies pq(0) < 0, and

0 > −(βi − α1 − µx,i)(γi + µy,i)− αiγi = −(βi − µx,i)(γi + µy,i) + αµy,i

which in turn forces βi − µx,i > 0.

To show λ(q) < βi − µx,i, we inspect pq(λ) at λ = βi − µx,i, and find

pq(βi − µx,i) = αi(βi − µx,i + µy,i) > 0

which implies the desired inequality.

�

Appendix A.3. Quiescence: dependence of A
(q)
i on time scale

Appendix A.3.1. A’s monotonicity

The time scale of the quiescent state is given by γ and α. In the following, we assume that the exponential

growth rate λ(q) is determined for a certain parameter set; we then vary the time scale of the quiescent state in

varying γ, and adapt α such that the exponential growth does not change. In this way, we define α = α(γ), and

discuss the dependency of

A(q)(γ) = −
β − α(γ)− µx − λ(q)

β − α(γ)− µx − γ − µy − 2λ(q)
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Proposition Appendix A.2. Assume that there are α, γ > 0, such that λ(q) is the positive root of pq(λ) (the

growth rate). Assume furthermore that λ(q) > 0. Then, for all γ > 0, α(γ) > 0. Furthermore, A(q)(γ) is

monotonously decreasing.

Proof: As the (larger) root of pq(λ) does not change, we can solve pq(λ
(q)) = 0 for α and find

α = α(γ) = −
(λ(q) − (β − µx)) (λ

(q) + (γ + µy))

λ(q) + µy

α(γ) is linear in γ, and cannot change sign for γ > 0. As we assume that there is (γ, α) ∈ R
2
+ that yield the

eigenvalue λ(q), α(γ) is positive for all γ > 0, and increasing. In particular, we have for the derivative of α

w.r.t. γ

α′(γ) = −
(λ(q) − (β − µx))

λ(q) + µy

⇒ α(γ) = α′(γ) (λ(q) + γ + µy).

We rewrite A(q) as

A(q) = −
β − α− µx − λ(q)

(β − α− µx − λ(q)) − (γ + µy + λ(q))
=

γ + µy + λ(q)

(2λ(q) − β + µx + µy) + α+ γ
− 1.

Inequality (A.1) implies that the denominator is always positive, such that A(q) is for all γ > 0 well defined. In

order to discuss the dependence of A(q) on γ (note that α = α(γ) and λ(q) − β+µx < 0 due to inequality (A.3))

we take the derivative,

d

dγ
A(q)(γ) =

λ(q) − β + µx + α(γ)− α′(γ)(γ + µy + λ(q))

((2λ(q) − β + µx + µy) + α+ γ)2
=

λ(q) − β + µx

((2λ(q) − β + µx + µy) + α+ γ)2
< 0.

�

Appendix A.3.2. Values for A

Which values does A assume? First of all,

α(0) = −
(λ(q) − (β − µx)) (λ

(q) + γ + µy)

λ(q) + µy

∣∣∣∣
γ=0

= −(λ(q) − (β − µx))

and hence

A(q)(0) =
γ + µy + λ(q)

(2λ(q) − β + µx + µy) + α+ γ

∣∣∣∣
γ=0

− 1 =
µy + λ(q)

(2λ(q) − β + µx + µy)− (λ(q) − β + µx)
− 1 = 0.

Next we note that

lim
γ→∞

α(γ)

γ
= −

(λ(q) − β + µx)

λ(q) + µy

and hence

lim
γ→∞

A(γ) =
1

1− (λ(q)−β+µx)
λ(q)+µy

− 1 =
λ(q) + µy

β − µx + µy

− 1 = −
β − µx − λ(q)

β − µx + µy

.

Note that λ(q) > 0 implies that β − µx > λ(q) > 0, such that this expression is well defined and negative for

non-decreasing population size. Furthermore, for λ(q) > 0, we have
λ(q)+µy

β−µx+µy

> 0, such that A(∞) > −1.

Thus, A(γ) is monotonously decreasing from A(0) = 0 to A(∞) ∈ (0,−1).
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Appendix B. System for singular perturbation theory – seed banking

Appendix B.1. Transformation of the system

d
dt
ln(N):

d

dt
ln(N) =

2∑

i=1

(−µx,i x̃i + γiŷi) =

2∑

i=1

−

[
µx,i x̃i + γi

(
(µx,i + λ(s))x̃i

γi
+ ωỹi

)]

= λ(s) + ω

2∑

i=1

γi ỹi

Let i in {1, 2}, for symmetry reasons we have :

˙̃xi:

d

dt
x̃i = −x̃i(µx,i +

d

dt
ln(N)) + γiŷi = −x̃i

(
µx,i + λ(s) +

2∑

i=1

ωγiỹi

)
+ γi

(
(µx,i + λ(s))x̃i

γi
+ ωỹi

)

= ω


γiỹi − x̃i

2∑

j=1

γj ỹj




˙̃yi:

ω
d

dt
ỹi =

d

dt
ŷi −

µx,i + λ(s)

γi

d

dt
x̃i

=

(
(βi + ωgi(x̃1, x̃2)) x̃i − µy,iŷi − γiŷi − ŷi

d

dt
ln(N)

)

−ω

(
µx,i + λ(s)

γi

)
γiỹi − x̃i

2∑

j=1

γj ỹj




= (βi + ωgi(x̃1, x̃2) ) x̃i −

(
µy,i + γi +

d

dt
ln(N)

)(
µx,i + λ(s)

γi
x̃i + ωỹi

)

−ω

(
µx,i + λ(s)

γi

)
γiỹi − x̃i

2∑

j=1

γj ỹj




=


βi x̃i −


µy,i + γi + λ(s) + ω

2∑

j=1

γj ỹj



(
µx,i + λ(s)

γi

)
x̃i




+ω


gi(x̃1, x̃2) x̃i −

(
µy,i + γi +

d

dt
ln(N)

)
ỹi −

(
µx,i + λ(s)

γi

)
γiỹi − x̃i

2∑

j=1

γj ỹj






=
1

γi

[
γi βi −

(
µy,i + γi + λ(s)

)(
µx,i + λ(s)

) ]
x̃i

+ω

[
gi(x̃1, x̃2) x̃i −

(
µy,i + γi +

d

dt
ln(N)

)
ỹi − (µx,i + λ(s)) ỹi

]

The zero order term in ω becomes zero, as the term in the bracket equals the characteristic polynomial for the

seedbank model. If we divide by ω we obtain

d

dt
ỹi = gi(x̃1, x̃2) x̃i −

(
µy,i + γi + µx,i + λ(s) +

d

dt
ln(N)

)
ỹi.
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Appendix B.2. Seedbank, fast system

Proposition Appendix B.1. If we are in the fast time scale, taking ω → 0. Then, ˙̃xi = 0, d
dt
ln(N) = λ(s),

and the equation for ỹi becomes linear and the constants of this linear equation are negative.

Proof: We find

lim
ω→0

d

dt
x̃i = lim

ω→0
ω


γiỹi − x̃i

2∑

j=1

γj ỹj


 = 0, lim

ω→0

d

dt
ln(N) = lim

ω→0
λ(s) + ω

2∑

i=1

γi ỹi = λ(s).

Take ω to zero. x̃i will not change anymore, and d
dt
ln(N) = λ(s). Therefore, ỹi satisfies a linear equation. Since

λ(s) is a positive root and all rates are positive we have :

−

(
µy,i + γi + µx,i + λ(s) +

d

dt
ln(N)

)
< 0

�

Appendix B.3. Seedbank: dependency of A
(s)
i on time scale

Appendix B.3.1. A’s monotonicity

Proposition Appendix B.2. Assume that there are µx, γ > 0, such that λ(s) is the positive root of ps(λ) (the

growth rate). Assume furthermore that λ(s) > 0. Then, A(s′)(γ) is monotonously increasing.

Proof: Recall that µx is a function of γi to ensure that the growth rate λ is independent on the time scale of

the system as defined by µx,i and γi. We use

A(s′)(γ) = −
µx(γ) + µy + 2λ

µx(γ) + γ + µy + 2λ
= −1 +

γ

µx(γ) + γ + µy + 2λ
.

The derivative of µx(γ) can be obtained from the equation for λ,

µx(γ) =
βγ − λ2 − (γ + µy)λ

γ + µy + λ
=

βγ

γ + µy + λ
− λ

µ′

x(γ) =
β(µy + λ)

(γ + µy + λ)2
=

β

γ + µy + λ
−

βγ

(γ + µy + λ)2
.

Therefore, γµ′
x(γ)− µx(γ) = λ− βγ2

(γ+µy+λ)2 , and

d

dγ
A(s′)(γ) = −

−1

µx(γ) + γ + µy + 2λ
−

γ (1 + µ′
x(γ))

(µx(γ) + γ + µy + 2λ)2

= −
γ µ′

x(γ)− µx(γ)− µy − 2λ

(µx(γ) + γ + µy + 2λ)2
=

βγ2

(γ+µy+λ)2 + µx(γ) + µy + λ

(µx(γ) + γ + µy + 2λ)2
> 00.
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Appendix B.3.2. Values for A

We find directly that

A(s′)(0) = −
µx(0) + µy + 2λ

µx(0) + 0 + µy + 2λ
= −1.

Furthermore, from limγ→∞ µx(γ) = β − λ we conclude that

lim
γ→∞

A(s′)(γ) = 0.

Now, let us assume that there is γ0, µx,0 > such that the corresponding λs) > 0. We fix this growth rate λs) > 0,

vary γ and adapt µx,0 accordingly to meet the condition that λ(s) is constant in γ. From ps(λ
(s)) = 0 we conclude

that

µx =
βγ − (λ(s))2 − (γ + µy)λ

(s)

λ(s) + γ + µy

.

The denominator always is positive. The numerator, however, changes sign if γ drops below

γ̂0 =
(λ(s))2 − (γ + µy)λ

(s)

β
.
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