Supplementary Information

Accessing Methyl Groups in Proteins via ¹H-detected MAS Solid-state NMR Spectroscopy Employing Random Protonation

Sam Asami,^{a*} Bernd Reif^{ab}

 ^a Munich Center for Integrated Protein Science (CIPS-M) at Department Chemie, Technische Universität München (TUM), Lichtenbergstr. 4, 85747 Garching, Germany
^b Helmholtz-Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit und Umwelt, Institute of Structural Biology (STB), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany

Figure S1. ¹H-detected pulse sequences for ¹H,¹³C correlation spectroscopy and determination of ¹H,¹³C dipolar coupling tensors. (A) 2D ¹H,¹³C HMQC pulse sequence with $\tau = 1/2J_{HC} = 3.13 \text{ ms}^1$. (B) 2D constant-time HSQC experiment, setting the constant-time delay $T = 1/J_{C,C} = 28.6 \text{ ms}$ and $\tau = 1/4J_{HC} = 1.79 \text{ ms}^2$. (C) ¹H,¹³C REDOR pulse sequence³. The ¹H π pulses during the REDOR period followed the xy-16 phase cycling scheme⁴. The INEPT transfer delay was set to $\tau = 1/4J_{HC} = 1.92 \text{ ms}.$

Figure S2. Linear correlation of the experimental to the theoretical mass for differently labelled samples of the SH3 domain of α -spectrin. The samples employed are from left to right: (1) unlabelled, (2) u-[¹H,¹³C,¹⁵N], (3) u-[²H,¹⁵N], (4) Leu/Val ¹³CHD₂ otherwise u-[²H,¹²C,¹⁵N], (5) 5% GlcRAP, (6) u-[²H,¹³C,¹⁵N]. The correlation coefficient R^2 was equal to 0.9998. We yielded an excellent agreement between experimental and theoretical masses, further validating the *in silico* models employed here.

Figure S3. *In silico* calculated ¹H,¹H effective dipolar coupling for methyl groups based on the 1 μ s MD relaxed crystal structure of the SH3 domain of α -spectrin (note the logarithmic y-scale). Here, calculations were carried out for the structures according to the 5% GlcRAP labelling scheme (red bars), the selective Ala β /Ile γ 2, δ 1/Met ϵ /Thr γ 2/Leu δ 1, δ 2/Val γ 1, γ 2 (AILMTV) ¹³CHD₂ methyl labelling scheme (blue) and for the uniformly protonated structure (grey). Crosses depict the upper 2 σ confidence interval. We note, that for the AILMTV labelling scheme we assumed the ¹³CHD₂ isotopomer for all methyl groups. The composition of methyl groups in the SH3 domain is as follows (occurrence is given in parentheses): Ala (3), Ile (1), Leu (7), Met (2), Thr (4), Val (6).

References

- 1 Asami, S., Schmieder, P. & Reif, B. High Resolution 1H-Detected Solid-State NMR Spectroscopy of Protein Aliphatic Resonances: Access to Tertiary Structure Information. J. Am. Chem. Soc. **132**, 15133-15135 (2010).
- 2 Vuister, G. W. & Bax, A. Resolution Enhancement and Spectral Editing of Uniformly C-13-Enriched Proteins by Homonuclear Broad-Band C-13 Decoupling. *J. Magn. Reson.* **98**, 428-435 (1992).
- 3 Schanda, P., Huber, M., Boisbouvier, J., Meier, B. H. & Ernst, M. Solid-State NMR Measurements of Asymmetric Dipolar Couplings Provide Insight into Protein Side-Chain Motion. *Angew. Chem., Int. Ed.* 50, 11005-11009 (2011).
- 4 Gullion, T. & Schaefer, J. Elimination of Resonance Offset Effects in Rotational-Echo, Double-Resonance Nmr. *J. Magn. Reson.* **92**, 439-442 (1991).