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Abstract 

Background: Breast cancer is the most common malignancy in female patients worldwide. Because of its hetero-
geneity in terms of prognosis and therapeutic response, biomarkers with the potential to predict survival or assist in 
making treatment decisions in breast cancer patients are essential for an individualised therapy. Epigenetic alterations 
in the genome of the cancer cells, such as changes in DNA methylation pattern, could be a novel marker with an 
important role in the initiation and progression of breast cancer.

Method: DNA methylation and RNA-seq datasets from The Cancer Genome Atlas (TCGA) were analysed using 
the Least Absolute Shrinkage and Selection Operator (LASSO) Cox model. Applying gene ontology (GO) and single 
sample gene set enrichment analysis (ssGSEA) an epigenetic signature associated with the survival of breast cancer 
patients was constructed that yields the best discrimination between tumour and normal breast tissue. A predictive 
nomogram was built for the optimal strategy to distinguish between high- and low-risk cases.

Results: The combination of mRNA-expression and of DNA methylation datasets yielded a 13-gene epigenetic 
signature that identified subset of breast cancer patients with low overall survival. This high-risk group of tumor cases 
was marked by upregulation of known cancer-related pathways (e.g. mTOR signalling). Subgroup analysis indicated 
that this epigenetic signature could distinguish high and low-risk patients also in different molecular or histological 
tumour subtypes (by Her2-, EGFR- or ER expression or different tumour grades). Using Gene Expression Omnibus 
(GEO) the 13-gene signature was confirmed in four external breast cancer cohorts.

Conclusion: An epigenetic signature was discovered that effectively stratifies breast cancer patients into low and 
high-risk groups. Since its efficiency appears independent of other known classifiers (such as staging, histology, metas-
tasis status, receptor status), it has a high potential to further improve likely individualised therapy in breast cancer.
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Background
Breast cancer is the most common tumour in woman, 
but represents a heterogeneous disease in terms of 
clinical prognosis and therapeutic response. Parts of 

the clinical heterogeneity can be linked to distinct 
molecular subtypes by gene expression profiles [1, 2]. 
Depending on the mutational and growth factor recep-
tor status, a targeted chemotherapy had recently help 
to improve overall survival. DNA mutation and copy 
number changes are robust markers for molecular sub-
types and they show little variation throughout therapy. 
However, their predictive value for progression and 
response may be limited. RNA expression pattern usu-
ally exhibits much larger variations between individual 
patients, and can be directly related to the activity of 
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important pathways in malignant cells. On the other 
hand, RNA expression values also show relative rapid 
and stochastic variations, that could hamper the iden-
tification of relevant pathways. Epigenetic changes of 
DNA methylation are semi-stable and less variable, but 
show large variations related to the activity of cellular 
pathways. Thus, the combination of epigenetic sta-
tus and transcriptome would be helpful for predicting 
the tumour progression. Moreover, Changes in DNA 
methylation provides tumour cells with a high level 
of plasticity to quickly adapt to changes in physiology, 
metabolic restrictions or to cytotoxic stress during 
therapy [3–5]. Therefore it is reasonable to analyse the 
DNA methylation pattern in the tumour cells in order 
to find novel predictors for the survival or response of 
breast cancer patients [6, 7].

The availability of high throughput genomic assays 
such as DNA methylation-seq, ATAC-seq and RNA-
seq, have opened the possibility for a comprehensive 
characterisation of all molecular alterations of cancer 
cells and, hence to find novel biomarkers with clini-
cal and therapeutic value [1, 8–10]. To overcome the 
limited statistical power of single biomarkers, entire 
molecular signatures derived from high-content 
genome screens seem to offer better predictive val-
ues. Some studies already demonstrated the power of 
whole transcriptome (RNA-seq) datasets, alone or in 
combination with DNA methylation datasets to build 
gene-based or CpG site-based signatures [6, 11]. In the 

present study, we merged DNA methylation and RNA-
seq datasets of breast cancer patients from the Can-
cer Genome Atlas (TCGA) in order to develop a novel 
epigenetic signature, capable of predicting the overall 
survival. The proposed epigenetic signature was vali-
dated in 4 external datasets from the GEO database 
(617 cases in total).

Methods
Sample selection and data processing
TCGA DNA methylation datasets, RNA-seq data-
sets and clinical datasets for 1248 patients with mam-
mary carcinoma were downloaded from the UCSC 
Xena browser (https ://xenab rowse r.net/). GSE12093, 
GSE17907, GSE20685 and GSE86948 were download 
from the GEO database. The detailed information for 
the patients was in Additional files 1 and Table 1.

Differentially expressed genes (DEGs) analysis 
and differentially methylated genes (DMGs) analysis
Limma package was used to perform DEG analysis 
[12]. An empirical Bayesian approach was applied to 
estimate the gene expression changes using moder-
ated t-tests. The DEGs were defined as genes with an 
adjusted p value of less than 0.05, and with an absolute 
of fold change greater than 2. The DMGs were defined 
as genes with an adjusted p value of less than 0.05, and 
an absolute β value (from HumanMethylation450 Bead-
Chip) difference higher than 0.25. We could identify 

Table 1 Detailed informations for  each of  the  GEO cohorts and  for  the different breast cancer subtypes of  the  TCGA 
cohort are given, together with their calculated hazard ratio

https://xenabrowser.net/
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306 genes that had overlapping changes in both DEGs 
and DMGs.

LASSO regularisation and signature construction
LASSO (Least Absolute Shrinkage and Selection Opera-
tor) is a L1 regularisation method [13, 14]. An L1-norm is 
performed to penalise the weight of the features during 
regression model construction. The regularisation pro-
cess forces the feature values to 0 and generate a sparse 
feature space. The correlation between mRNA expres-
sion and DNA methylation level of the overlapping genes 
from DEGs and DMGs were checked and the genes with 
absolute correlation greater than 0.3 in tumour tissues 
were used to build the prognostic model. 13 genes were 
selected for the construction of the signature and the 
coefficient for each was obtained through the penalizing 
process. A risk score formula was established as follows:

Risk score = (0.321  *  expression level of PCD-
HGA12) + (0.204 * expression level of HIF3A) + (0.061 * 
expression level of EZR) + (0.056 * expression level of PCD-
HGA3) + (0.044 * expression level of TPD52) + (−  0.011 
* expression level of STAC2) + (−  0.012 * expres-
sion level of C2orf40) + (−  0.019 * expression level of 
KRT19) + (− 0.050 * expression level of NDRG2) + (− 0.054 
* expression level of KCNH8) + (−  0.151 * expres-
sion level of CCND2) + (−  0.170 * expression level of 
SIAH2) + (− 0.186 * expression level of ITPRIPL1).

The nomogram was constructed by means of the rms 
package [15]. The ssGSEA was performed by package 
gsva [16].

WGNCA for the transcriptome of breast tumour
A gene co-expression network was built by the Weighted 
Correlation Network Analysis (WGCNA) [10, 17]. Rais-
ing the co-expression similarity to a power β defined a 
weighted network adjacency [18]. By evaluating the cor-
relations between the risk score of patients with breast 
cancer and the module memberships, it was possible 
to identify highly-correlated modules. The hub-gene 
(selected as gene significance greater than 0.4) in blue 
module was selected and underwent further analysis. 
Gene ontology (GO) and KEGG analysis were performed 
by clusterProfiler [19] and Metascape (metascape.org), 
respectively.

Statistics
The correlation between mRNA expression level and DNA 
methylation level was analysed for every gene by Spearman 
correlation coefficient. Every dot represented the mean 
value of 80 samples in tumour tissues and the mean value 

∑

i

Coefficient(mRNAi)× Expression(mRNAi)

of 10 samples in normal tissues in Fig.  5. The p value of 
the difference of gene expression in 4 molecular subtypes 
was calculated by ANOVA analysis. The p value and haz-
ard ratio (HR) of survival analysis were calculated by COX 
regression. The code for analysing DEGs and risk scores 
were in Additional file 2.

Results
Integrating TCGA breast cancer RNA-seq datasets with 
DNA methylation datasets according to the flowchart 
(Additional file  3: Figure S1) 306 genes were identified 
that form an overlapping cluster (up-regulated expressed 
genes overlap with hypomethylated genes and down-
regulated expressed genes overlap with hypermethylated 
genes between tumour and normal tissues, respectively). 
Of these 306 genes, 95 genes had a significant correlation 
between the mRNA expression and DNA methylation val-
ues. LASSO Cox regression analysis build the prediction 
model with a 13-gene epigenetic signature as the best pre-
dictor for overall survival of breast cancer patients. ssGSEA 
was applied to identify the association between epigenetic 
signature and cancer-related hallmarks (e.g. MTORC1 
signaling, G2M checkpoint). Using ssGSEA, WGCNA and 
downstream GO, KEGG analysis indicated that cell divi-
sion, and cell cycle and related terms were closely linked to 
the signature. The nomogram which included the 13-gene 
epigenetic model and other clinicopathological factors 
exhibited high accuracy.

Identification of differently expressed genes 
and differently methylated genes between tumour 
and normal tissues
The volcano plot (Fig. 1a) shows 3757 genes with a Ld2-FR 
of > 1, identified by the comparison of 1104 tumour sam-
ples and 114 normal samples. Analysing changes in the 
DNA methylation status, 225 were found to be hypometh-
ylated and 446 genes hypermethylated in tumour tissues 
compared to normal tissue (Fig. 1b). Of those 671 genes 
with altered methylation status, 306 were also present 
among the 3757 genes with altered expression status. Of 
those co-regulated genes, 95 had DNA hypermethylation 
associated with a reduced mRNA expression level. The 
expression profile of the 95 genes showing negative corre-
lation between methylation status and mRNA expression 
is shown in Fig. 1c together with the genomic characteris-
tics and associated clinicopathological features.

LASSO Cox regression identifying a 13‑gene epigenetic 
signature
95 genes from above analysis constructed a gene-expres-
sion profile, and LASSO Cox model was applied to build 
the prognostic signature on the gene-expression profile. 
Cross-validation was carried out in 5 rounds to prevent 
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Fig. 1 Construction of a prognostic epigenetic model in patients with breast cancer. a Volcano plot for DEGs in the tumour and normal tissues. b 
Volcano plot for DMGs in the tumour and normal tissues. c The expression of the DNA methylation-regulated genes shown by heatmap. d LASSO 
Cox regression model. e Coefficients distribution of the gene signature. DEGs differentially expressed genes, DMGs differentially methylated genes
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overfitting (internal training sets and internal validation 
sets constructed randomly) (Fig. 1d).

The most powerful features (ITPRIPL1, SIAH2, 
KCNH8, KRT19, NDRG2, STAC2, TPD52, EZR, PCD-
HGA12, HIF3A, PCDHGA3, C2orf40, CCND2) were 
identified by the regularisation process of LASSO COX 
regression (Fig. 1e).

The ROC plots for identifying the tumour and normal 
tissues by expression level and methylation level of the 13 
genes were shown in Additional file 4: Figure S2 and Addi-
tional file 5: Figure S3. The 13 genes showed high efficiency 
to differentiate between tumour and normal tissues in terms 
of both gene expression level and DNA methylation level.

Overall survival prediction based on the epigenetic 
signature
A 13-gene epigenetic signature was built by the expression 
level of the 13 genes and the weighted parameter (formula 

in the method section) to predict the survival of patients 
with breast cancer. A median cut-off value was applied 
to stratify breast cancer patients into a high-risk group 
(n = 543) and a low-risk group (n = 544) (Fig. 2a). The sur-
vival status and heatmap for the expression of the 13 genes 
were showed in Fig. 2b, c. The Kaplan–Meier curve indi-
cated patients in the low-risk group have a significantly 
better overall survival (OS) (HR = 0.3) and relapse-free 
survival (RFS) (HR = 0.45) compared to those in the high-
risk group (Fig. 3a, b). The time-dependent ROC analysis 
revealed the 13-gene epigenetic signature had the best 
capacity to predict OS compared with that of other clin-
icopathological properties (Fig. 3c). Moreover, the correla-
tion between the risk scores from epigenetic signature and 
ssGSEA scores were analysed and results showed signs 
of cancer-related hallmarks, e.g. mTOR signalling, G2M 
checkpoints, MYC targets significantly correlated with the 
risk scores (FDR q < 0.001) (Fig. 3d). 

Fig. 2 Epigenetic signature-based risk score in the training and inner validation cohort. a Risk score per patient. b Survival status. c Heatmap for the 
13 genes
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WGCNA on the transcriptome of breast cancer patients
For a better understanding of the molecular underpinnings 
of the clinical characteristics of the patients we applied 
WGCNA on the RNA-seq data matrix. Genes from RNA-
seq data matrix were applied to build a gene co-expres-
sion network (Fig.  4a). The heatmap in Fig.  4b plots the 
topological matrix among the transcriptome (Fig.  4b). 
The relationships between clinical traits (molecular sub-
types, pathological stage, distant metastasis, lymph node 
metastasis) and the eigenvalue of each gene module are 

presented in Fig. 4c. The blue module, which had the high-
est correlation (Cor = 0.4, p = 2e−16) with the 13-gene sig-
nature, was selected for further analysis. The genes in blue 
module, which had absolute values of correlation coef-
ficients with the 13-gene signature greater than 0.2, were 
identified as hub-genes. The scatterplot below illustrates 
the strength of the link between the 13-gene signature and 
the module membership for each gene in the blue mod-
ule (Fig. 4c). The gene co-expression network in the blue 
module were analysed by cytoscape (Fig. 4d). A variety of 

Fig. 3 The prognostic model in breast tumour. a The Kaplan–Meier curve for OS in patients with breast tumour. b The Kaplan–Meier curve for RFS 
in patients with breast tumour. c Time-dependent ROC analysis for the epigenetic signature, TNM stage, age and molecular subtypes. d ssGSEA 
showed the correlation between the hallmarks and the epigenetic signature
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Fig. 4 WGCNA on breast cancer RNA-seq datasets. a Clustering dendrogram of genes in breast cancer tissues. b Heatmap depicting TOM among 
all genes. Light colours represent low adjacency and dark colours represent high adjacency. c Correlation between modules and traits. d A scatter 
plot of GS for risk score versus MM in blue module, with correlation coefficient = 0.4 and p = 2e−16. e Visualisation of genes in the blue module with 
weights higher than the threshold (weight > 0.15). f GO analysis on the hub-genes. g KEGG analysis on the hub-genes
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cell cycle-related genes, such as E2F, KIF2C, CDK1 and 
RA7D51, were included in the network (Fig. 4e). Submit-
ting these hub-genes to GO and KEGG analysis a strong 
relationship between cell division, cell cycle and 13-gene 
epigenetic signature is apparent (Fig. 4f, g).

DNA methylation pattern, gene expression level in tumour 
and normal tissues and association of OS and RFS 
for the 13 genes
ITPRIPL1, SIAH2, KCNH8, KRT19, NDRG2, STAC2, 
TPD52, EZR, PCDHGA12, HIF3A, PCDHGA3, C2orf40, 
CCND2 were the 13 features (genes) in our LASSO Cox 
model. The correlation between DNA methylation status 
and gene expression is shown below (Fig. 5). All 13 genes 
show a high correlation between gene expression and 
DNA methylation level. The expression level of these 13 
genes in different molecular subtypes of breast cancer is 
shown in Fig S4. Results revealed that the expression pro-
files were different in the 4 molecular subtypes of breast 
cancer. Then, the association between the expression of 
single gene and the OS and RFS of breast cancer patients 
was analysed using the Kaplan–Meier curve and univari-
ate cox analysis (Additional file  7: Figure S5 and Addi-
tional file 8: Figure S6).

Subgroup analysis on the 13‑gene epigenetic signature
As shown in Additional file 9: Figure S7A–F, the prognos-
tic epigenetic signature serves as a promising biomarker 
for predicting the survival of breast cancer in different 
subgroups, including Luminal A type (p = 0.03), Luminal 
B type (p = 0.026), HER2-enriched (p = 0.012) and triple 
negative (p = 0.004), stage I-II (p < 0.001), stage III-IV 
(p < 0.001) patients, respectively.

Validation of the 13‑gene epigenetic signature 
by independent breast cancer datasets
Four independent external GEO cohorts (GSE20685, 
GSE86948, GSE17907 and GSE12093) (Table  1) were 
applied to confirm the predictive value of the 13-gene 
epigenetic signature. The risk score for each patient was 
calculated by the formula we obtained from the train-
ing set (TCGA cohort). GSE20685, GSE86948, and 
GSE17907 have OS as the endpoint, and GSE12093 
has disease-free survival (DFS) as the endpoint. The 
Kaplan–Meier curve showed a significantly worse sur-
vival in the high-risk group than in the low-risk group 
in GSE20685 (p < 0.001) (Fig. 6a), GSE86948 (p = 0.004) 
(Fig.  6b), GSE17907 (p = 0.003) and GSE 12093 
(p = 0.034) (Fig. 6c).

Construction of a nomogram
To provide the clinician with a quantitative method 
by which to predict a patient’s probability of OS, a 

nomogram that integrated the 13-gene epigenetic sig-
nature, stage and molecular subtypes was constructed 
(Fig. 7a). The prediction efficiency was confirmed by the 
calibration plots (Fig. 7b).

Discussion
Most of the established clinical markers for therapy 
response and survival of breast tumour are based on 
clinical traits with limited accuracy and specificity. Cellu-
lar markers of the tumour biology such as IHC positivity 
for estrogene receptor (ER), progesteron recepetor (PR), 
epidermal growth factor receptor 2 (HER-2), cytokeratin 
5/6, epidermal growth factor receptor 1 (EGFR) and for 
cell proliferation (Ki67) are currently the gold standard 
for therapy stratification, but require considerable labo-
ratory work and are prone to subjective bias. Nowadays, 
high-throughput data gives a comprehensive insight into 
the genomic, genetic and epigenetic change in patients 
[1, 20]. The high-throughput profiles help identify pos-
sible biomarkers for predicting the survival of patients 
and their reaction to therapy. Tumour tissues have a 
distinct DNA methylation landscape compared to adja-
cent normal tissues [21]. Hypermethylation of promoter 
CpG islands often associates with transcriptional silenc-
ing of the associated genes in breast cancer [22]. The dif-
ferent DNA methylation status makes it possible to use 
this as a potential tool in breast cancer detection and 
diagnosis. Here, we explore the utility of DNA methyla-
tion status and gene expression level in the prediction 
of survival of breast cancer patients. By integrating the 
DNA methylation profiles and gene expression profiles 
in breast tumour tissues and normal tissues, we built a 
13-gene epigenetic signature. This way it was possible to 
predict with high confidence the CpG methylation status 
by measuring the mRNA expression status of 13 genes. 
This avoids the need of the laborious direct measurement 
of DNA methylation pattern, and on the other provides a 
robust set of biomarkers.

The subgroup analysis indicated that the epigenetic 
signature could stratify patients with high and low-risk 
scores well in different grades and in different molecular 
subtypes. The epigenetic prognostic model was applied 
together with grade and molecular subtypes to build a 
nomogram for predicting survival probability of patients 
with breast tumour. The prediction efficiency was con-
firmed by the calibration plot. Thus, the nomogram may 
help the clinics for better treatment and precision medi-
cine in patients with breast tumour. The cellular pathway 
most clearly associated with the 13 gene epigenetic sig-
nature is mTORC signalling. mTOR signalling integrates 
both intracellular and extracellular signals and works as a 
central pathway in tumour progression and malignancy. 
Dysregulation of the PI3K/PTEN/Akt/mTORC1 pathway 
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Fig. 5 The correlation between gene expression and DNA methylation level in breast tissues
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by gene mutations occurs in > 70% of breast tumours 
[23]. In ER+ breast cancers, PI3K/PTEN/Akt/mTORC1 
pathway activation results in both estrogen-dependent 
and estrogen-independent ER activity and loss of therapy 
response to hormonal therapies [24]. PI3K/PTEN/Akt/
mTORC1 pathway activation also results in resistance 
to HER2 inhibitors in HER2+ breast cancer. mTORC1 

pathway inhibition helps overcome the resistance to anti-
HER2 based molecular therapies [25]. Thus, hormonal 
therapy combined with mTORC1 blockage is a promising 
way for the treatment of breast tumour. The epigenetic 
signature showed the most significant correlation with 
mTORC1 signalling pathway, which may provide new 
strategy for the treatment of breast cancer.

Fig. 6 Validation of the signature in three external cohorts. Patients with a low risk score showed better OS in the validation cohorts GSE20685 (a), 
GSE86948 (b) and GSE17907 (c). Patients with a low risk score showed better RFS in the validation cohort GSE12093 (d)
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A problem with the molecular profiling of the tumours 
as shown here is that it might be prone to intra-tumour 
heterogeneity. Whereas histo-morphological methods 
such as IHC immediately can show spacial pattern of 
marker expression—including focal subclones—across 
the tumour specimen, such an intra-tumour heterogene-
ity might be overseen with molecular profiles. A future 
direction of expression- and methylation profiling for 
tumour classification would therefore require a single-
cell based approach.

Conclusion
In summary, the novel 13-gene epigenetic signature 
serves as a promising prognostic model to predict the 
survival of patients with breast cancer, which may help 
the development of personalised and precise medicine in 
breast cancer field.
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