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Abstract 1 

Ionic liquids (ILs) are considered as an alternative to traditional organic solvents due to their 2 

unique physical and chemical properties. On the one hand, they have promising solvating 3 

characteristics, on the other hand, they are considered as environmentally friendly “green” 4 

solvents. Recent studies of ILs toxicity however questioned the safety of ILs. 5 

Assessment of the toxicity of ILs based on laboratory testing is time-consuming and requires 6 

significant resources. Complementing this task by applying computational methods is an option 7 

for filling data gaps and allows predicting the toxicity of ILs that lack experimental data. 8 

Development and application of quantitative structure–activity relationships (QSARs) for 9 

innovative design of  safe-by-design ILs became recently a research priority. In this review, we 10 

summarize the current knowledge on development of in silico models in predicting and 11 

classifying the hazards of ILs. In addition, we discuss biodegradability of ILs and assessment of 12 

mechanisms of toxicity of ILs based on the reported models. 13 

 14 

Keywords: Ionic Liquids; Computational Toxicology; Hazard Assessment; Green Solvents; 15 

QSAR. 16 
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 1 

1. Introduction 2 

Ionic liquids (ILs) are suggested as a promising alternative to volatile organic liquids [1] that are 3 

a major source of environmental pollution [2,3]. Nevertheless, ILs, sometimes called “green 4 

solvents”, are not intrinsically safe as some of them are actually rather toxic, but they can be 5 

designed to be environmentally friendly [4]. 6 

ILs consist mainly of a bulky non-symmetric organic cation incorporated into the structure of a 7 

salt together with a weakly coordinating anion. Imidazolium, ammonium, pyridinium, 8 

pyrrolidinium, phosphonium are the most widely used cations for the preparation of ILs, anions 9 

could be inorganic like Cl-, [BF4]
-, [PF6]

-, Br-
, or organic such as trifluoromethylsulfonate, 10 

bis(trifluoromethyl)sulfonylimide, and others. Combinations of various anions and cations give a 11 

tremendous number of ILs with unique properties. At least a million binary ILs can potentially 12 

be obtained [5]. 13 

ILs represent an attractive medium for various types of chemical processes due to their 14 

significant thermal stability, negligible vapor pressure, high conductivity, low volatility. ILs can 15 

be applied for electrode modification due to their hydrophobicity, ionic structure, and 16 

appropriate viscosity [6]. ILs can find application in separation processes and electrochemistry. 17 

ILs received attention as solvents or electrolytes for utilization in energy storage and conversion, 18 

catalysis, organic synthesis, drug delivery [7–9]. 19 

Nevertheless, owing to the good solubility of many ILs in aqueous media, they can be released 20 

into environment with wastewater [10]. There is therefore a significant concern that these 21 

chemicals may get in contact with living organisms, cause harm to biota and, eventually, human 22 

beings. Several studies showed that ILs can induce toxic effects in ecosystem [11,12]. Also, the 23 

risk of accumulation of high concentrations of ILs in environment due to their high stability to 24 

heat and other factors is a significant concern. Therefore, it is of relevance to monitor the 25 

behavior and biodegradation of ILs in environment and to get knowledge of the fate and effects 26 

of ILs for the environment. 27 

Considering the time needed to perform experimental studies [13], computational modeling (in-28 

silico) methods may be a robust and less expensive alternative in the risk assessment of ILs. 29 

Methods of QSAR (quantitative structure–activity relationships) interlink the structural 30 

characteristics and properties of a substance, for instance, biological effects of chemicals in 31 

nature [14]. The QSAR approach provides a rapid possibility to fulfilling data gaps for limited or 32 

absent experimental information [15]. This computational method was applied successfully in 33 

different areas such as drug development, toxicity and pharmacy. Several attempts have been 34 
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made to apply the QSAR approach to correlate the structure of ILs with their biological effects, 1 

cytotoxicity and degradation (Table 1). In this article, the present knowledge on the application 2 

of computational approaches in hazard assessment of ILs is reviewed. The main parts of this 3 

review are the following: 4 

 Section 2 illustrates the progress in understanding the degradation of ILs according to the 5 

published works and experiments/ 6 

 Section 3 is dedicated to overviewed of published computational models with information 7 

about the used datasets and database, sources, tested animals and cell lines. 8 

 Section 4 summarizes the current knowledge of the relationship between the structure of ILs 9 

and their biological activity  10 

 Section 5 resumed QSAR/QSPR models based on different modeling approaches such as 11 

non-linear and linear regressions (PLS, SVR, MLR, KNN, WEKA, ANN). Finally we discuss 12 

possible mechanisms of toxicity of ILs based on published models and provide an outlook for 13 

future research in prediction of ILs toxicity and biodegradation. 14 

 15 

2. Ionic liquids degradation 16 

Understanding and quantification of degradation and biodegradation parameters of ILs [16] is 17 

very important to enable decreases of their potential exposure. Research results on 18 

biodegradation and chemical degradation studies of ILs [17–20] demonstrated that the 19 

percentage of degradation is strongly dependent on the length of the alkyl side chain, core ring 20 

structure, and the presence of functional groups [21,22], while the role of the anion is less 21 

important[23]. It was observed that cations with short side chains are not biodegradable [18,22–22 

27]. Several authors demonstrated that phosphonium ILs are better degradable than imidazolium 23 

and pyridinium ILs [21–23,28–31]. Furthermore, it was indicated [32] that protic ILs have poor 24 

biodegradability. Figure 1 depicts the pattern of parameters affecting the biodegradation of ILs. 25 

 26 

Figure 1. Interpretation of biodegradability of ILs with respect to their structural features. 27 
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Commonly used ILs are not easily biodegradable and might accumulate in environment in case 1 

of an accidental release [22]. However, some naphthenic acid-derived ILs can be rapidly and 2 

completely biodegraded in aquatic environments under aerobic conditions [33].These authors 3 

investigated the structure and properties of these ILs and made an attempt to build a predictive 4 

model of biodegradation. For this purpose, four descriptors were chosen: the logarithm of the n-5 

octanol/water partition coefficient (logP), van der Waals volume (VvdW), energy of the highest 6 

occupied molecular orbital (EHOMO), and energy of the lowest unoccupied molecular orbital 7 

(ELUMO). According to the developed Quantitative Structure–Biodegradation Relationship model, 8 

EHOMO was suggested as an important parameter in the discovery of other biodegradable ILs: 9 

 10 

Extent of biodegradability = 119.294 + 37.821 * EHOMO   (Eq. 1) 11 

n=10, R=0.875 12 

 13 

In summary, it was proposed that hydrophobic, steric, and electronic parameters are responsible 14 

for biodegradability of ILs. These properties determined the possibility of ILs to penetrate 15 

through membrane barriers, their ability to interact with active sites of oxygenase, and the 16 

potential of being oxidized and degraded. ILs may insert into the lipid bilayer of the membrane 17 

and may disturb structural and dynamical systems of bio-membranes [34]. For instance, ILs may 18 

act as end-capping agents for the hydrophobic edge of the lipid bilayer [35] and may cause 19 

swelling of the lipid bilayer. The interaction of ILs is strongly correlated with the hydrophobicity 20 

of the IL cationic alkyl chain and anions, and these parameters determine the dependences 21 

observed in studying IL cytotoxicity [35]. 22 

 23 

3. State of the art of in Silico models applied for hazard assessment of ionic liquids 24 

A literature search was performed until February 2019 using the ScienceDirect, PubMed 25 

databases and the Web of ScienceTM using the search terms “ionic liquid modeling”, “ionic 26 

liquid toxicity QSAR”, “ionic liquid QSTR modeling” and “ionic liquids QSAR” in the title, 27 

abstract or keywords. In this part, the obtained data are presented and the state of the art of 28 

development of QSAR models for toxicity of ILs is analyzed. Table 1 summarizes endpoints and 29 

number of ILs in the datasets, tested organisms, and data resources that are described in the 30 

articles devoted to modeling the toxicity of ILs. 31 

32 
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Table 1. Summary of the experimental data used for the reported QSAR models and the state of 1 

the art of developed (Q)SARs for ILs. 2 

Model1 Reference End points Number of ILs (anion and 
cation) 

Data sources 

Tested species - Vibrio fischeri (V. fischeri) 
M1 [36] EC50 43 ILs Experimental [36] and literature data 

[28,37] 
M2 [38] EC50 75 ILs with 17 anions and 9 

cations 
Experimental [38] and literature data 
[25,28,36,37,39–42] 

M5 [43] EC50 51 ILs Experimental [43] and literature [36,39–
41] data  

M6 [44] EC50 97 ILs UFT/Merck database [45] 
M14 [46] IC50, LC50 24 bromide based ILs Experimental data [46] 
M17 [47] EC50 69 ILs UFT/Merck database [45] 
M18 [48] EC50 157 ILs composed of 74 

cations and 22 anions 
[11,13,52–55,18,36,37,39,40,49–51] 

M19 [56] EC50; LC50 40 and 33 ILs [11,13,61,62,24,41,46,50,57–60] 

M26 [63] EC50 56 ILs [64] 
M30 [65] EC50 110 ILs with 29 anions and 

49 cations 
[18,25,68,69,28,37,42,49,52,53,66,67] 

Tested species - Staphylococcus aureus (S. aureus) 
M21 [70] EC50 25 imidazolium based ILs Experimental data [70] 
M24 [71] MIC, MBC NA [72–77] 
M33 [78] MIC, MBC 169 and 101 ILs with MICs 

and MBCs, respectively 
[72,73,85–87,75,77,79–84] 

M35 [88] MIC 131 ILs [76,79,95,96,80,85,89–94] 
M42 [97] MIC 242 ILs OCHEM database [98] 
Tested species - Leukemia Rat Cell Line (IPC-81) 
M3 [99] EC50 227 ILs with 25 anions and 

227 cations 
UFT/Merck database [45] 

M6 [44] EC50 97 ILs UFT/Merck database [45] 
M10 [100] EC50 281 ILs with 15 cation head 

group and 31 anions 
UFT/Merck database [45] 

M12 [101] EC50 100 ILs UFT/Merck database [45] 
M13 [102] EC50 100 ILs UFT/Merck database [45] 
M16 [103] EC50 253 ILs [104] 
M22 [105] EC50 289 ILs [99,104,106] 
M28 [107] EC50 17 ILs [99] 
M31 [108] EC50 10 groups of 304 ILs 304 experimental data points from the 

literature [10,18,40,81,104,106,109,110] 
M36 [111] EC50 119 ILs with 57 cations and 

21 anions 
UFT/Merck database and literature data 
[45,112]  

M37 [113] EC50 269 ILs with 9 cationic cores 
and 44 types of anions 

UFT/Merck database and literature data 
[45,81,109] 

Tested species - Scenedesmus vacuolatus (S. vacuolatus) 
M8 [114] EC50 40 ILs UFT/Merck database [45] 
M11 [62] EC50 60 ILs UFT/Merck database [45] 
M19 [56] EC50; LC50 40 and 33 ILs [11,13,61,62,24,41,46,50,57–60] 

M20 [61] EC50 41 ILs Collected toxicity data (NA) 
Tested species - Daphnia magna (D. magna) 
M4 [115] EC50 64 ILs [11,24,28,41,57–59,116] 

                                                            
1 Numbers of the models represent in chronological order 
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Model1 Reference End points Number of ILs (anion and 
cation) 

Data sources 

M7 [117] LC50 62 ILs [11,13,24,41,50,57–60] 
M9 [118] LC50 62 ILs [119] 
M14 [46] IC50, LC50 24 bromide based ILs Experimental data [46] 
M19 [56] EC50; LC50 40 and 33 ILs [11,13,61,62,24,41,46,50,57–60] 

Other species 
M15 [120] EC50 14 imidazolium based ILs Experimental data [120] 
M21 [70] EC50 25 imidazolium based ILs Listeria monocytogenes; Staphylococcus 

aureus; Escherichia coli; Aeromonas 
hydrophila 

M23 [121] MIC 83 ILs - B. subtilis and 47 
ILs - Ps. aeruginosa 

B. subtilis and Ps. aeruginosa 

M24 [71] MIC, MBC NA [72–77] 
M25 [122]  MIC 83 ILs B. subtilis; Ps. aeruginosa 
M27 [123] aquatic toxicity 

scores, ADME 
properties 

ILs with 48 anions and 128 
cations 

fungi and bacteria, IPC-81 rat cell lines 

M29 [124] EC50, LC50, 
IC50, MIC and 
MBC  

ILs with 60 anions and 250 
types of cations 

58 biological systems: water fleas; algae; 
animal cells; bacteria; enzyme activity 

M32 [125] Vermicidal 
activity and cell 
viability in % 

30 ILs Pheretima posthuma and 3T3-40 L1 cells 

M34 [126] EC50 52 ILs with 11 organic and 
inorganic anions and 4 
different cations 

Experimental data [126] and literature 
data [70,127] 

M38 [128] Vermicidal 
activity and cell 
viability in % 

1-Butylimidazole-derived 
ILs – (15 ILs) 

Experimental data [128] 

M39 [129] IC50 28 ILs Experimental data [129] 
M40 [130] Vermicidal 

activity and cell 
viability in % 

1-methyl-3-
alkylbenzimidazolium and  
1-methyl-3-alkylimidazolium 
derived ILs (15) 

Experimental data [130] 

M41 [131] EC50 40 ILs [132,133] 
M42 [97] MIC 242 ILs OCHEM database [98] 
 1 

Development of QSAR Models for Ionic Liquids 2 

According to the literature, there is a wide variety of organisms with different sensitivity to ILs, 3 

whereas the sensitivity depends on the test duration. Main endpoints studied are related to three 4 

common effect levels, i.e. the concentration at which 50 % of biota are affected (EC50), minimal 5 

inhibitory concentration (MIC), and minimal biocidal concentration (MBC). MIC defines the 6 

lowest concentration, which prevents the growth of bacteria, MBC is the lowest concentration 7 

that leads to death of bacteria. 8 

In the case of modeling the toxicity of ILs, V. fischeri and Scenedesmus vacuolatus were the 9 

most studied organisms. The cell line IPC-81 was chosen as one of the most often studied cell 10 
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lines. Several studies reported results of modeling the critical micellar concentration [134,135] 1 

and enzyme activity of ILs [10,16,136–140]. 2 

Most of models were developed on the basis of an average dataset size (about 100 ± 50 3 

datapoints), several models were built using a dataset of 200-300 endpoints, whereas two models 4 

(M29 and M12) contained 1633 and 4000 datapoints, respectively. 5 

 6 

Databases of Ionic Liquids toxicity and data availability 7 

Specific databases of ILs toxicity are available, supplemented with physical, chemical, and 8 

biological properties of ILs [45,98,112,141]. The work with databases is a well-established 9 

essential component for the development of ILs hazard identification. To be useful for modeling 10 

purposes, databases must cover the chemical space of the known ILs. For QSAR modeling, 11 

databases must provide bioactivity data (cell-based assays or tested species) and data about 12 

chemical compounds tested in cell lines with their molecular structures in chemical file formats. 13 

Some of presented databases are collections of chemical structures and measured bioactivities 14 

and properties of ILs collected from literature such as the Online Chemical Modeling 15 

Environment (OCHEM) database [98]. In this database, the structure of ILs can be introduced as 16 

a mixture of separate ions presented by SMILES formula. The database contains antimicrobial 17 

datapoints (MIC values) for approximately 618 ILs. 18 

The UFT/Merck database [45] (http://www.il-eco.uft.uni-bremen.de/) 2  includes catalogues of 19 

commercially available data from screening toxicity assays. It contains information about the 20 

toxicity of over 300 different ILs and their precursors. 21 

 22 

4. Profiling Green Solvents such as Ionic Liquids based on In Silico Models 23 

One of main tasks of structure-activity models is identification of factors (signified by different 24 

descriptors) affecting the ILs toxicity and properties. The role of different factors should be 25 

discussed by analyzing the represented descriptors in the published models to draw a conclusion 26 

about the toxicity mechanism of ILs with respect to living organisms. 27 

According to the models, phosphonium-based ILs are more toxic than their imidazolium analogs 28 

[51]. The contribution of the cation to the toxicity of ILs with respect of V. fischeri increases in 29 

the following order: 30 

Pyrrolidinium < imidazolium < pyridinium [36]. 31 

The central role of the cation alkyl chain length was found for different types of organisms (E. 32 

coli, S. aureus, A. hydrophila and L. monocytogenes) used for toxicity assessment of ILs [70]. 33 

                                                            
2 The database is disabled since 19 January 2019 
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ILs with a longer chain length show less eco-friendly behavior than ILs with cations containing 1 

hydroxyethyl or butyl chains. At the same time, toxicity decreases with introduction of amino 2 

acid anions compared with other anions ([N(CN)2], [BF4], [Br], [Cl]) [70]. 3 

The contribution of the anion to the toxicity of ILs is still under investigation. Without 4 

considering the effect of anions, it can be assumed that pyridinium, (dimethylamino)pyridinium, 5 

tetramethylguanidinium and cholinium cations contribute in a similar manner to the toxicity with 6 

respect to V. fischeri [38]. With respect to the structure of the anion, it was found that chloride-7 

based ILs are the least toxic for Scenedesmus vacuolatus [99,114]. Ghanem [70] observed 8 

reduction of antimicrobial activity of ILs composed of 1-octyl-3-methylimidazolium and 1-(2-9 

hydroxyethyl)-3-methylimidazolium cations with different anions towards A. hydrophila and L. 10 

monocytogenes in order:  11 

[N(CN)2] > [Br] > [BF4] > [Cl] > [Asparagine] > [Glycine] > [Alanine] > [Proline] > [Serine].  12 

Additionally it was shown that [bis((trifluoromethyl)sulfonyl)imide] anion strongly increases 13 

toxicity of ILs towards Aeromonas hydrophila in contrast to other hydrophilic and amino acid 14 

derived anions [126]. The developed MLR models [65] based on the σ-profile descriptors 15 

highlighted the difference between the minor and major effect of hydrophilic and hydrophobic 16 

anions. Furthermore, negatively charged atoms in the anion provide reduced cytotoxicity towards 17 

cell line IPC81 as compared to anions with positively charged atoms [99]. 18 

Lipophilicity [70,142] is another important parameter that influences toxicity of ILs. Due to their 19 

strong lipophilic properties, phosphonium ILs are interfaced with the membrane of Escherichia 20 

coli cells [143]. Increasing branching and the presence of N-atoms in the cationic structure were 21 

proven to significantly increase toxicity towards D. magna and V. fischeri [118]. Additionally, 22 

the molecular volume of the cation is the most significant factor determining ILs toxicity towards 23 

E. coli [71]. The second most important factor affecting the toxicity of ILs is related to 24 

hydrogen-bonding acidity and ionic interactions of the cation. The excess molar refraction (the 25 

function of interaction of n- or π-electron lone pairs) and hydrogen bonding basicity of the cation 26 

are less significant for toxicity of ILs with respect to E. coli. It was suggested that the MIC and 27 

MBC values of ILs tested with E. coli were determined by lipophilic interaction and H-bonding 28 

interactions of the cation. Figure 2 depicts the role of different structural characteristics 29 

according to the analyzed models. 30 

 31 
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 1 

Figure 2. Overview of the role of different factors affecting the toxicity of ILs according to the 2 

state of the art of the published models. 3 

 4 

5. Critical analysis of QSPR/QSTR models 5 

Several predictive QSPR (Quantitative Structure-Property Relationships) and QSTR 6 

(Quantitative Structure-Toxicity Relationships) models were developed for risk assessment of 7 

ILs towards different biological species. Table 2 represents the summary of the used methods, 8 

descriptors and parameters of the developed models. The role of different structure 9 

characteristics (according to descriptors applied in the models) is analyzed. 10 

Two types of models are presented in literature. One of them includes models developed to offer 11 

quantitative assessments for hazardous effects caused by ILs; the other models contribute to the 12 

categorization and labeling of substances according to their toxicity. Data of models as reported 13 

in Table 2 show that both types of models were developed for toxicity of ILs in respect to biota. 14 

Table 2. Summary of the state-of-the-art of predictive toxicity models for ILs involving 15 

descriptors and statistical coefficients. 16 

Model Descriptors Stat. coefficients 
R2 Q2 Ac (%) 

M1 GCM 0.925 - - 

M2 GCM 0.924 ˗ ˗ 

M3 RARS, Kier symmetry index, heavy atom count, 
topological charge index of order 8 

0.92 - - 

M4 GCM 0.974 - - 

M5 minimum net atomic charge for a C atom; WPSA-
1; PPSA1; TMSA; maximum atomic orbital 
electronic population; LUMO+1 energy 

0.903 – 0.912 - - 

M6 excess molar refraction; dipolarity/polarizability, 
hydrogen-bonding acidity, hydrogen-bonding 
basicity and McGowan volume 

0.778 for IPC-81; 
0.762 for V. fischeri; 
0.776 for S. 
vacuolatus 

- - 
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Model Descriptors Stat. coefficients 
M7 ETA index, topological non-ETA and 

thermodynamic parameters 
0.948 0.875 72.22 - 

100% 
M8 piPC10; RDF095m; R3+; RARS; HAC descriptors R2=0.964  

R2pred = 0.948 for 
MLR; 
R2= 0.976 
R2pred= 0.967 for 
MLP 

˗ ˗ 

M9 Lipophilicity, atom-type fragment, QTMS and ETA 
descriptors 

R2 = 0.912 - 0.955 
R2pred = 0.771 - 
0.815 

0.874 - 0.917 ˗ 

M10 Molecular ACCess System (MACCS) structural 
keys 

- - 80% 

M11 ETA indices; topological non-ETA parameters; 
atom-type fragment descriptors 

0.883 0.829 - 

M12 Min partial charge for a N atom; relative number of 
O atoms; TMSA; number of C atoms 

Training set: 0.918 - 
0.959 Test set: 0.892 
for MLR and 0.958 
for SVM 

- - 

M13 Ferreira–Kiralj hydrophobicity parameter; 
CrippenlogP and Mannhold log P descriptors 

0.762 – 0.813 0.731 – 0.792 - 

M14 ELUMO; dipole moment; total energy, volume of ILs 
cation; molecular volume; the electron affinities 

0.895 for D. magna 
0.954 for V. fischeri 

0.876 for D. 
magna 
0.942 for V. 
fischeri 

 

M15 QTMS; Petitjean Number - defines the shape of the 
cations; lipoaffinity index; E-state 

0.987; 
0.961 

0.926  

M16 XLogP, NAtoms, TPSA, Polariz, Dipole, InertiaZ, 
and Span 

>0.9 - >86% 

M17 DisPm, Mor16u, HATSv, C08AL, MW 0.903 for GFA; 0.933 
for LSSVM 

0.847 for GFA; 
0.897 for 
LSSVM 

- 

M18 topological index, character vector CV of atoms, 
distance matrix for atom position 

0.908 - - 

M19 ETA indices, QTMS descriptors and computed 
lipophilicity 

0.843 - 0.910 0.832 - 0.952 ˗ 

M20 E-state and ETA indices, QTMS separately for 
cations and anions 

0.904 - 0.914 0.851 - 0.864 ˗ 

M21 ϭ - Profile as molecular descriptors R2 = 0.963 - 0.972;  cross 
validation, R2 

average = 0.97 
- 0.98 

95% 

M22 Two-dimensional structural and QTMS indices 
Molar refraction, solute dipolarity, polarizability, 
hydrogen-bond acidity and basicity, McGowan 
volume; Lipophilicity, Randic’s parameter, 
molecular connectivity, ETA indices, etc. 

0.869 0.856 ˗ 

M23 E-State indices, ALogPS, ADRIANA.Code, 
Dragon V6.0, Chemaxon, Inductive descriptors 

0.79 – 0.92 0.770-0.92 83-88% 

M24 LFER descriptors: excess molar refraction, 
dipolarity/ polarizability, H-bonding acidity, H-
bonding basicity, McGowan volume, cationic inter-
action, and anionic interaction; 

Predictability 0.803 - 
0.947 
R2 = 0.921. 

˗ ˗ 

M24 E-State indices, ALogPS, ADRIANA.Code,  
Dragon V6.0, Chemaxon, Inductive descriptors 

0.75 - 0.87 0.73 - 0.87 80% ± 5 

M26 LOC, nOC for cations and GMTI index for anions 0.78 Q2
CV = 0.72 

Q2
ext = 0.75 

˗ 
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Model Descriptors Stat. coefficients 
M27 VolSurf+ in silico physicochemical descriptors for 

both cations and anions counterparts 
˗ 0.57 - 0.623 ˗ 

M28 Electrophilic indices (ω), the energy of highest 
occupied (EHOMO) and lowest unoccupied molecular 
orbital, (ELUMO) and energy gap (∆ E) 

0.999 ˗ ˗ 

M29 Excess molar refraction due to interaction of n- or 
pi- electron lone pairs 
Dipolarity/polarizability by dipole-dipole and 
dipole-induced dipole interactions 
Hydrogen bonding acidity and hydrogen bonding 
basicity 
McGowan volume 
Ionic interactions of the anion and the cation 

R2 
= 0.593-0.978 for 

local models 
R2 = 0.901 for the 
global model 

˗ ˗ 

M30 σ-Profile descriptors 0.906 - 0.910 for 
MLR; 
0.961 - 0.979 for 
MLP 

0.907 – 0.912 
for MLR;  

˗ 

M31 Weighted Holistic Invariant Molecular Descriptors 
(WHIM), ring descriptors, functional group counts, 
topological and constitutional indices 

R2 = 0.77~0.95 for 
local models 
 
R2 = 0.772 for the 
global model 

Q2
CV = 0.73 – 

0.92;  
Q2

ext = 0.75 - 
0.94 for local 
models 
Q2

CV = 0.758, 
Q2

ext = 0.839 
for global 
model 

˗ 

M32 DFT based descriptors of cationic head and anionic 
counterparts. A: LUMO, B: FPSA, and C: HOMO 
descriptors 

0.8174 ˗ ˗ 

M33 Matrix norm index, atomic radius, atom weight, 
electronegativity, number of atoms, atom charge, 
molecular weight, branching degree 

0.919 for pMIC; 
0.913 for pMBC 

˗ ˗ 

M34 Molecular descriptors based on the functional group 
contribution method 

0.904-0.927 0.907-0.933 - 

M35 E-State indices, ALogPS, ADRIANA.Code, 
Dragon 7.0, Chemaxon, Inductive descriptors, 
Fragmentor descriptors, GSFrag 

0.83-0.88 0.82-.087 80.0-
82.1% 

M36 SEP and Sσ-profile, electrostatic potential V(r) MLR – 0.92; SVM -
0.941; 
ELM – 0.969 

MLR - 0.849; 
SVM - 0.874; 
ELM - 0.940 

- 

M37 free GRid-INdependent Descriptors (GRINDs) 0.67 – 0.86 0.66-0.84  
M38 LUMO of anion, fractional polar surface area of 

cation 
0.85 - - 

M39 Rotatable bond number (RBN), mean atomic van 
der Waals volume and the interaction of second 
power carbon numbers with the molar ratio of 
hydrogen-bond acceptor to hydrogen-bond donor  

0.698 – 0.764 - - 

M40 DFT based descriptors, LUMO of anion, fractional 
polar surface area of cation, chemical potential of 
anion 

0.942  88.33% 

M41 average coefficient of the last eigenvector from 
Burden matrix weighted by ionization potential; 
topological charge index of order 1randic molecular 
shape profile, etc. 

0.82 – 0.96 0.77 – 0.94  

M42 E-State indices, ALogPS, Chemaxon, GSFrag, 
ToxAlerts (Structural Alerts) 

0.85 0.82  

                                                            
3 Q2 value - the fraction of the total variation of the interested properties which can be predicted by the four 
extracted components 
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Hazard assessment and information on safe-by-design ILs can be retrieved from the frequency of 1 

applying a certain descriptor in the designed models of ILs toxicity. This information allowed 2 

one to discuss the role of different parameters in determining the hazardous properties of ILs for 3 

environment. With respect towards the type of descriptors, the published models can be labeled 4 

as models based on (i) quantum-chemical descriptors; (ii) other theoretical molecular descriptors, 5 

and (iii) quantitative structure–toxicity–toxicity relationship (QSTTR) models. The descriptors 6 

and structure fragments affecting the ILs toxicity are discussed below. 7 

 8 

Quantum-chemical descriptors-based models4 9 

The combined study based on experiments and QSAR modeling was performed for 24 bromide 10 

ILs towards V. fischeri and D. magna [46]. According to the QSAR model for V. fischeri, 11 

toxicity was negatively correlated with ELUMO; for D. magna, toxicity increased with increasing 12 

dipole moment and decreasing total energy. Models of cytotoxicity (cell line IPC81) of 17 ILs 13 

with imidazolium, pyrrolidinium, and pyridinium cations were obtained by Salam [107]. The 14 

models were developed with electrophilic indices (ω), Ehomo and Elumo, the energy gap as 15 

quantum chemical reactivity descriptors and based on the density functional theory (DFT). PCA 16 

analysis was carried out to access the distribution and inter-relation of descriptors of the model. 17 

A predictive QSAR model of ecotoxicity of ILs with respect to V. fischeri was designed by 18 

Ghanem [65] by using COSMO-RS descriptors. To obtain linear and non-linear QSAR models, 19 

the authors used a set of toxicity data (EC50) for 110 ILs: a combination of 49 cations and 29 20 

anions. A high prediction accuracy of 0.906 was obtained for the linear model. Five descriptors 21 

were selected from the linear model and used to develop the non-linear model by applying the 22 

multi-layer perceptron (MLP) technique. The accuracy of the constructed model was evidenced 23 

by the high correlation coefficient 0.961 and mean square error 0.157. Another predictive model 24 

of the vermicidal activity and cell viability for 30 ILs with various alkyl chains was constructed 25 

[125]. It was stated that an increase in the alkyl chain length leads to an increase in the 26 

vermicidal activity. 27 

The applicability of the extreme learning machine (ELM) model was compared with SVM and 28 

MLR methods for prediction of toxicity of ILs towards cell line ICP-81 [111]. The electrostatic 29 

potential surface area (SEP) and charge distribution area (Sσ-profile) were used to predict toxicity of 30 

119 ILs. The model obtained by ELM shows the highest value of R2
 0.969 in comparison with R2 31 

0.92 for MLR and 0.941 for SVM models. Experimental generation and subsequent modeling of 32 

                                                            
4 Quantum-chemical descriptors represent only descriptors that are calculated from the molecular structure by using 

ab initio and semi-empirical quantum chemical methods 
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toxicity of 15 1-butylimidazolium ILs was performed using LUMO of the anion and the 1 

fractional polar surface area of the cation as descriptors [128]. Based on the results [130] 2 

showing strong relationship between cytotoxicity and vermicidal activity of 1-methyl-3-3 

alkylbenzimidazolium derivatives towards Pheretima posthuma and A549 cell lines and certain 4 

descriptors (LUMO of anions and c_FPSA of cations), the authors supposed that the presence of 5 

OH (as a counter anion) increases the polar surface area of the cationic head, which leads to 6 

higher toxicity [130]. 7 

 8 

Other theoretical molecular descriptors 9 

Theoretical molecular descriptors are most frequently applied. Multiple linear regression (MLR) 10 

and non-linear models were obtained for 227 ILs [99] by applying the multilayer perceptron 11 

neural network (MLP NN), MLR methods, genetic algorithm approach (GA). Four of the five 12 

descriptors applied in the linear model (R matrix average row sum, R maximal autocorrelation of 13 

lag 1/unweighted heavy atom count, topological charge index of order 8, Kier symmetry index) 14 

are associated with the cationic part of ILs. In case of anions, the authors used the HAC 15 

descriptor, which correlated with the number of heavy atoms (for instance fluorine atoms) in the 16 

anion. The order of significance of applied molecular descriptors is as follows: RARS > GGI8 > 17 

S0K > R1u+ > HAC. The first four descriptors belong to the topological descriptor and 18 

GETAWAY classes and demonstrate the importance of cationic substituents on cytotoxicity of 19 

ILs. According to models, authors concluded that an increase of the number of heavy atoms in 20 

the anion leads to an increase of toxicity of ILs. 21 

In another study several predictive models [44] were built for cytotoxicity of ILs towards 22 

different species using the excess molar refraction; dipolarity/polarizability, hydrogen-bonding 23 

acidity, hydrogen-bonding basicity and McGowan volume as descriptors. Using the excess molar 24 

refraction; dipolarity/polarizability, hydrogen-bonding acidity, hydrogen-bonding basicity and 25 

McGowan volume as descriptors, several predictive models were built for cytotoxicity of ILs 26 

towards the cell line IPC-81 (R2 of 0.778, SE of 0.450 log units), the bacterium V. fischeri (R2 of 27 

0.762) and the algae Scenedesmus vacuolatus (R2 of 0.776). According to analysis of descriptor 28 

sensitivity, the McGowan volume was determined as the most important predictor of cytotoxicity 29 

in terms of the cation nature. 30 

Predictive classification and regression models were developed by Roy et al. [117] for the 31 

toxicity assessment (LC50) of 62 ILs towards D. magna using an extended topochemical atom 32 

(ETA) and other two-dimensional topological and constitutional descriptors. The authors 33 

proposed that in order to reduce toxicity of ILs, one must design ILs with lower electronegativity 34 

and lipophilicity. Electronegativity can be decreased by minimizing the presence of heteroatoms 35 
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and unsaturated carbon-heteroatom and heteroatom-heteroatom bonds. Reducing the chain 1 

length of the cationic head groups can decrease lipophilicity of ILs. The same authors [43] 2 

carried out another study on the same data set. A previously reported MLR model was 3 

outperformed by the best PLS model. Authors demonstrated that by avoiding the aromaticity, 4 

nitrogen atoms and increasing branching in the cationic structure might be the key factor in 5 

obtaining more lipophilic ILs with reduced toxicity. According to models developed by Izadiyan 6 

[114], ecotoxicity of ILs is highly related to their chemical structure and especially to the special 7 

fragments on the cation skeleton.  Moreover, the authors elaborated a practical toxicity 8 

classification model of ILs toxicity by applying cluster and principal component analysis (PCA). 9 

The toxicity data of 40 ILs towards S. vacuolatus were obtained from the UFT/Merck database 10 

[45]. Most of 40 ILs were split in three separate clusters according to their structural similarities 11 

and level of toxicity based on the covariance matrix. 12 

The network-like similarity graph (NSG) approach was combined with the classification and 13 

regression tree (CART) classifier [100] to find the relevant structure-toxicity relationship trends 14 

in case of activity of 281 ILs with respect to cell line IPC-81. The obtained results assembled 15 

from both quantitative (CART) and qualitative (NSG) approaches helped to design a 16 

combinatorial library of about 700,000 ILs with 80% accuracy to exhibit an acceptable hazard 17 

profile of ILs. This library can play important role for development of ILs for desirable technical 18 

applications as a decision-making element. 19 

ETA indices, atom-type fragment descriptors and other categories of chemical descriptors were 20 

applied to develop prognostic classification and regression models of toxicity of 60 ILs toward S. 21 

vacuolatus [62]. Research activities were carried out with reference to OECD guidelines for 22 

QSAR modeling. The authors proposed that reducing the chain length of cationic substituents 23 

and increasing hydrogen bond donor features in cations can lead to a decrease of ecotoxicity of 24 

ILs. Furthermore, unsaturated anions in ILs are more toxic than bulky anions with a simple 25 

saturated moiety with less lipophilic heteroatoms. 26 

Within a study of Zhao [101], a comprehensive database on toxicity of ILs with over 4,000 EC50 27 

values was collected. QSAR models (M12, Table 2) were derived by incorporating support 28 

vector machine (SVM) and MLR methods. The authors [101] showed that toxicity of ILs can be 29 

decreased by increasing the relative number of O atoms in the molecules. In this work, a 30 

nonlinear SVM model performed better in the prediction of toxicity of ILs compared to MLR (R2 31 

for MLR and SVM models was 0.892 and 0.958, respectively). 32 

Hydrophobicity is known to significantly affect toxicity of ILs, thus the Ferreira–Kiralj 33 

hydrophobicity parameter was suggested [102] as a constitutional descriptor for modeling 34 

toxicity endpoints of ILs. The model with the Ferreira–Kiralj parameter gives a correlation 35 
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coefficient 0.809 and proves correctness of suggestion. In research devoted to investigation of 1 

cytotoxicity of 14 imidazolium-based ILs towards Channel Catfish Ovary cell line, the role of 2 

the shape of cationic head groups, length of alkyl substituents, and hydrophobicity was pointed 3 

out [120]. The developed LDA (linear discriminant analysis) and MLR models were characterized 4 

by a high R2
 value of 0.961. A nonlinear QSAR model of toxicity of 198 ILs towards cell line 5 

IPC-81 was constructed with the cascade correlation network (CCN), probabilistic neural 6 

network (PNN), and generalized regression neural networks approaches [103]. The generated 7 

model allows one to predict discrimination of ILs into four categories of cytotoxicity with an 8 

accuracy higher than 86% and performed correlation with regression models with R2 over 0.9. 9 

Ecotoxicity of ILs towards V. fischeri was predicted by applying the genetic function 10 

approximation and least squares support vector machine methods (LSSVM) with R2
 0.903 and 11 

0.933, respectively [47]. With respect to the used five descriptors for the cation and one for the 12 

anion, the authors suggested that ecotoxicity of ILs mainly depends on the size, lipophilicity, and 13 

3D structure of cations and concluded that the anionic parameters have little influence on 14 

ecotoxicity. 15 

Another QSAR study on toxicity of 157 ILs towards V. fischeri was performed using a 16 

topological method [48]. MLR models were developed by combining the topological index, a 17 

character vector of atoms, and a distance matrix for atom positions as descriptors (R2 = 0.908). 18 

In the work [105], classification and regression-based models were developed with two-19 

dimensional topological descriptors for a dataset of 289 ILs. Linear discriminant analysis (LDA) 20 

and PLS (partial least squares regression) models of cytotoxicity (EC50) values towards rat cell 21 

line IPC-81 were designed. The obtained models were in agreement with previously reported 22 

models [43]. 23 

Classification and regression QSAR models with good predictive power with accuracy over 88% 24 

and a coefficient Q2 0.77-0.92 were designed [121]. The obtained model of antibacterial activity 25 

of imidazolium-based ILs was stored in the OCHEM database (www.ochem.eu) and assisted in 26 

searching for new potential antimicrobial agents against B. subtilis and Ps. aeruginosa. 27 

Linear free energy relationship (LFER) descriptors were applied to obtain six prediction models 28 

of toxicity of ILs to two bacteria and a fungus [71]. The authors considered the following 29 

parameters of ILs as factors modifying their toxicity: molar refraction, dipolarity/polarizability, 30 

H-bonding acidity, H-bonding basicity, McGowan volume, cationic interaction, and anionic 31 

interaction. The chosen species had different sensitivity to the considered characteristics. For 32 

instance, the molecular volume of the cation was a more critical parameter for E. coli and S. 33 

aureus, whereas dipole interactions and H-bonding basicity of a cation was more influential for 34 

C. albicans. 35 
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QSAR modeling was done with the purpose to access the possibility of application of 1 

imidazolium ILs as potential anti-candida inhibitors [122]. Modeling was performed on the 2 

toxicity dataset (MIC) of 88 1,3-dialkylimidazolium ILs towards C. albicans strains with a wide 3 

range of toxicity endpoints (from 0.01 to 8,600 µg/mL). The authors used the following 4 

machine-learning methods: the WEKA-RF method for creating classification models; 5 

Associative Neural Network (ASNN) and k-Nearest Neighbor Method (k-NN) for generation of 6 

the regression models. The 5-fold cross-validation method was applied for internal validation. 7 

In another study [63], a QSAR model was developed by using MLR. According to the published 8 

model of the toxicity of ILs towards V. fischeri, the toxic effect of ILs can be reduced by 9 

introducing a polar group in the cation. The authors showed that toxicity of ILs mainly depends 10 

on the cation properties, namely, the size and length of the substituent group. 11 

In another study, the authors [124] applied unified descriptors to predict toxicological effects of 12 

ILs towards 58 different biological systems. A model with LFER descriptors was proposed for 13 

250 cations and 60 anions. The sensitivity of each biological system was estimated based on the 14 

obtained models. 15 

The predictive ability of local vs. global QSAR models was compared by Sosnowska [108] for 16 

predicting ILs toxicity (EC50) against IPC-81 cell line. 304 experimental data points were 17 

accumulated from literature for 10 groups of ILs according to the IL cation type. Both internal 18 

and external validation was performed. The authors recommended using the global model in 19 

practice instead of local models. 20 

MLR models with matrix norm indexes were built to predict toxicity of 169 and 101 ILs with 21 

minimal inhibitory concentration (MICs) and minimal bactericidal concentration (MBCs), res-22 

pectively, against S. aureus. Two QSAR models were developed with a correlation coefficient 23 

(R2) 0.919 and standard error of estimate (SE) 0.341 for MIC, and R2
 0.913 and SE 0.282 for 24 

MBC. Both external and internal validation indicated a good predictability of the model. 25 

Combined work [126] was done by generating effect data [50% effective concentration - EC50] 26 

and modeling toxicity of 52 ILs towards Aeromonas hydrophila featuring 4 different cations and 27 

11 anions. The obtained QSAR models indicated that toxicity of ILs depends strongly on the 28 

presence of a hydrophobic anion such as bis((trifluoromethyl)sulfonyl)imide and the length of 29 

the cation substituents. The k-fold cross-validation was carried out for reliability evaluation. The 30 

obtained QSAR model was found to have a high value of the correlation coefficient R2 0.904 and 31 

a small mean square error 0.095. 32 

Combination of QSAR methods and molecular docking was used to obtain several classification 33 

and regression models for 131 imidazolium ILs [88]. Comparative analysis of the models 34 

showed the advantage of regression models for analysis of ILs activity. Several models were 35 



18 
 

constructed with various descriptors such as E-State indices, ALogPS, Chemaxon descriptors, 1 

inductive descriptors. The developed models are available in the OCHEM database [98]. 2 

Predictive QSAR modeling studies were carried out by Luis [38]. MLR models with group 3 

contribution descriptors were developed based on V. fischeri toxicity data (EC50) for 75 ILs: 9 4 

cations and 17 anions. The lowest aquatic toxicity was found for the imidazolium cation and p-5 

toluenesulfonate and N(CF3)2 anions. Free GRid-INdependent descriptors (GRINDs) were 6 

applied to design citotoxicity models of 296 ILs towards cell line IPC-81 [113]. Descriptors were 7 

derived from GRid molecular interaction fields. Data of citotoxicity for data sets were obtained 8 

from UFT/Merck database [45]. 9 

Modeling on experimental data was performed for 28 ILs based on the following descriptors: 10 

rotatable bond number (RBN), mean atomic van der Waals volume (Mv) and interaction of 11 

second power carbon numbers with the molar ratio of hydrogen-bond acceptor to hydrogen-bond 12 

donor [129] (HBA and HBD). Authors demonstrated that RBN and Mv of HBD compounds 13 

showed positive effects on cytotoxicity of tested ILs, then the molar ratio of HBA to HBD and 14 

the number of HBD carbons exhibited the negative impact on activity of ILs. Models of minimal 15 

inhibitory concentration [97] were developed based on data for 242 ILs from the OCHEM 16 

database [98]. According to the predictions obtained, the authors [97] supposed that 1,3-oxazol-17 

4-yl(triphenyl)phosphonium derivatives have antibacterial activities. Substances of interest were 18 

synthesized and screened for their antibacterial activity towards Staphylococcus aureus ATCC 19 

25923 and Staphylococcus. According to performed antibacterial tests all compounds 20 

demonstrated the expected activity towards bacteria [97]. 21 

 22 

Influence of physicochemical properties 23 

The relationship between structural physicochemical properties of ILs and their aquatic toxicity 24 

was investigated by Paternò et al. [123]. The authors applied the in-silico approach VolSurf+ to 25 

design a PLS model for a dataset of 128 cations and 48 anions. In this method, the information is 26 

presented as 3D GRID molecular interaction fields (MIFs). Most of the authors suggest to design 27 

descriptors separately for anions and cations. There are only several publications [118,142] 28 

which consider cation-anion interactions in their models. However, in their final discussion and 29 

conclusion, interactions between the ions has not received significant attention. Most of the 30 

researches point to the leading role of the cation and its substituents in ILs toxicity. Besides the 31 

structure of ILs, other factors can influence their toxicity. It was shown [144] that the toxicity of 32 

ILs towards algae is reduced in saline water. The choice of the type of organisms is also essential 33 

for determining and modeling the ILs toxicity. 34 
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 1 

Quantitative structure–toxicity–toxicity relationship models 2 

Quantitative structure–toxicity–toxicity relationship (QSTTR) models perform interspecies 3 

correlation between simple and more complicated species. Different groups of organisms can 4 

differently respond to the ILs, but species of the same family may identically respond to the 5 

chemicals, whereas species from close families responded the same way with a different degree. 6 

Such research is aimed to find out the interconnection for different species. QSTTR model was 7 

successfully used to interconnect toxicity of substances for two or more closely related species. 8 

For QTTR models, it is typical when available experimental toxicity data for one species are use 9 

as independent variables for prediction of toxicity of the ILs for another species. For example, 10 

QTTR was employed by Das [56] for extrapolating toxicity of ILs towards V. fischeri and D. 11 

magna. An external data set of toxicity of 302 ILs towards  bacterium (V. fischeri) was used to 12 

develop the model of toxicity of these ILs towards a cladoceran (D. magna) and green algae (S. 13 

vacuolatus). It was found that the contribution of the cation into toxicity of ILs was more 14 

prominent than that of the anions. 15 

Another predictive interspecies QTTR model was obtained to interlink algae toxicity of ILs with   16 

toxicity [61]. Primarily the authors developed a PLS model of toxicity of 41 ILs towards S. 17 

vacuolatus using E-state indices and extended topochemical atom (ETA) indices calculated 18 

separately for cations and anions. Computational QTTR models [131] were obtained for the 19 

entire set of 64 ILs based on two different experiments [132,133] with different cell lines (with 20 

only two ILs being the same in different data series). By applying theoretical molecular 21 

descriptors and two approaches for feature selection (classical GA and its modified version –22 

Multi-Objective Genetic Algorithm (MOGA)), researchers [131] obtained the model with R2
 23 

values of 0.82-0.96. 24 

 25 

Discussion 26 

In summary, analysis of existing predictive QSAR toxicity models and biodegradation of ILs 27 

assists in better interpretation of mechanisms underlying their toxicity and behavior in 28 

environment. In general, toxicity of ILs depends on both ions (cation and anion) as well as on 29 

their interaction. In the published models, it was established that toxicity of ILs mainly depends 30 

on the nature of the cation and increases with the cation alkyl chain length [68,114], whereas the 31 

anion exerts in general a more limited impact on the overall toxicity [4,38,51,63]. The important 32 

role of the alkyl chain length in the cation in the contribution to ecotoxicity of ILs is in good 33 

agreement with literature data [36,39,104]. 34 
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The effect of the anion, cation core, and presence of functionalized groups in the cation chain on 1 

toxicity of ILs is less important as compared to the alkyl chain length in the cation substituent 2 

[63,68]. According to the literature [16,37,39,104], ILs with the same cation and different anions 3 

do not show any statistical difference in toxicity. With respect to the cation structure, it was 4 

proven that more branched cations with long alkyl chains are more toxic than smaller ILs with 5 

linear alkyl chains [63]. Toxicity of ILs is reduced by the presence of a polar group in the cation 6 

substituent chain. 7 

 8 

Figure 3. Generalization of the role of different factors in affecting the toxicity of ILs based on 9 

the state-of-the-art of the published models. 10 

 11 

Toxicity of ILs is moreover strongly correlated with their lipophilicity [70,142] since the 12 

hydrophobic character of ILs allows them to be easily incorporated into biological membranes 13 

[38,114]. Some key properties such as molecular size, branching, presence of hydroxyl groups 14 

(making a molecule hydrophilic), induce lipophilicity of ILs and govern their toxicity. As 15 

discussed above, the nature of the cation and substituent are vital for the interaction of ILs with 16 

cells and biotic species, as determined by lipophilicity, hydrogen bonding capacity, 17 

electronegativity, and size of ILs. This overview is of broad interest as it not only provides useful 18 

information about the structural patterns of ILs responsible for toxicity and biodegradation of 19 

ILs, but also by shedding light on selecting and designing greener ILs based on published QSAR 20 

models. 21 

 22 

Conclusions 23 
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In this contribution, we presented the current state of the art in the area of design of 1 

computational models of ILs toxicity towards different species and cell lines. A general 2 

overview of the database and datasets used in QSAR studies for ILs toxicity modeling  is given. 3 

With respect to the published models, it was concluded that toxicity of ILs mainly depends on 4 

the cation and increases with the cation alkyl chain length and for the more branched cation 5 

chain groups. With the knowledge of the structures that are responsible for the toxicity of ILs, it 6 

is possible to control toxicity of chemicals. In case of ILs, it is reasonable to synthesize a 7 

morpholinium head group as it shows the least toxicity towards several test subjects [40]. The 8 

overview shows that the presence of a polar group like e.g. hydroxyl or nitrile groups in the 9 

cationic substituent chain reduces the toxicity and increases the efficiency of biodegradation. The 10 

same tendency was observed for short polar side-chains linked to the cations of ILs. Meanwhile 11 

the effect of the anion was shown to play mostly an insignificant role in toxicity of ILs. Thereby 12 

from a toxicological point of view it is clear that in order to obtain eco-friendly ILs one needs to 13 

use morpholinium or pyridinium cations with short linear and polar alkyl chains and avoid 14 

fluorine-containing and hydrophobic anions with cations containing positively charged atoms 15 

and N atoms. As mentioned above, the ILs structure is essential for their interaction with cell 16 

membranes. The cell membrane in general has a total negative charge and thereby ILs with 17 

nucleophilic properties have a higher tendency to interact with biomembranes. 18 

Development of reliable QSAR/QSTR models of toxicity of ILs is essential for reducing the time 19 

and cost of experimental research and thus can lead to understanding the strategy in synthesis of 20 

green ILs. Even considering the promising benefit from QSAR models for ILs toxicity, most of 21 

the publications on this topic used a limited number of test species and only several ILs. To 22 

evaluate the total assessment of ILs for regulatory purposes, it is important to expand the number 23 

of species and ILs. The information about the state of ILs during the experiments is limited. It 24 

will be a good practice to look over the ILs state under experimental conditions. Meanwhile, 25 

linking the structure of ILs to their environmental behavior and degradation is of great interest. 26 

Such research will provide further understanding of the mechanisms of toxicity and 27 

biodegradation of ILs. 28 

Analysis of descriptors discussed in published QSAR studies assists in providing a proper 29 

interpretation of possible mechanisms of ILs toxicity on the basis of the structures that mainly 30 

drive adverse effects. Thus, this brief overview of modeling studies related to toxicity prediction 31 

of ionic liquids manifests applicability of a number of different models allowing for achieving 32 

high correlation coefficients. Researchers recommend considering the structure of the cation and 33 

the anion separately. Most of the studies so far are based on a variety of modeling techniques 34 

such as regression (MLR, EVM, PLS), SVM, ANN, GPA, GCM, and LFER approaches. To 35 
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have better understanding of the IL structure – toxicity relationship is important for known and 1 

new emerging ILs. 2 
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Abbreviations 

a_LUMO – lowest unoccupied molecular orbital energy of anion 
ACO - ant colony optimization 
ANN – Artificial Neural Network 
ASNN - Associative Neural Networks 
c_FPSA - Fractional Polar Surface Area of cation 
c_HOMO – cation ionization energy 
CA - cluster analysis approaches 
CART - Classification and Regression Tree 
COSMO-RS theory is a continuum solvation model 
C08AL is CATS (Chemically Advanced Template Search) 2Dacceptor-lipophilic at lag 08, encode the 
pairwise topological relationship of potential pharmacophore points patterns based on the cross-
correlation of generalized atom types in a molecular graph by a vector of fixed size 
CNN - cascade correlation network 
CPCM - Conductor-like Polarizable Continuum Solvation Model 
CSM - conductor-screening model 
DisPm - geometrical descriptor represents displacement value/weighted by mass 
Dipole – Dipole moment in [Debye] of the molecule 
DFT - density functional theory 
ETA - Extended topochemical atom 
ELM - Extreme learning machine 
GCM - Group contribution method 
GFA - genetic function approximation 
GMTI - Gutman molecular topological index 
GMTIA - Gutman molecular topological index 
GRNN - generalized regression neural networks 
GSFrag calculates the occurrence numbers of certain special fragments on the vertices in a molecular 
graph. 
HAC - heavy atom count (all atoms except hydrogen) in the anions 
HATSv represents leverage-weighted total index/weighted by van der Waals volume 
InertiaZ - Principal component of the inertia tensor in z-direction in [Da.Å2]. 
k-NN – k Nearest Neighbors method 
k-NNCA - k-nearest neighbor cluster algorithm 
LDA - Linear discriminant analysis 
LFER - linear free energy relationship 
LOC - lopping centric information index 
LOCC - The lopping centric information index 
LSSVM - Least squares support vector machine 
MACCS structural keys are substructure-based fingerprints representing a dictionary of predefined 
structural fragments of fixed format and length 
MLP - Multilayer perceptron neural network 
MLP NN - multilayer perceptron neural net work 
MLR - Multiple linear regression 
Mor16u, as a 3D-MoRSE descriptor (Molecular Representation of Structures based on Electron 
diffraction), describes the signal16/unweighted. 
MW - represents molecular weight, which is a constitutional indices descriptor. 
NAtoms - Number of all atoms in the molecules (including H atoms). 
nOC - the number of oxygen atoms 
NSG – network like similarity graph 
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OCHEM - Online Chemical Modeling Environment database 
PCA - principal component analysis 
Polariz - Mean molecular polarizability in [Å3] of the molecule 
PLS - partial least squares regression 
PNN - probabilistic neural network 
Q2 - predictive squared correlation coefficient 
Q2

cv – robustness/ internal validation 
Q2

ext - predictive ability/ external validation 
QSAR – quantitative structure-activity relationship 
QSPR – quantitative structure-property relationship 
QSTR - quantitative structure-toxicity relationship 
QSTTR – quantitative structure–toxicity–toxicity relationship 
QTMS - quantum topological molecular similarity 
R2 - determination coefficient 
R2

pred - determination coefficient for test set prediction 
R3uþ - (R maximal autocorrelationoflag 3/unweighted) and RARS - two GETAWAY descriptors, which 
try to match 3D-molecular geometry with chemical information by using different atomic weightings. 
RDF descriptors - descriptors are based on the distance distribution in a three-dimensional representation 
of the molecule. 
RDF095m - Radial distribution function—9.5/weighted by atomic masses; one of RSD descriptors 
SEP - electrostatic potential surface area 
Sσ-profile - distribution area of the σ-profile 
SMILES - simplified molecular input line entry system 
RMSE - root mean square error 
Span - Radius of the smallest sphere centered at the center of mass, which completely encloses all atoms 
in the molecule in [Å]. 
SVR - support vector regression 
TPSA - Topological polar surface area in [Å2] of the molecule. 
T_SAR - Thinking in Structure-Activity Relationships 
WEKA –RF – WEKA Random Forest 
XLogP - Octanol/water partition coefficient in logarithmic units of the molecule following the atomic 
contribution approach 
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