
 

1 

 

Review 1 

Strengthening Causal Inference for Complex Disease Using Molecular 2 

Quantitative Trait Loci 3 

Sonja Neumeyer1, Gibran Hemani2, Eleftheria Zeggini1* 4 

 5 

1Institute of Translational Genomics, Helmholtz Zentrum München, German 6 

Research Center for Environmental Health, Neuherberg, Germany. 7 

2MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol 8 

Medical School, University of Bristol, Bristol, United Kingdom. 9 

 10 

*Correspondence: eleftheria.zeggini@helmholtz-muenchen.de (E. Zeggini). 11 

 12 

Keywords: Mendelian randomization, QTL, complex trait, GWAS, genome-wide 13 

association study, gene expression 14 

 15 

Abstract 16 

Large genome-wide association studies have identified loci associated with complex 17 

traits and diseases, but often index variants are not causal and reside in non-coding 18 

regions of the genome. To gain a better understanding of the relevant biological 19 

mechanisms, intermediate traits such as gene expression or protein levels are 20 

increasingly being investigated, as these are likely mediators between genetic variants 21 

and disease outcome. Genetic variants associated with intermediate traits, termed 22 

molecular quantitative trait loci (molQTLs), can then be used as instrumental variables 23 

in a Mendelian randomization approach to identify causal features and mechanisms of 24 

complex traits. Challenges such as pleiotropy and non-specificity of molQTLs remain 25 

and further approaches and methods need to be developed. 26 

 27 
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Genome-Wide Association Studies  30 

Genome-wide association studies (GWAS, Box 1) have identified thousands of 31 

sequence variants that contribute to the genetic architecture of complex diseases and 32 

medically-relevant quantitative traits. This endeavour has been fuelled by two major 33 

ambitions: creating genetic predictors for disease; and identifying the genomic regions 34 

responsible for the disease to gain a better understanding of the relevant biological 35 

mechanisms [1, 2]. The latter objective is the focus of this review. 36 

Typically, associated variants individually account for a very small proportion of 37 

phenotypic variation. This is common for quantitative or “complex” traits which are 38 

usually influenced by a large number of genes with small effects on the trait [3]. There 39 

is no simple Mendelian inheritance pattern but random sampling of alleles at each 40 

associated gene results in a normally distributed phenotype in the population [4]. 41 

Functional information on the underlying mechanisms of genetic variants identified by 42 

GWAS is often unclear, i.e. it is challenging to identify effector genes based on the 43 

observed association summary statistics only [3, 5]. The majority of complex trait 44 

variants reside in noncoding regions of the genome [6, 7] and it is possible that they 45 

confer their effect through modulating gene expression levels [8]. In their second 46 

decade of existence, GWAS are showing signs of maturity, with increasing diversity in 47 

populations studied [9], inclusion of low frequency and rare variants, and finer definition 48 

of phenotypic traits examined. 49 

In this review we will describe how molecular traits are also being assayed and 50 

analysed for genetic associations, and how the understanding of complex disease 51 

aetiology is improving through combining genetic analysis of both the disease and 52 

molecular traits. The presiding manner in which these relationships are constructed is 53 

using a causal inference method known as Mendelian randomization (MR) which 54 

capitalizes on the abundance of GWAS results now available. We will describe MR in 55 

terms of both its current implementation and the future developments that are needed 56 

to address known limitations. 57 

 58 

Molecular Quantitative Trait Loci 59 
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The influence of a genetic variant associated with a disease is likely to be mediated 60 

via molecular traits (Figure 1), which themselves are often complex. Quantitative 61 

molecular traits, such as gene expression or protein abundance, are frequently 62 

dysregulated in disease and can act as intermediate phenotypes, affording greater 63 

power to detect association compared to the dichotomous definition of a disease 64 

endpoint, which is the culmination of multiple biological processes being perturbed 65 

[10]. 66 

Multiple studies have investigated mRNA levels combined with genome-wide genotype 67 

information to identify expression quantitative trait loci (eQTLs), i.e. genetic variants 68 

associated with gene expression levels [11]. The first studies to investigate molecular 69 

quantitative trait loci (molQTLs) started out with small sample sizes. Due to challenges 70 

associated with collecting human biospecimens using invasive procedures, analyses 71 

initially focussed on using the most accessible tissues [12]. Today, sample sizes used 72 

for molQTL investigation in blood have grown very large [13]. MolQTLs are generally 73 

classified into cis-acting, which is typically defined as regulation of genes within 1Mb, 74 

or trans-acting, defined as molQTLs affecting genes further away or on different 75 

chromosomes [14]. Whereas detected cis-effects have generally been large and easily 76 

found using small sample sizes, trans effects tend to be much smaller and larger 77 

sample sizes are required. Large studies such as the eQTLGen Consortium [13] or 78 

GoDMC (http://www.godmc.org.uk/) are emerging to identify these small effects that 79 

might play central roles in disease etiology. Molecular trait loci seem to be highly tissue 80 

dependent [15, 16]. However, tissue-sharing of cis-eQTLs seems to be bimodal. Either 81 

cis-eQTLs seem to be shared across many tissues or they are very specific to only a 82 

small subset of tissues [17].To provide a resource which enables the systematic study 83 

of genetic variation on regulation of gene expression in multiple human tissues, the 84 

Genotype-Tissue Expression (GTEx) project was initiated a decade ago [18]. The 85 

current GTEx release provides a total of 11688 samples and 53 tissues across 714 86 

donors (current release V7, dbGaP accession phs000424.v7.p2). Sample sizes of 87 

other studies have also largely increased [19-21] and a variety of tissues have been 88 

studied. The picture is far from complete, but has been massively enhanced since the 89 

inception of these studies. 90 

http://www.godmc.org.uk/
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The first expression phenotypes to be studied were gene transcript levels. They are 91 

highly heritable [22]. It is estimated that around 88% of all genes have at least one 92 

eQTL [13]. To date, many different molecular traits with a potential influence on gene 93 

regulation have been investigated [23]. They range from influencing the epigenome 94 

such as DNA methylation (meQTL), histone modification (hQTL) or chromatin 95 

accessibility (caQTL) to alternative splicing (sQTL), protein levels (pQTL), microRNA 96 

expression (mirQTL) or ribosome occupancy (rQTL) [23]. In addition, higher level 97 

intermediate phenotypes such as metabolites have been investigated and QTLs for 98 

metabolites such as carbohydrates, amino acids or fatty acids identified [24]. 99 

In an effort to find the molecular pathways that connect genetic variants to complex 100 

traits, overlapping/colocalisation methods between GWAS and molQTL signals have 101 

been developed. Colocalisation of an eQTL with a GWAS signal suggests that the 102 

eQTL target gene could be involved in the molecular pathway of the complex disease 103 

under investigation [25]. Several studies already discovered GWAS signals enriched 104 

for molQTLs in a tissue dependent-manner [26]. For example, the myocardial infarction 105 

and high LDL cholesterol-associated 1p13 locus (see Glossary) had been fine 106 

mapped to the CELSR2 gene. Using eQTL analyses, it was discovered that actually 107 

the expression of SORT1 was influenced by this variant [27]. 108 

MolQTLs are being used as instrumental variables for molecular traits in a variety of 109 

ways: to infer the relative importance of different classes of molecular features on 110 

variation in complex traits; to identify the causal gene for a particular complex trait [23]; 111 

to identify the causal tissue for a complex trait [28] and to estimate causal relationships 112 

between different molecular traits [29]. In this review, we will focus on their use for 113 

identifying causal features of complex traits.  114 

Mendelian Randomization Studies Strengthen Causal Inference  115 

Mendelian randomization (MR, Box 2) studies use genetic variants as proxies for   116 

modifiable risk factors to test whether the risk factor is causally relevant to an outcome 117 

of interest [30, 31]. The advantage of such an approach is that unmeasured 118 

confounding, an issue of observational studies, and reverse causation can be 119 

minimized. It is, therefore, possible to use genetic information to draw causal 120 

inferences. 121 
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 122 

Early MR studies mainly used one-sample approaches, where the exposure and 123 

outcome phenotypes along with the genetic variants that were being used to 124 

instrument the exposure were available for all samples in a single dataset. Nowadays, 125 

when many large-scale GWASs are conducted, it is much more powerful to use 126 

published SNP (single nucleotide polymorphism) -trait associations from large 127 

consortia. It is, therefore, common to use two-sample MR approaches where SNP-128 

exposure and SNP-outcome associations are estimated in different studies and 129 

subsequently combined [32]. When using genome-wide significant SNPs as 130 

instrumental variable for an exposure, the first MR assumption should be verified. 131 

 132 

For two-sample MR methods, only summary statistics are required (per allele 133 

regression coefficients, standard errors and effect allele) which are typically obtained 134 

from published GWAS of the largest possible datasets [33]. The causal effect can be 135 

estimated using the Wald ratio estimate, which is the ratio of SNP-outcome association 136 

and SNP-exposure association.  137 

 138 

SNP-exposure and SNP-outcome association statistics should ideally be obtained 139 

from studies of non-overlapping individuals (two-sample MR). When using summary 140 

statistics from only one sample or from partially overlapping samples, results might be 141 

biased in the direction of the observational estimate, especially if the genetic effects 142 

on the exposure are weak [34]. When several independent genetic variants are known 143 

to be associated with the exposure of interest, these can be combined into a single MR 144 

estimate using inverse variance weighted meta-analysis of the single Wald ratio 145 

estimates [32]. In doing so, the MR framework can then be viewed as a meta-analysis 146 

problem which itself has a rich set of tools to evaluate and correct for bias [35]. One 147 

issue that has been of particular concern in MR is in proving that violation of the third 148 

assumption, i.e. that the genetic instrument influences the outcome only through the 149 

exposure, does not induce bias [36]. A suite of sensitivity analyses [37-41] are now 150 

routinely implemented in MR studies that use multiple independent instruments to 151 

model pleiotropy [42]. 152 



 

6 

 

Mendelian Randomization Studies Using Molecular QTLs as Instrumental 153 

Variables  154 

Whole genome approaches have indicated that the causal variants influencing 155 

complex traits are overrepresented by those that are also associated with eQTLs [43, 156 

44]. This supports the notion that disease biology could be unravelled by mapping the 157 

causal path from genetic variant through the use of intermediate molQTLs [45]. At its 158 

most basic implementation, a Mendelian randomization framework for evaluating the 159 

causal influence of a molecular trait on a complex trait would be to test if a known 160 

molQTL is also associated with the complex trait (Key Figure, Figure 2). The Wald ratio 161 

of SNP-complex trait and SNP-molecular trait effects can then be obtained as an 162 

estimate of the causal effect. This simple method suffers from a number of potential 163 

pitfalls and is often performed as an initial screen to find, from amongst many molecular 164 

phenotypes (e.g. hundreds of thousands of DNA methylation levels), a few putative 165 

causal molecular phenotypes for more detailed follow up and sensitivity analysis [46-166 

48]. Here we describe some of these approaches. 167 

Linkage disequilibrium links a causal variant for one trait with a different causal variant 168 

for another trait.  169 

A major lesson from GWAS is that complex traits follow a polygenic architecture [49, 170 

50]. As a consequence, finding that a chosen SNP happens to show an association 171 

with a complex trait might not be surprising because many non-causal common 172 

variants are likely to be in linkage disequilibrium (LD) with a causal variant for a 173 

complex trait (Figure 3a). Colocalisation techniques seek to analyse specific genomic 174 

regions, determining whether the pattern of test statistics for one trait are concordant 175 

with the pattern from another, often with respect to the underlying LD structure. 176 

Evidence for shared causal variants at a locus is determined by the extent to which the 177 

test statistic patterns are shared between the two traits. An important recent finding is 178 

that the majority of genes that colocalise with a trait are not the genes that are closest 179 

to the biggest signal for the trait [11]. 180 

Typically, the proportion of overlapping signals between molecular and complex traits 181 

that appear to be due to LD is high. For example in [29] it was shown that two thirds of 182 

putative expression-trait MR relationships were due to LD, with a similar proportion 183 
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being found for DNA methylation-trait MR relationships. Nevertheless, when assessed 184 

across hundreds of complex traits, there are now tens of thousands of examples of 185 

colocalisation between gene expression levels and complex traits [51]. It remains 186 

important to note that there are many colocalisation techniques [11, 52-54] and there 187 

is not always strong agreement between them [54].  188 

The association is reverse causal 189 

One of the purported advantages of MR is that it protects against reverse causation. 190 

This is true to the extent that the instrument is known to primarily influence the 191 

hypothesised exposure. However it is conceivable that a molQTL arises because a 192 

complex trait influences it. Mediation-based methods exist that require individual-level 193 

data to orient the causal direction [55-57], but are susceptible to making the wrong 194 

orientation under specific patterns of confounding or measurement error [58]. An 195 

alternative approach is to perform MR in the reverse direction [47], identifying SNPs 196 

that instrument the complex trait and testing for its association on the molecular trait. 197 

Typically however, one would not expect reverse causal relationships to explain a 198 

molQTL associated with a complex trait because in order for the molQTL to have been 199 

detected in a small sample size it will necessarily be a large effect, which is impossible 200 

if it were mediated through a polygenic trait [29]. 201 

The instrumenting SNP is non-specific to the hypothesised exposure 202 

Often a single SNP is detected as an instrument for multiple molecular phenotypes. 203 

For example, a SNP could be strongly associated with more than one gene expression 204 

level, or the same gene expression level in different tissues or time points, or both a 205 

gene expression level and a DNA methylation level (Figure 3). This is not necessarily 206 

a problem, as all the molecular phenotypes that are associated with the trait could be 207 

on the same causal pathway to the disease, and indeed it could be advantageous as 208 

it presents us with multiple points of intervention. Non-specificity of genetic 209 

associations is classically known as pleiotropy though care should be taken in using 210 

the term. MR assumes a ‘vertically’ pleiotropic relationship, where the genetic 211 

instrument is associated with the outcome because it is mediated by the exposure. By 212 

contrast, ‘horizontal’ pleiotropy is a source of problems in MR, inducing bias or false 213 

causal inference if the SNP influences the outcome through a pathway other than the 214 
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hypothesised exposure [59]. Proving that a putative MR finding is due to vertical and 215 

not horizontal pleiotropy is far from trivial [36]. 216 

There are vastly more molecular phenotypes than independent genetic regions, 217 

especially when temporal- and tissue-specific measurements are possible [60]. By 218 

definition it is expected that many molQTL will not be specific to a particular molecular 219 

trait. Therefore, it is difficult to prove which, from amongst the set of molecular traits 220 

that are influenced by the molQTL, is the causal factor [51]. 221 

One approach is to focus on the use of cis-acting molQTLs, with the rationale that they 222 

are biologically ‘closer’ to the intended molecular trait. Trans-acting QTLs are likely to 223 

only influence the molecular trait because they are mediated by other molecular traits, 224 

opening up a greater possibility that the instrument is non-specific to the intended 225 

target (Figure 3b). Testing explicitly if the molQTL is associated with other molecular 226 

traits is also sensible, as this can be used to (de-)prioritise a putative association 227 

depending on how much evidence there is for (non-)specificity [2]. Methods are now 228 

arising that attempt to model the MR estimates of multiple molecular exposures 229 

simultaneously, thereby adjusting for potential horizontal pleiotropy [61]. While a useful 230 

tool, interpretation remains difficult as the use of multivariable MR [62] requires that 231 

there are marked differences in the genetic signatures across the exposures [63]. It 232 

also requires measurement of all possible exposures that could be inducing the 233 

pleiotropy, which is a similar assumption to observational study designs that prompted 234 

the development of MR in the first place. 235 

There are more standard MR sensitivity analyses that can be applied in the event that 236 

multiple independent causal variants are available [42]. However, this typically requires 237 

introducing trans-QTLs into the analysis which may not bring clarity, as they could have 238 

systematically different properties to cis-QTLs. At this stage, if a molecular trait 239 

colocalises with a complex trait, and doesn’t appear to be reverse causal, it is still 240 

extremely difficult to prove that it is causal and not simply one of many traits that are 241 

all influenced by the same molQTL.  242 

In the GoDMC study, which used 30k samples to discover instruments for DNA 243 

methylation levels, multiple cis and trans instruments were used to model causal 244 

relationships between DNA methylation levels and complex traits. It was found that, 245 
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while there were many putative colocalising signals with complex traits, there was 246 

almost no agreement between the causal effect estimated using primary and 247 

secondary molQTLs, implying that the majority of colocalising signals were due to 248 

horizontal pleiotropy. 249 

Current Challenges and Issues  250 

The prospects of finding new drug targets has propelled forwards the data acquisition 251 

and methodological development for mapping the pathways between molecular and 252 

complex traits.  253 

Genetic variation is finite, and though molecular traits are often polygenic the use of 254 

more than the cis-region for instrumentation is currently not fully understood. This 255 

incurs a limit on the extent to which current tools designed to protect against incorrect 256 

causal inference due horizontal pleiotropy can be used. Conceptually, here we use 257 

genetic instruments as a proxy for molecular phenotypes. However, molecular 258 

phenotypic variation dwarfs the cis-genetic resource that is available for 259 

instrumentation. Hence, the ubiquitous non-specificity of any molQTL makes it very 260 

difficult to determine which molecular feature is actually mediating the genetic effect 261 

on a trait. This could be because inference is for the wrong developmental time point 262 

(e.g. genetic effects are very consistent over time [64] for DNA methylation) or the 263 

wrong tissue (cis-QTLs are strongly shared across tissues [17]). Alternatively, it could 264 

be that it was an entirely different molecular feature (e.g. gene expression, DNA 265 

methylation and histone variation often share similar cis-regulatory features [65]). 266 

Coupled with this problem of non-specificity, is the emerging evidence supporting a 267 

model of ubiquitous horizontal pleiotropy [40, 66], in which any particular genetic 268 

variant potentially influences a particular complex trait through multiple independent 269 

pathways. The omnigenic model offers an extreme viewpoint on this problem, in which 270 

polygenic architecture arises because every gene is related to every trait through an 271 

underlying dense gene regulatory network [3]. 272 

Making meaningful inference from such an under-specified model requires a departure 273 

from current practices of treating molecular features singly, and reliably incorporating 274 

trans-instruments, which may exhibit tissue specificity [17]. Though any one instrument 275 
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might be non-specific, it is seldom the case that the genetic correlation of complex 276 

traits is 1 [67], meaning that there are potentially combinations of instruments that 277 

together provide some specificity. Large-scale pleiotropy maps are beginning to be 278 

produced [40, 68, 69], and may provide an avenue into constructing instrument 279 

combinations conditional on a background of complex pleiotropy. 280 

Concluding Remarks  281 

Many genetic variants associated with complex traits and diseases have been 282 

discovered, but often there is a lack of knowledge about mechanisms involved (see 283 

Clinician`s Corner). Investigation of intermediate traits and associated molQTLs has 284 

been very helpful, as these better explain how genetic variants influence complex 285 

traits. Using molQTLs combined with an MR approach, causal features of a complex 286 

trait can be revealed. Challenges, such as the model of ubiquitous horizontal 287 

pleiotropy and, therefore, a non-specificity of molQTLs to a particular molecular trait, 288 

remain (see Outstanding Questions). Therefore, new methods need to be 289 

developed, including for example those that reliably incorporate trans-molQTLs, 290 

which have a greater possibility for non-specificity of the instrument. 291 

 292 

Despite our growing understanding of the limitations of MR, the current data resources 293 

and statistical frameworks for MR can be viewed as a resource with tremendous utility. 294 

Most directly, using MR to support a negative association could be less prone to some 295 

of the issues described. Of growing importance in causal inference is the concept of 296 

triangulation, where information from orthogonal experimental designs are integrated 297 

together to obtain a more reliable conclusion [70]. There are now open source data 298 

and software repositories (including those that can be used in web browsers [42]) that 299 

automate MR analyses. The inclusion of genetic evidence through MR should be a 300 

natural part of any causal inquiry [71]. 301 

 302 
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 303 

BOX 1: Genome-wide association studies 304 

Genome-wide association studies (GWAS) compare large numbers 305 

of affected with unaffected individuals to identify sequence variants that 306 

are associated with risk of complex diseases, or at the population-level 307 

to identify associations with quantitative traits. The foundation for GWAS 308 

was laid by the sequencing of the human genome [72], characterization 309 

of the correlation patterns between pairs of variants genome-wide [73], 310 

development of high-throughput genotyping platforms, and the 311 

availability of large-scale sample sizes. Millions of single nucleotide 312 

polymorphisms (SNPs) have been mapped [74]. For several reasons it 313 

has been difficult to elucidate the underlying mechanism between 314 

associated genetic variant and disease trait. One reason is the co-315 

inheritance of many genetic variants with the disease-associated variant 316 

(linkage disequilibrium (LD)) [75]. Due to this complicated correlation 317 

structure of human genome, the most strongly associated GWAS signal 318 

(index variant) is often not causal [76]. Similarly, compounded by 319 

complex regulatory mechanisms, the nearest gene to the top GWAS 320 

signal is not necessarily the causal gene [11]. 321 

 322 

Box 2: Mendelian randomization studies  323 

Due to the laws of Mendelian inheritance, alleles are assigned at 324 

conception to individuals independent of environmental risk factors and 325 

confounders. To obtain valid estimates using Mendelian randomization 326 

(MR), three assumptions have to be met: firstly, the genetic variants need 327 

to be sufficiently associated with the exposure of interest; secondly, the 328 

genetic variants should not be associated to any confounder of the risk 329 

factor – outcome relationship; finally there should not be any other 330 

pathway from genetic variants to outcome except through the exposure 331 

of interest. Except for the first assumption, which can be tested, the other 332 

two assumptions can only be addressed by sensitivity analyses [77]. 333 
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Clinician`s Corner 334 

 Poor efficacy and poor safety are the two major reasons for the very 335 

high failure rate of drug trials, ultimately driving up the cost of drugs and 336 

their development times. This can be partly framed as a causal 337 

inference problem, where the objective is to identify which molecular 338 

targets are causal for the disease of interest and filter out those that are 339 

likely to fail prior to initiating trials.  340 

 Randomized controlled trials (RCTs) are ideal for making causal 341 

inference but are expensive, slow and often impracticable for a 342 

particular causal enquiry. The Mendelian randomization statistical 343 

framework leverages genetic associations to mimic randomized control 344 

trials. The potential of this strategy is increasingly being exploited due 345 

to the ready availability of data to quickly and cheaply evaluate the 346 

causal importance for thousands of molecular features on complex 347 

diseases.  348 

 To interrogate the causal influence of a particular molecular trait on a 349 

particular disease, knowledge of robust genetic factors for the 350 

molecular trait, and the corresponding effect of those factors on the 351 

disease, are both required. Thanks to over a decade of genome-wide 352 

association studies and the recent emergence of national genetic 353 

biobanks, most complex diseases have genome-wide genetic 354 

associations from large sample sizes made publicly available. In 355 

addition, the genetic influences on a range of molecular features such 356 

as protein levels, gene expression levels, DNA methylation levels, 357 

metabolites etc are being mapped and made publicly available. 358 

 Though it is impossible to mimic an RCT perfectly using such 359 

observational data, statistical techniques and data continue to improve, 360 

and Mendelian randomization is poised to further help make causal 361 

claims about a molecular trait on complex disease. 362 

 363 
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Glossary  364 

1p13 locus: GWAS analysis in humans demonstrated that this locus on chromosome 365 

1 is strongly associated with plasma low-density lipoprotein cholesterol (LDL-C) levels, 366 

which in turn is a major risk factor for myocardial infarction. SNPs (see below) in this 367 

locus have also been linked to coronary artery disease. This locus alters the expression 368 

of SORT1 (see below) in the liver. 369 

CELSR2: Cadherin EGF LAG seven-pass G-type receptor 2, a receptor with possible 370 

role in cell/cell signaling during nervous system formation. CELSR2 is physically linked 371 

to the 1p13 locus. Because of this, CELSR2 expression was thought to be controlled 372 

by the 1p13 locus until eQTL analysis showed that this was not the case. 373 

LD: linkage disequilibrium, the non-random association of alleles at different loci. 374 

Based on the assumption that over time recombination events will result in a random 375 

association of alleles at two loci, linkage disequilibrium is defined as the difference 376 

between the observed frequency of a particular combination of alleles at two loci 377 

compared to the frequency expected at random. When analyzing causal SNPs in 378 

GWAS analysis, special care must be taken to not wrongly interpret a non-causal SNP 379 

that is in LD with a causal SNP. 380 

SNP: single nucleotide polymorphism, a DNA sequence variant within a population. 381 

SNPs can be linked to disease development and response to pathogens or medication 382 

in humans, which makes them invaluable in personalized medicine. Comparison of 383 

SNP composition in genomic regions between different cohorts (e.g. with and without 384 

disease) is of great importance in biomedical research on a larger scale (e.g. GWAS). 385 

SORT1: Sortilin, which is localized in intracellular compartments, notably the Golgi 386 

apparatus. It is involved in endocytosis and functions as a sorting receptor in the Golgi 387 

compartment and clearance receptor on the cell surface. SORT1 expression is 388 

modulated by the 1p13 locus (see above). In liver cells of mouse models, LDL-C levels 389 

are significantly decreased by SORT1 overexpression whereas SORT1 knockdown 390 

resulted in an increase of LDL-C levels. 391 

 392 
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Figure legends: 577 

 578 

Figure 1: Molecular quantitative trait loci influencing intermediate traits. Left 579 

graph: Molecular quantitative trait loci (molQTL) are genetic variants associated to a 580 

molecular trait and have an influence on intermediate traits (genotypes AA, AG, GG). 581 

Right graph: The GG genotype (blue) is associated with higher expression levels of 582 

the molecular quantitative trait compared to the AG (yellow) and AA (rose) genotype. 583 

These molecular traits can modulate the expression of further target genes (green). 584 

 585 

Key Figure, Figure 2: Schematic representation of a Mendelian randomization 586 

study using quantitative trait loci as instrumental variables. Due to random 587 

distribution of alleles at conception, genetic variants are unrelated to environmental 588 

confounders. If genetic variants are sufficiently associated with the modifiable 589 

exposure of interest (here: methylation levels, RNA expression levels or protein 590 

levels) and not associated to the outcome by a different pathway, then they can be 591 

used as instrumental variable for the exposure. 592 

 593 

Figure 3: Simplified directed acyclic graphs of possible systems that would 594 

lead to an apparent causal effect of gene expression on a trait. Gene regulation 595 

may be regulated by several elements. In all the situations depicted, a naïve 596 

Mendelian randomization (MR) analysis would return a causal signal for any of the 597 

regulatory elements though most often they are not on the causal pathway. A) Three 598 

scenarios for cis molecular quantitative trait loci (molQTL) regulation are presented. 599 

Vertical: Both gene expression and DNA methylation (DNAm) are on the causal 600 

pathway, hence MR using the cis-genetic variant will give valid causal estimates 601 

whether it is used to instrument either of these elements. Horizontal: Using the 602 

instrument for DNAm will be invalid due to horizontal pleiotropy. Different causal 603 

variants: The molQTL is in linkage disequilibrium (LD) with another variant that 604 

influences the trait, hence neither regulatory element is causally influenced though 605 

naïve MR could indicate otherwise. B) Four scenarios for molQTL regulation are 606 

similar to A) except the molQTL for DNAm is on a different chromosome. There are 607 

now more opportunities for horizontal pleiotropy as there needs to be a longer path 608 

from the trans chromosome to the DNA methylation level. 609 
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