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Abstract
Objectives Prior studies relating body mass index (BMI) to brain volumes suggest an overall inverse association. However, BMI
might not be an ideal marker, as it disregards different fat compartments, which carry different metabolic risks. Therefore, we
analyzed MR-based fat depots and their association with gray matter (GM) volumes of brain structures, which show volumetric
changes in neurodegenerative diseases.
Methods Warp-based automated brain segmentation of 3D FLAIR sequences was obtained in a population-based study cohort.
Associations of temporal lobe, cingulate gyrus, and hippocampus GMvolumewith BMI andMR-based quantification of visceral
adipose tissue (VAT), as well as hepatic and pancreatic proton density fat fraction (PDFFhepatic and PDFFpanc, respectively), were
assessed by linear regression.
Results In a sample of 152 women (age 56.2 ± 9.0 years) and 199 men (age 56.1 ± 9.1 years), we observed a significant inverse
association of PDFFhepatic and cingulate gyrus volume (p < 0.05) as well as of PDFFhepatic and hippocampus volume (p < 0.05),
when adjusting for age and sex. This inverse association was further enhanced for cingulate gyrus volume after additionally
adjusting for hypertension, smoking, BMI, LDL, and total cholesterol (p < 0.01) and also alcohol (p < 0.01). No significant
association was observed between PDFFhepatic and temporal lobe and between temporal lobe, cingulate gyrus, or hippocampus
volume and BMI, VAT, and PDFFpanc.
Conclusions We observed a significant inverse, independent association of cingulate gyrus and hippocampus GM volume with
hepatic fat, but not with other obesity measures. Increased hepatic fat could therefore serve as a marker of high-risk fat
distribution.
Key Points
• Obesity is associated with neurodegenerative processes.
• In a population-based study cohort, hepatic fat was superior to BMI and visceral and pancreatic fat as a risk biomarker for
decreased brain volume of cingulate gyrus and hippocampus.

• Increased hepatic fat could serve as a marker of high-risk fat distribution.
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Abbreviations
AFNI Analyses of functional images
BMI Body mass index
FAST FMRIB’s automated segmentation tool
FLAIR Fluid attenuation inversion recovery
FLIR FMRIB’s linear registration tool
FMRIB Functional magnetic resonance imaging of the

brain
FNIRT FMRIB’s non-linear image registration tool
GM Gray matter
KORA Cooperative Health Research in the Region of

Augsburg
NAFLD Nonalcoholic fatty liver disease
PDFF Proton density fat fraction
TBV Total brain volume
VIBE Volume interpolated body examination
VAT Visceral adipose tissue

Introduction

Obesity is a growing health concern globally and has been
linked to an increased risk for conditions such as cardiovas-
cular disease, diabetes, osteoarthritis, various forms of cancer,
and depression [1, 2]. Regarding cognitive domains, there is
evidence that obesity might affect inhibitory and executive
control and working memory [3, 4]. Prior research suggests
an overall inverse association of BMI with brain volume, for
example in the temporal lobe [5, 6] and the hippocampal for-
mation [7], both of which play an important role in memory
and learning [8]. Furthermore, several studies suggest an in-
verse association between body weight and thinning of the
cingulate cortex [9, 10], a region which is known to be en-
gaged in memory-related functions [11, 12]. Moreover, hu-
man adiposity has been associated with a higher risk of neu-
rodegenerative processes, such as Alzheimer’s disease and
vascular dementia [13, 14].

The most widely used and accepted approach for the mea-
surement and classification of excess body fatness is the body
mass index (BMI) [2]. However, BMI might not be an ideal
marker, as it disregards different fat compartments, which
might carry a variable extent of metabolic risks. For example,
increased visceral adipose tissue (VAT), rather than general-
ized obesity, is associated with diabetogenic, atherogenic,
prothrombotic, and proinflammatory alterations and an in-
creased cardio-metabolic risk profile [15, 16]. Similarly, non-
alcoholic fatty liver disease (NAFLD) and pancreatic steatosis
are associated with a high prevalence of metabolic syndrome
[17, 18]. Abdominal obesity and increased hepatic fat content
in NAFLD have furthermore been linked to neurodegenera-
tive processes [19, 20].

To improve our understanding of the relationship between
fat distribution and neurodegenerative processes, we analyzed

MR-based local fat depots of the abdomen and their associa-
tion with gray matter (GM) volumes of the temporal lobe,
hippocampus, and cingulate gyrus. Defining an imaging
marker of high-risk fat distribution might have important im-
plications for prevention strategies.

Methods

Study design and population

Subjects were derived from the BCooperative Health Research
in the Region of Augsburg^ (KORA) F4 cohort, a prospective
case-control study in southern Germany [21]. Briefly, partici-
pants with prediabetes, diabetes, and controls, who had no
contraindications to MRI, and no prior history of cardiovas-
cular disease (no percutaneous coronary intervention, myocar-
dial infarction, bypass graft, peripheral artery disease, or
stroke) underwent whole-body MRI. The whole-body MR
imaging protocol was tailored for the assessment of the cere-
brovascular, cardiovascular, and metabolic system. Details of
the recruitment of the study sample as well as the study pro-
tocol have been previously described [22]. The study was
approved by the local institutional review board of the
Ludwig-Maximilians-University Munich. Informed written
consent was obtained from all participants.

Assessment of population characteristics

Metabolic risk factors of the study population were collected
as part of the KORA study design and have been previously
described in detail by Bamberg and colleagues [21]. BMI was
defined as weight (kilograms) divided by the height squared
(square meter). Diabetes was defined as fasting glucose
≥ 7.0 mmol/l (126 mg/dl) and/or 2-h serum glucose
≥ 11.1 mmol/l (200 mg/dl) according to the WHO recommen-
dations [23]. Subjects were classified as smokers if they re-
ported current, regular, or sporadic cigarette smoking.
Hypertension was defined as systolic blood pressure of at least
140 mmHg, diastolic blood pressure of at least 90 mmHg, or
current antihypertensive treatment. Alcohol consumption was
classified according to the anamnesis of no alcohol consump-
tion at all, moderate alcohol consumption (0.1–39.9 g/day for
men and 0.1–19.9 g/day for women) and heavy alcohol con-
sumption (≥ 40 g/day for men and ≥ 20 g/day for women)
[24].

MR image acquisition

All data were acquired using a 3-TMagnetom Skyra (Siemens
Healthineers) with a whole-body radiofrequency coil-matrix
system. MRI examinations of the brain, of the cardiovascular
system, and of adipose tissue compartments of the chest and
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abdomen were performed. The complete imaging protocol has
been previously described in detail [22]. As part of the imag-
ing protocol, a 3D fluid attenuation inversion recovery
(FLAIR) sequence of the brain was obtained, which included
the following parameters: TI 1800 ms, TR 5000 ms, TE
389 ms, flip angle 120°, isotropic in-plane resolution
0.5 mm, slice thickness 0.9 mm, matrix size 256 × 256, and
FOV 245 × 245 mm. For the quantification of visceral adipose
tissue, a two-point Dixon gradient-echo sequence was used
with the following parameters: TR 4.06 ms, TE 1.26,
2.49 ms, flip angle 9°, isotropic in-plane resolution 1.7 mm,
slice thickness 1.7 mm, matrix size 256 × 256, and FOV
488 × 716 mm. Hepatic and pancreatic lipid content was
quantified by employing multi-echo Dixon based on a volume
interpolated body examination (VIBE) sequence using the
following parameters: TR 8.90 ms, six TEs ranging from
1.23 to 7.38 ms, flip angle 4°, slice thickness 4 mm, matrix
size 256 × 256; confounding effects of spectral complexity of
fat and T2* decay were taken into account for the estimation
of liver PDFF [25].

MR image analysis

All image analyses were conducted on dedicated off-line
workstations by independent readers who were unaware of
the clinical status.

Neuroanatomical volumesAwarp-based automated brain seg-
mentation was applied to the 3D FLAIR datasets of the brain.
Images were pre-processed using FSL 5.0.9 (http://www.

fmrib.ox.ac.uk/fsl/index.html) and AFNI (analyses of
functional images) (http://afni.nimh.nih.gov/afni). Following
brain extraction [26], the images were reoriented and
segmented using FMRIB’s Automated Segmentation Tool
(FAST) [26]. Individual images were warped onto the
Automatic Anatomical Labeling (AAL) atlas [27] in MNI
standard space, applying linear and non-linear registration as
implemented in FMRIB’s linear (FLIRT) and non-linear im-
age registration tool (FNIRT) [28]. Total GM, white matter,
and cerebrospinal fluid, as well as volumetric measures of 116
atlas regions (45 cortical and subcortical regions in each hemi-
sphere and 26 cerebellar regions [29]), were calculated. In an
evaluation study, the results of FLAIR-based segmentation
were compared with corresponding segmentation results
based on T1-weighted images [30]. In the current study, we
only used GM volumes of the temporal lobe, hippocampus,
and cingulate gyrus for analysis with a Pearson correlation of
> 0.8 (p < 0.001), when compared with results of T1-weighted
segmentation (Fig. 1).

Visceral adipose tissue Based on the 3D VIBE-Dixon se-
quence, a fat selective tomogram was calculated (slice thick-
ness 5 mm at 5-mm increment). Visceral adipose tissue (VAT)
from the level of the femoral head to the diaphragm was semi-
automatically quantified with an in-house algorithm based on
Matlab R2013a [31]. All segmentations weremanually adjust-
ed if necessary.

Hepatic and pancreatic fat content Mean PDFFhepatic was
measured by drawing a region of interest manually on one

Fig. 1 Automated warp-based segmentation of 3D FLAIR datasets of the
brain. A representative example of warp-based FLAIR segmentation of
the right temporal lobe (asterisk), including the hippocampus,
parahippocampus, amygdala, fusiform gyrus, heschl gyrus, superior,

middle, and inferior temporal gyrus in axial plane (left panel), of the
hippocampus (astersik) in coronal plane (middle panel) and of the cingu-
late gyrus (right panel), including the posterior (I), middle (II), and ante-
rior portion (III)
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slice at the level of the portal vein avoiding large vessels and
surrounding extrahepatic tissue [32] (Fig. 2a). Mean
PDFFpancreatic was assessed of the pancreatic head, body, and
tail by manually drawing circular regions of interest of ap-
proximately 100 mm2 in different MRI slices [33] (Fig. 2b).

Correcting brain volumes for total intracranial volume

Brain volumes were corrected for total intracranial volume
(ICV) by using the residual method. ICV was calculated by
adding up GM, WM, and CSF volumes [34]. The residual-
corrected volumes were expressed as volumecorrected =
volumeabsolute − b(ICV − ICV−−−−), where b is the slope of the
linear regression of volumeabsolute over ICVacross all subjects,
ICV is the subject’s ICV, and ICV−−−− is the mean ICV across all
subjects [35, 36].

Statistical analysis

Demographics, clinical characteristics, and brain volumes
were stratified by sex and summarized by mean and stan-
dard deviation for continuous variables or number and per-
centage for categorical variables. The differences between
women and men were assessed by t test or chi-square test,
respectively.

Associations of obesity markers including BMI,MR-based
estimates of visceral, hepatic, and pancreatic adipose tissue
with ICV-corrected brain volumes of temporal lobe, hippo-
campus, and cingulate gyrus were assessed using linear re-
gression models providing β-coefficients with 95% confi-
dence intervals for standard deviation increase of obesity
markers. Models were adjusted stepwise for age, sex (model
A), hypertension, and smoking status (model A+B). The re-
gression model testing the impact of MR-based estimates of
visceral, hepatic, and pancreatic adipose tissue an brain vol-
umes was additionally adjusted for BMI, LDL, total choles-
terol (model C), and alcohol consumption (model D). A
p value of < 0.05 was considered statistically significant.
Assumption of linearity and normal distributions of residuals
were checked visually.

Statistical analyses were performed using Stata 14.1 (Stata
Corporation).

Results

Population characteristics

Among 400 enrolled subjects of the FF4 cohort who
underwent whole-body MRI, a total of 351 subjects were in-
cluded in the present analysis with complete image acquisition
and sufficient image quality. Demographic and risk profiles of
the study participants stratified by sex (56.7% males) are pro-
vided in Table 1. No significant difference in BMI was ob-
served between men and women (p = 0.13). However, men
had a significantly greater amount of visceral adipose tissue,
hepatic fat fraction, and pancreatic fat fraction compared with
women (p < 0.001), whereas women had a significantly larger
amount of subcutaneous adipose tissue and a significantly
smaller waist-to-hip ratio compared with men (p < 0.001).
Moreover, men smoked significantly more cigarettes (mea-
sured in pack-years), had significantly higher triglyceride
levels and lower HDL levels, and had significantly longer
time of education compared with women (p < 0.001).

Gender differences in GM brain volume
of the hippocampus and cingulate gyrus

Table 2 displays ICV-corrected GM brain volumes of tempo-
ral lobe, hippocampus, and cingulate gyrus of the study par-
ticipants stratified by sex. There was no significant difference
betweenmen and women in GM brain volume of the temporal
lobe. However, ICV-corrected GM volumes of cingulate gy-
rus and hippocampus were significantly larger in women com-
pared with men (< 0.001).

Associations between adiposity markers and GM
brain volumes

In multivariable linear regression analyses, a higher amount of
hepatic fat content was associated with smaller ICV-corrected

Fig. 2 MRI-based assessment of
hepatic and pancreatic fat content.
A representative example of
PDFFhepatic (a) and PDFFpancreatic
(b) measurements using a multi-
echo Dixon sequence
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Table 1 Characteristics of the
study population, stratified by sex Total

n = 351

Women

n = 152

Men

n = 199

p value*

Age (years) 56.2 (± 9.0) 56.1 (± 9.1) 0.853

Weight (kg) 73.3 (± 15.0) 89.6 (± 13.8) < 0.001

Height (cm) 163.4 (± 6.6) 178.0 (± 6.7) < 0.001

BMI (kg/m2) 27.5 (± 5.6) 28.3 (± 4.2) 0.125

BMI category (%): 0.002
< 18.5 kg/m2 1 (0.7%) 0 (0%)

18.5–24.9 kg/m2 56 (36.8%) 39 (19.6%)

25.0–29.9 kg/m2 51 (33.6%) 100 (50.3%)

30.0–34.9 kg/m2 28 (18.4%) 46 (23.1%)

35.0–39.9 kg/m2 10 (6.6%) 10 (5.0%)

40+ kg/m2 6 (4.0%) 4 (2.0%)

Waist circumference (cm) 91.3 (± 13.9) 103.1 (± 11.9) < 0.001

Hip circumference (cm) 106.8 (± 10.9) 106.7 (± 7.5) 0.899

Waist to hip ratio 0.85 (± 0.07) 0.96 (± 0.07) < 0.001

Waist/height ratio 0.56 (± 0.09) 0.58 (± 0.07) 0.020

Total adipose tissue (l/m2) 4.45 (± 2.26) 4.11 (± 1.67) 0.112

Visceral adipose tissue (l/m2) 1.08 (± 0.73) 1.80 (± 0.84) < 0.001

Subcutaneous adipose tissue (l/m2) 3.38 (± 1.66) 2.33 (± 1.00) < 0.001

Hepatic fat fraction (%) 5.87 (± 7.49) 9.78 (± 8.4) < 0.001

Pancreatic fat fraction (%) 6.07 (± 5.15) 8.66 (± 7.81) < 0.001

Total cholesterol (mg/dl) 220.9 (± 35.4) 215.7 (± 37.9) 0.191

HDL (mg/dl) 70.9 (± 18.1) 55.2 (± 14.9) < 0.001

LDL (mg/dl) 138.2 (± 32.6) 141.6 (± 32.8) 0.333

Triglycerides (mg/dl) 101.2 (± 45.8) 151.4 ( ± 97.0) < 0.001

Diabetes mellitus 13 (8.6%) 32 (16.1%) 0.037

Smoking status 0.041
Never smoker 66 (43.4%) 63 (31.7%)

Former smoker 53 (34.9%) 94 (47.2%)

Current smoker 33 (21.7%) 42 (21.1%)

Pack-years 8.2 (± 12.5) 16.7 (± 21.0) < 0.001

Alcohol consumption < 0.001
Alcohol consumption (g/day) 8.0 (± 11.8) 24.8 (± 24.6)

No alcohol consumption 54 (35.5%) 35 (17.6%)

Moderate alcohol consumption (men, 0.1–39.9;
women, 0.1–19.9 g/day)

73 (48.0%) 111 (55.8%)

Heavy alcohol consumption (men, ≥ 40;
women, ≥ 20 g/day)

25 (16.5%) 53 (26.6%)

Hypertension 42 (27.6%) 75 (37.7%) 0.048

Systolic BP (mmHg) 113 (± 15) 126 (± 16) < 0.001

Diastolic BP (mmHg) 72 (± 9) 78 (± 11) < 0.001

Education time (years) 11.6 (± 2.3) 12.7 (± 2.7) < 0.001

Physical activity in categories 0.051

1 = regularly > 2 h a week 41 (27%) 62 (31.2%)

2 = regularly approx. 1 h a week 59 (38.8%) 56 (28.1%)

3 = irregularly approx. 1 h a week 25 (16.5%) 26 (13.1%)

4 = almost none or no exercise 27 (17.8%) 55 (27.6%)

Values in mean ± standard deviation or number and percentage, *p values are from t test or chi-square test
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GM volume of the cingulate gyrus (β = − 0.21 [95%CI −
0.42,− 0.01], p < 0.05) and hippocampus (β = − 0.07 [95%CI
− 0.13, − 0.01], p < 0.05) when adjusting for age and sex. In
contrast, there was no significant association between ICV-
corrected GM volume of cingulate gyrus or hippocampus
and BMI, visceral, or pancreatic fat content. Additional ad-
justment for hypertension, smoking, BMI, LDL, and total
cholesterol further enhanced the inverse association between
PDFFhepatic and GMvolume of the cingulate gyrus (β = − 0.33
[95%CI − 0.57, 0.09], p < 0.01). However, PDFFhepatic was no
longer statistically associated with hippocampal volume (β =
− 0.06 [95%CI − 0.14, 0.01]). After additional adjustment for
alcohol, the inverse association between PDFFhepatic and GM
volume of the cingulate gyrus remained significant (β =
− 0.34 [95%CI − 0.58, − 0.1], p < 0.01). There was no statisti-
cal association between all adiposity markers and ICV-corrected
GM temporal lobe volume in all three models (Table 3).

Discussion

This cohort study data indicate an inverse association of GM
volume of cingulate gyrus and hippocampus with increased
PDFFhepatic. After controlling for smoking and hypertension,
BMI, LDL, total cholesterol, and alcohol, PDFFhepatic

remained inversely associated with GM cingulate gyrus vol-
ume. These findings suggest that the inverse relationship be-
tween liver fat and GM volume of the cingulate gyrus cannot
be sufficiently explained by cardiovascular risk factors, global
fat markers, or alcohol consumption alone.

Several studies found an association between increased
global BMI and reduction in regional GM brain volume, al-
though the location and magnitude of these reductions have
been inconsistent [10, 37, 38]. This could be explained by the
fact that BMI does not directly represent organ-based patho-
logical states, such as hepatic or pancreatic steatosis, nor does
it account for different fat compartments, which carry different
metabolic risks [39]. BMI may also not be helpful in individ-
uals with high muscle mass (e.g., body builders), in certain
ethnic backgrounds [40] or in elderly individuals with de-
creasing muscle mass and increasing adipose tissue [41].
Therefore, local fat depots instead of global adiposity may
play a more important role in various metabolic and vascular
pathologic conditions, resulting in accelerated brain aging.
For example, NAFLD is associated with an increased risk of
clinical and subclinical cardiovascular diseases [42–44],
which in turn contribute directly to changes in brain structure
and function [45]. Additional shared risk factors between liver
steatosis and brain aging include physical inactivity [46], in-
flammation [47], hormonal alterations such as insulin resis-
tance [48], endothelial dysfunction [49], and change in levels
of secreted hepatokines [50]. Although the abundance of lit-
erature indicates an association, only a few studies have in-
vestigated the direct link between hepatic steatosis and
markers of brain aging, to our knowledge: In a recent study
from the cohort of the Framingham Offspring study, NAFLD,
assessed by CT, was significantly associated with a smaller
total brain volume (TBV) [51]. In a prior study in overweight
subjects, increased CT-assessed, hepatic fat was associated
with reduced brain tissue integrity in both GM and WM

Table 3 Association of obesity markers with brain volumes

Model Cingulate gyri Hippocampus Temporal lobe

Per 1 SD increment β (95%CI) β (95%CI) β (95%CI)

BMI total A 0.05 (− 0.15, 0.25) − 0.03 (− 0.09, 0.03) 0.05 (− 0.38, 0.48)
Visceral adipose tissue A − 0.02 (− 0.26, 0.21) − 0.03 (− 0.1, 0.04) 0.03 (− 0.46, 0.53)

B − 0.17 (− 0.53, 0.19) 0.01 (− 0.1, 0.11) 0.1 (− 0.66, 0.86)
C − 0.18 (− 0.54, 0.18) 0 (− 0.11, 0.11) 0.05 (−0.71, 0.81)

Hepatic adipose tissue A − 0.21 (− 0.42, − 0.01)* − 0.07 (− 0.13, − 0.01)* − 0.25 (− 0.7, 0.2)
B − 0.33 (− 0.57, − 0.09)** − 0.06 (− 0.14, 0.01) − 0.27 (−0.79, 0.25)
C − 0.34 (− 0.58, − 0.1)** − 0.07 (− 0.14, 0) − 0.31 (− 0.82, 0.21)

Pancreatic adipose tissue A − 0.14 (− 0.35, 0.07) − 0.04 (− 0.1, 0.03) − 0.26 (− 0.71, 0.19)
B − 0.16 (− 0.38, 0.06) − 0.03 (− 0.1, 0.04) − 0.23 (− 0.71, 0.24)
C − 0.16 (− 0.38, 0.06) − 0.03 (− 0.09, 0.04) − 0.22 (− 0.69, 0.25)

β-coefficients are from linear regression models adjusted for age and sex (model A), additionally adjusted for hypertension, smoking, BMI, LDL, and
total cholesterol (model B) and also alcohol (model C), *p < 0.05; **p < 0.01; SD, standard deviation

Table 2 Brain volumes, stratified by sex

Neuroanatomical structure Women Men p value

Temporal lobe GM (ml) 79.9 (± 4.4) 78.7 (± 5.5) 0.025

Hippocampus (ml) 8.3 (± 0.5) 8.0 (± 0.6) < 0.001

Cingulate gyri (ml) 28.0 (± 1.9) 27.2 (± 2.1) < 0.001

All neuroanatomical volumes are ICV-corrected by using the residual
method
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[52]. Both study results were independent of VAT and cardio-
vascular risk factors. A study by VanWagner and colleagues
showed that NAFLD, quantified by CT, was also associated
with decreased TBV, even after controlling for BMI, but not
independent of VAT [19]. Our study confirms the inverse as-
sociation of increasing hepatic fat and GM brain volume,
which we found to be statistically significant for the cingulate
gyrus. This association was independent of cardiovascular risk
factors, global fat markers, and alcohol consumption.

In our study, men had significantly greater amounts of vis-
ceral, hepatic, and pancreatic fat contents while women had a
significantly larger amount of subcutaneous adipose tissue
and a significantly smaller waist-to-hip ratio. These differ-
ences in regional fat storage represent, to some extent,
gender-related differences in fat distribution [53, 54].
Interestingly, there was also a significant difference in brain
volume, when comparing men and women. Men had signifi-
cantly smaller GM volumes of cingulate gyrus and hippocam-
pus, when compared with women. Since reduced cingulate
gyrus and hippocampus GM volume were both associated
with increased PDFFhepatic, these differences in brain volume
may therefore be related to the gender-specific fat distribution.

To our knowledge, this is the first study to compare GM
brain volumes with quantitative MRI measures of local fat
depots, including visceral, hepatic, and pancreatic fat. All pro-
posed MRI fat markers are non-invasively available without
radiation exposure and can easily be obtained within abdom-
inal MR imaging. Especially radiologists, cardiologists, and
medical specialists in the field of preventive medicine should
be aware of the potential gain of information about cardio-
metabolic health by using all available information on a spe-
cific examination [55]. This information can improve the early
detection of potentially high-risk fat distribution patterns and
the personalized risk workup in a given patient [55, 56].
Moreover MRI-PDFF, which was used in our study to quan-
tify liver fat, has proven to be an accurate, reproducible bio-
marker of hepatic steatosis [57, 58]. Another strength of this
study is the population-based setting with metabolic and de-
mographic characterization of the sample.

There are also several limitations to this study. In previous
studies, automated brain volumetry has been mainly based on
T1-weighted MR images [59]. Since participants of the
KORA study did not obtain 3D T1-weighted images of the
brain, 3D FLAIR images were used for automated warp-based
brain segmentation. However, this method was evaluated by
comparing FLAIR- with T1-based segmentation results in an
independent sample of healthy controls, and only neuroana-
tomical structures with a strong correlation between bothMRI
sequences were used for analysis in the present study [30].
Another limitation might be potential under-reporting of alco-
hol consumption among drinkers.

In summary, we observed a significant inverse association
of the cingulate gyrus and hippocampus GM volume and

hepatic fat fraction, but no significant association with BMI,
VAT, or pancreatic fat content. Increased hepatic fat may
therefore have a greater impact on neurodegenerative process-
es compared with other fat depots and could serve as a marker
of high-risk fat distribution. These findings may improve our
understanding of the mechanisms underlying the relationship
of high-risk fat distribution and neurodegenerative processes
with potentially important implications for prevention
strategies.
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