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Abstract

Although hundreds of genome-wide association studies-implicated loci have been reported for adult obesity-related traits,
less is known about the genetics specific for early-onset obesity and with only a few studies conducted in non-European
populations to date. Searching for additional genetic variants associated with childhood obesity, we performed a
trans-ancestral meta-analysis of 30 studies consisting of up to 13 005 cases (≥95th percentile of body mass index (BMI)
achieved 2–18 years old) and 15 599 controls (consistently <50th percentile of BMI) of European, African, North/South
American and East Asian ancestry. Suggestive loci were taken forward for replication in a sample of 1888 cases and 4689
controls from seven cohorts of European and North/South American ancestry. In addition to observing 18 previously
implicated BMI or obesity loci, for both early and late onset, we uncovered one completely novel locus in this trans-ancestral
analysis (nearest gene, METTL15). The variant was nominally associated with only the European subgroup analysis but had a
consistent direction of effect in other ethnicities. We then utilized trans-ancestral Bayesian analysis to narrow down the
location of the probable causal variant at each genome-wide significant signal. Of all the fine-mapped loci, we were able to
narrow down the causative variant at four known loci to fewer than 10 single nucleotide polymorphisms (SNPs) (FAIM2,
GNPDA2, MC4R and SEC16B loci). In conclusion, an ethnically diverse setting has enabled us to both identify an additional
pediatric obesity locus and further fine-map existing loci.

Introduction
Obesity is having a dramatic impact on modern societies, leading
to substantial health issues, with an overall prevalence among
children already >20% in many populations, including the USA
(1). Obesity considerably contributes to mortality in the USA,
representing a key risk factor for cardiometabolic and other
chronic diseases.

The complex trait of obesity is the outcome of an interac-
tion between environmental and genetic risk components (2).
An excess in adipose tissue is commonly seen as an imbal-
ance between energy uptake and utilization, and although now
viewed as a disease may have historically conferred an advan-
tage when food availability was restricted and high levels of
physical activity were normal (3). Overall, obesity affects approx-
imately 50 million girls and 74 million boys worldwide (1); most

crucially, the prevalence of childhood obesity is on the increase
worldwide (1), meaning that the known comorbidities are also
on the rise across many ethnicities (2).

While environmental factors clearly play a role in the patho-
genesis of childhood obesity, there is also strong evidence for a
genetic component to obesity risk from twin and family studies,
with heritability estimates for BMI being as high as 70% (4).
Large-scale genome-wide association studies (GWAS) have now
reported many hundreds of loci associated with BMI/obesity
in adults and principally in populations of European ancestry
(5). However, some studies have investigated the genome-wide
genetics of obesity and/or BMI in children (6–11), but these did
not address sex-specific or trans-ancestral associations.

In childhood and adolescence, BMI varies widely with age.
To that end, working with the Center for Disease Control and
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Figure 1. Manhattan plot of the trans-ancestral meta-analysis of the childhood obesity Stage 1 results. BF <0 have been represented by a value of 0. The y-axis is the

log10 of the BF. Sentinel SNPs from loci that achieved at least log10 BF ≥ 4 were taken forward to Stage 2.

Prevention (CDC) definition of childhood obesity as being at or
above the 95th percentile of BMI for age (12), we conducted a
large-scale trans-ancestral GWAS meta-analysis of the trait to
uncover additional loci in order to provide further biological
insight into this condition.

Results
In order to identify novel genetic variants associated with child-
hood obesity, we performed a two-stage trans-ancestral meta-
analysis consisting of the following: Stage 1, 30 genome-wide
genotyped cohorts augmented with genetic data imputed to
the 1000G-reference panel for discovery efforts; and Stage 2, 7
genotyped cohorts queried for SNPs that attained suggestive
association in Stage 1 for the replication effort. The Stage 1
effort consisted of 13 005 cases (≥95th percentile of BMI achieved
between 2 and 18 years old) and 15 599 controls (<50th percentile
of BMI consistent throughout all measures during childhood).
Stage 2 consisted of 1888 cases and 4489 controls. Each cohort
was classified into four different groups based on ancestral
makeup (either self-report or determined by PCA): European
(Stage 1, 8613 cases and 12 696 controls; Stage 2, 921 cases and
1930 controls), African (Stage 1, 3282 cases and 1456 controls),
American/Hispanic (Stage 1, 986 cases and 993 controls; Stage
2, 967 cases and 2759 controls) and East Asian group (Stage 1,
124 cases and 454 controls—consisting of East Asian ancestry
samples from the USA and Singapore). The study characteristics
are outlined in Supplementary Material, Table S1.

Stage 1: primary meta-analysis

Inverse variance weighted fixed-effects meta-analyses, as
implemented with METAL, within each of the four major
continental ancestries was used to estimate effect sizes for
the input into the trans-ancestral analysis using MANTRA.
Sentinel SNPs were chosen by examining blocks of associated
SNPs and choosing the SNP with the maximum Bayes factor
(BF) in each block. New blocks were determined by distance
>100 kb between successive SNPs with a log10 BF ≥ 4. The
trans-ancestral analysis yielded a total of 82 independent loci
reaching suggestive association (log10 BF ≥ 4.0) while there were

11 independent loci reaching genome-wide association (log10

BF ≥ 6.0) (Supplementary Material, Table S2). A log10 BF of 6.0 is
equivalent to a P-value of 5.0 × 10−8. A log10 BF of 4.0 is equivalent
to a P-value of 5.0 × 10−6. The Manhattan plot of the trans-
ancestral meta-analysis is shown in Fig. 1.

Stage 2: replication

The 82 independent SNPs found in the first stage of the analysis
were taken forward and genotyped in the Stage 2 cohorts. In
total, following the combined Stage 1 and Stage 2 effort, 18 loci
achieved genome-wide significance (log10 BF ≥ 6.0) in the meta-
analysis (Table 1). Of the 18 genome-wide significant loci found
in the analysis, eight SNPs (TNNI3K, SEC16B, TMEM18, ADCY3,
FAIM2, FTO, HOXB5 and MC4R) were found to be in linkage dise-
quilibrium (LD) (r2 ≥ 0.2, European 1000 genomes project phase 3)
with variants previously shown to be associated with childhood
obesity (6). Two SNPs at the GNPDA2 and TFAP2B loci were in LD
(r2 ≥ 0.2, European 1000 genomes project phase 3) with variants
previously shown to be associated with childhood BMI (8). Six
of the SNPs at loci (RANBP17, CALCR, BDNF, ADCY9 and both
variants near CBLN4) are in LD (r2 ≥ 0.2, European 1000 Genomes
Project Phase 3) with variants associated in the most recent adult
BMI meta-analysis (5). After a search of the GWAS catalog, we
found that two of the SNPs at two loci (GPR1 and METTL15) were
not in LD (r2 < 0.2) with any variant known to be associated with
childhood or adult BMI or related traits in the GWAS catalogue.
However, it is noted that the GPR1 variant had an r2 = 0.19 with a
variant we reported on previously (8) (rs13387838) as associated
with childhood BMI. To further assess the novelty of the GPR1
variant, we performed an approximate conditional regression
analysis of rs114670539 conditioning on rs13387838. The P-value
of rs114670539 changed from 4.52 × 10−8 pre-conditioning to
5.94 × 10−8 post-conditioning in the Stage 1 European samples,
suggesting that it is indeed independent of rs13387838. With a
subsequent search of Phenoscanner, however, we found that the
GPR1 variant (rs114670539) yielded a genome-wide association to
‘comparative body size at age 10’ in an unpublished UK Biobank
GWAS (https://www.nealelab.is/uk-biobank). The novel METTL15
variant (rs10835310) showed a genome-wide significant associa-
tion with ‘comparative height size at age 10’ in the same unpub-
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lished UK BioBank GWAS, but no genome-wide association to
any metabolic traits. A regional association plot for the novel
locus in the European sub-analysis for the genome-wide Stage
1 analysis is shown in Supplementary Material, Fig. S1.

Subsequent conditional analyses revealed a novel indepen-
dent signal at TMEM18 [rs62104180, r2 = 0.0008 with the pre-
viously reported rs7579427; minor allele frequency (MAF) < 5%;
Table 1]. A review of Phenoscanner revealed this variant to be
associated with a number of metabolic traits in the UK Biobank,
including BMI.

Heritability and genetic correlation analyses

We sought to estimate the genome-wide common SNP heritabil-
ity of childhood obesity and to calculate the genetic correlation
of childhood obesity to other diseases. We used the LD score
regression web interface called LD Hub (13) to measure the
common SNP heritability of childhood obesity (h2 = 0.33) in the
European summary statistics only, given that it was the only
dataset of sufficient sample size. Out of 219 traits with measured
heritability, childhood obesity was ranked in the top 10% of
traits. Childhood obesity had a similar common SNP heritability
to three pubertal growth traits (difference in height between
adolescence and adulthood, age 14, h2 = 0.45; height, females
at age 10 and males at age 12, h2 = 0.43; difference in height
between childhood and adulthood, age 8, h2 = 0.33) but adult BMI,
h2 = 0.19, had a lower heritability. We also used LD score regres-
sion to assess the degree of genetic correlation between the
European meta-analysis and other traits. The European meta-
analysis summary statistics were uploaded to LD Hub and com-
pared to 235 other traits that were present on the file server.
Statistical significance and genetic correlation were assessed
with LDSC. Out of the 235 traits comparisons, 32 were signifi-
cant after Bonferroni correction (P < 0.00021). There were traits
that were positively or negatively genetically correlated with
childhood obesity. While the most significant positive genetic
correlation was with adult BMI (rg = 0.84, P = 3.4 × 10−91) and the
most significant negative genetic correlation was with age at
menarche (rg = −0.40, P = 1.5 × 10−24; Supplementary Material,
Table S3), there were other less obvious genetic correlations such
as negative genetic correlations with college completion and
years of schooling and positive genetic correlations with exces-
sive daytime sleepiness and squamous cell lung carcinoma.

We also compared our results to the largest adult BMI GWAS
dataset currently available. We used 698 independently asso-
ciated SNPs from Yengo et al. (5) to compare the effect sizes
between adult BMI and childhood obesity. We leveraged SNPs
that were genome-wide significant in single SNP analyses. We
extracted the effect sizes for these SNPs from our European Stage
1 analysis and compared them to the adult BMI effect sizes
(correlation = 0.76; Supplementary Material, Fig. S2. A total of 562
out of 698 SNPs associated with adult BMI had the same direction
of effect in childhood obesity.

Functional analysis and fine mapping

The trans-ancestral meta-analysis results were subsequently
used to fine map the genome-wide significant loci through
credible set analysis. A total of 4 loci had 99% credible sets with
fewer than 10 SNPs (FAIM2, GNPDA2, MC4R and SEC16B loci). Even
though the non-European samples formed a minority in the
analysis, they enabled refinement of the interval within each of
the 99% credible sets; indeed, none of the 4 loci with 99% credible
sets of fewer than 10 SNPs in the trans-ancestral analysis had

credible sets fewer than 10 SNPs in the European-only analysis.
The FAIM2 locus was refined to six SNPs, two of which are in
the 3′ untranslated region of the gene and all residing within
a 17 kb region on chromosome 12 (hg19: 50,246,252-50,263,148).
The GNPDA2 locus also yielded six SNPs in the 99% credible set,
all residing within 12 kb of each other on chromosome 4 (hg19:
4,175,691-45,187,622). The signal near MC4R yielded four SNPs
in the 99% credible set residing within 31 kb of each other on
chromosome 18 (hg19: 57,824,038-57,854,694). Finally, the SEC16B
locus had five SNPs in the 99% credible set, which were all
within 11 kb of each other on chromosome 1 (hg19: 177,889,025-
177,899,121; Supplementary Material, Table S4).

All 21 of the variants in the four 99% credible sets were
analyzed with the Ensembl Variant Effect Predictor (14) to assess
the enrichment of various functional groups in these sets. Inter-
genic variants were the most common predicted category with
43% of variants; 21% of variants were labeled as downstream
gene variants that lie 3′ of a gene. The downstream variants
were concentrated around SEC16B and FAIM2. Variants located
in regulatory regions accounted 15% of the variants intronic vari-
ants represented 9% of variants. 3′ untranslated region variants
of FAIM2 represented 9% of variants and one variant was in a
transcription factor binding site.

Lastly, in order to attempt to place these signals in to a
functional context, we investigated whether the suggestively
associated variants were likely to share the same causal vari-
ant as an expression quantitative trait loci (eQTLs) of a nearby
gene. We conducted colocalization analyses with GTEx v7 for
all loci with log10BF ≥ 4 (Supplementary Material, Table S5). This
analysis yielded significant colocalizations at two loci across
a range of tissues. The sentinel variant rs2206277 yielded a
colocalization with an eQTL of TFAP2B in tibial nerve tissue,
while rs4077678 showed significant colocalizations in numerous
tissues. The most significant eQTL and tissue pair for rs4077678
was DNAJC27 in whole blood, ADCY3 in whole blood, CENPO in
whole blood and DNAJC27-AS1 in brain cerebellum. The addi-
tional significant colocalizations can be found in Supplementary
Material, Table S5.

Discussion
Our trans-ancestral GWAS meta-analysis represents a large
genome-wide survey of childhood obesity and allowed for the
detection of loci not readily picked up in European only ancestral
populations. We confirmed 18 loci previously reported for
childhood obesity or other metabolic phenotypes and identified
one novel locus, namely at METTL15, associated with childhood
obesity. Furthermore, the large overlap of at least nominally
significant SNPs in both meta-analyses of pediatric obesity
and adult BMI points to a shared genetic basis of these traits,
at different times in the life course. The genetic correlation
between childhood obesity and adult BMI was confirmed using
LD score regression, along with a negative genetic correlation
between childhood obesity and age at menarche.

Although functional efforts are required to identify the actual
effector genes at these loci, using similar approaches to what
were applied to FTO locus that led to the implication of IRX3 and
IRX5 (15–18), no inferences could be made from eQTLs for our
novel childhood obesity loci. For the novel locus METTL15, the
actual effector gene may be the well-established adult obesity
BDNF gene that resides in the same topologically associating
domain. Furthermore, rs2749808 near CBLN4 gene is intergenic
and may influence MC3R, given that it has already been strongly
implicated in the pathogenesis of obesity (19,20). We also further
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implicated TMEM18 as the effector gene at this locus given the
independent signal plus the rarer variants (MAF < 5%) in the
same neighborhood.

Trans-ancestral meta-analysis is particularly valuable in
fine-mapping loci to narrow down the area harboring the causal
variant. This is due to the different LD patterns present in
different ancestral populations. Despite known limitations to
various fine-mapping approaches (such as whether or not the
same set of variants were present in all input datasets), using
MANTRA and credible set analysis we were able to narrow
down the potential causal variant to fewer than 10 variants
at four different loci (FAIM2, GNPDA2, MC4R and SEC16B). Using
the colocalization method, we were able to narrow down the
putative causal variants and causal tissues for the ADCY3 and
TFAP2B loci. There are colocalized eQTLs for various tissues with
these associated loci that will need to be followed up in the
future. The ADCY3 locus is interesting in that there seems to
be multiple genes (DNAJC2, ADCY3, CENPO and DNAJC27-AS1)
colocalizing with the rs4077678 locus in multiple tissues (whole
blood, tibial nerve, skin, adipose, lung, pituitary, esophagus and
cerebellum). Whether this is due to coordination in all the genes
in these tissues is an open question.

As with our previous GWAS of childhood obesity, we con-
tinued to use CDC definition as at or above the 95th percentile
of BMI for age (21) and indeed represents the general guide for
clinical practice (22). This is driven by the fact that there is a
complex relationship between BMI and body fat in childhood,
where it varies over time and especially during puberty. The
larger heritability of childhood obesity compared to adult BMI,
along with the correlation of the effects of the two traits, sug-
gests that childhood obesity is an effective proxy trait to find
variants associated with adult BMI but at smaller sample sizes.

We have conducted a large-scale transancestral two-stage
GWAS for childhood obesity, where we robustly identified a
novel childhood obesity locus. We have also shown that child-
hood obesity is genetically very similar to adult BMI and with
far greater numbers of samples we would most likely see more
significant loci in common with the two phenotypes. As such,
we have gained greater insights in the biology of obesity in the
pediatric setting and these loci warrant further functional follow
up in order to provide greater potential therapeutic insights.

Materials and Methods
Research subjects

The Stage 1 dataset consisted of 30 genome-wide genotyped
studies from various ethnicities with BMI measured in childhood
(2–18 years old) except Genetics of Overweight Young Adults
(GOYA), which included some time points between 18 and
19 years old. The participating cohorts in these analyses were
the follwowing: the Children’s Hospital of Philadelphia (CHOP)
Study, the Generation R Study, the Singapore Cohort study Of the
Risk factors for Myopia, the Avon Longitudinal Study of Parents
and Children, the Western Australian Pregnancy Cohort (Raine)
Study, the Amsterdam Born Children and their Development-
Genetic Enrichment Study, the Copenhagen Prospective Study
on Asthma in Childhood (COPSAC2000), the French Obesity of
the Youth (OBE) Study, the German Infant Study on the influence
of Nutrition Intervention PLUS environmental and genetic
influences on allergy development (GINIplus)/the Influence of
life-style factors on the development of the immune system
and allergies in East and West Germany Study, the GOYA Study,
the Helsinki Birth Cohort Study (HBCS), the HOLBAEK Study,

the INfancia y Medio Ambiente [Environment and Childhood]
Project, the Manchester Asthma and Allergy Study, Northern
Finland Birth Cohort 1986, Northern Finland Birth Cohort 1966,
the Physical Activity and Nutrition in Children Study, 1958 British
Birth Cohort (1958BC), Young Finns Study, the Children’s Health
Study (CHS) and the MEXICO Study. Further information on the
1st stage cohorts is found in Supplementary Material, Table S1.

The Stage 2 dataset consisted of seven targeted genotype
studies with BMI measured in childhood (ages 2–18 years) except
the FAMILY study that included some time points <2 years of
age. These studies were derived from the following participating
cohorts: the CHS, the FAMILY study, The Norwegian Mother
and Child Cohort Study, the Santiago Longitudinal Study, the
American Indians from Arizona Study and the VIVA la Familia
Study.

Trait definition

Case and control definitions were based on national standard
growth curves of BMI versus age for children from 2 to 18 years
old. For instance, CHOP used the CDC standard growth curves
[as featured in previous papers (12,22)]. The exception to this is
the HBCS and 1958BC, as pediatric measures were made over
two or six decades ago, respectively, so contemporary curves are
not appropriate—in this case they generated their own reference
curves. Cases were defined as an individual whose BMI is greater
than or equal to the 95th percentile at any point in childhood.
Controls were defined as an individual whose BMI was less
than or equal to the 50th percentile consistently throughout
childhood for all available measures.

Statistical analysis

Each cohort was analyzed independently using a logistic regres-
sion framework (using an additive genetic model) where sam-
ples of different ancestry and samples genotyped on different
SNP microarrays were analyzed separately. Eigenvectors calcu-
lated from principal components analysis were used as covari-
ates in the logistic regression by each cohort where appropriate.

For the discovery stage of the meta-analysis, data from
high-density SNP arrays in each cohort were imputed to the
1000 Genomes integrated variant Phase 1 release v3 reference
panel. Individual cohorts were responsible for their own pre-
imputation sample exclusion criteria. Pre-imputation SNP
quality control was applied by each individual cohort and
it was recommended to remove SNPs with call rate < 95%,
Hardy–Weinberg equilibrium P < 1 × 10−4 and a MAF filter
that incorporated the accuracy of the genotyping of lower
frequency SNPs. Cohort specific quality control and deviations
from the recommended analysis parameters can be found
in Supplementary Material, Table S6. Post-imputation quality
control consisted of removing SNPs with MAF < 0.01, minor
allele count <10, r2_Hat <0.3, proper_info <0.4 or plink_info <0.8
(depending on the software used for the statistical association
analysis), as well as removing insertions and deletions.

Ancestral-specific inverse variance weighted fixed-effect
meta-analysis was performed using METAL. Genomic control
was applied to each cohort prior to meta-analysis and to the final
meta-analysis statistics. SNPs were filtered out of the ancestral-
specific meta-analysis if the heterogeneity i-squared >0.5 or if
they were present in fewer than 50% of the total samples in the
meta-analysis. Trans-ancestral meta-analysis was performed
using MANTRA on the summary statistics obtained from the
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ancestral-specific meta-analyses (Supplementary Material,
Fig. S3).

Sentinel SNPs were selected at each locus from the sugges-
tively associated results (log10 Bayes’ factor > 4) as the SNP at
each locus with the largest BF in the trans-ancestral results to
maximize reproducibility across ethnicities. A locus was defined
as a collection of SNPs whose next physically closest sugges-
tively associated SNP was within 100 kb. This collection of SNPs
was tested for association in the Stage 2 dataset.

The Stage 2 dataset was then combined with the Stage 1
dataset to test for association in the ancestral-specific analyses
and in the overall trans-ancestral analysis. The combined Stage
1 + Stage 2 results that resulted in genome-wide significant
results (log10 Bayes’ factor >6) are shown in Table 1. Stage 2
findings were only evaluated when combined with Stage 1 and
not independently given the small sample size relative to Stage 1.

Sentinel SNPs that achieved genome-wide significance
were queried against the GWAS catalogue and other available
studies within Phenoscanner (23). A sentinel variant achieving
P < 5.0 × 10−8 in a prior metabolic GWAS was considered already
discovered.

Conditional regression

Genome-wide Complex Trait Analysis (GCTA) was used for
pseudo-conditional regression analysis to identify variants
independently associated with childhood obesity at the genome-
wide significance level (trans-ancestral log10 BF > 6). The CHOP
African American, European American, Hispanic and East
Asian samples were used to estimate the LD in GCTA. The
genome-wide significant sentinel SNPs from the Stage 1 analysis
were used as conditioning variants for the Stage 1 summary
statistics. The ancestral-specific conditional analysis results
were then analyzed in MANTRA to identify trans-ancestral
significance. The top genome-wide significant SNP in the
resulting conditional analysis results was then added into the
list of conditioning SNPs to be analyzed again. When there
were no more genome-wide significant SNPs, the conditional
regression was then halted. A separate pseudo-conditional
regression analysis was carried out by conditioning rs114670539
on rs13387838 using the CHOP European American cohort to
estimate LD.

LD score regression

LD score regression was performed using the LD Hub website
interface (http://ldsc.broadinstitute.org/ldhub). The results from
the European only meta-analysis were used for the LD score
regression. Childhood obesity was compared against every phe-
notype available on LD Hub with the exception of the UK Biobank
phenotypes and the previous childhood obesity meta-analysis.

eQTL analysis colocalization

We used coloc (with default parameters) to perform a Bayesian
colocalization analysis comparing the meta-analysis results
with GTEX version 7. We used variants with a log10 Bayes’
factor ≥ 4 in the Stage 1 analysis with 47 tissues from GTEX
in the colocalization analysis. GWAS BFs were used directly
as input, while eQTL effect sizes and standard errors were
used to estimate approximate BFs for input. A significant
colocalization was defined as PP.H3.abf + PP.H4.abf >0.99 and
PP.H4.abf/PP.H3.abf >5 (24). PP.H3.abf is defined as the posterior

probability of two distinct causal variants. PP.H4.abf is defined
as the posterior probability of one common causal variant.

Credible set analysis

The script credible_set_analysis.py located at https://github.
com/edm1/Credible-set-analysis/blob/master/credible_set_
analysis.py was used to calculate the 99% credible sets for
every genome-wide significant locus. The sum of the posterior
probabilities was calculated from a sorted list of the most
significant Bayes’ factors until the cumulative sum was equal to
or greater than 0.99. This set of SNPs was then considered the
99% credible set.
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