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SUMMARY

Many proteins exhibit dynamic activation patterns in
the formof irregular pulses. Such behavior is typically
attributed to a combination of positive and negative
feedback loops in the underlying regulatory network.
However, the presence of positive feedbacks is diffi-
cult to demonstrate unequivocally, raising the ques-
tion of whether stochastic pulses can arise from
negative feedback only. Here, we use the protein ki-
nase A (PKA) system, a key regulator of the yeast pul-
satile transcription factorMsn2, as a case example to
show that irregular pulses of protein activity can arise
from a negative feedback loop alone. Simplification
to two variables reveals that a combination of zero-
order ultrasensitivity, timescale separation between
the activator and the repressor, and an effective delay
in the feedbackaresufficient toamplify aperturbation
into a pulse. The same circuit topology can account
for both activation and inactivation pulses, pointing
toward a general mechanism of stochastic pulse
generation.

INTRODUCTION

Tight regulation of cellular processes is essential in all living sys-

tems. Generally, this is achieved by networks of interacting

biochemical species that sense and transduce input signals

and orchestrate a proper response to the environment. Besides

simply turning on or off the activity or the levels of cellular compo-

nents, cells alsousedynamics in the formofpulses toencodeand

convey information. In this case, not only the amplitude but also

the duration and number or frequency of pulses can be informa-

tive of signal strength and identity (Levine et al., 2013; Martinez-

Corral and Garcia-Ojalvo, 2017; Purvis and Lahav, 2013).
C

Pulses can have a characteristic period, leading to approxi-

mately regular oscillations. This is the case of the circadian clock

(Goldbeter and Berridge, 1996) and of multiple mammalian pro-

teins such as the tumor suppressor p53 (Geva-Zatorsky et al.,

2006), the transcription factor NF-kappaB (Zambrano et al.,

2016), and the protein kinases p38 (Tomida et al., 2015) and ERK

(Shankaranet al., 2009), amongothers. Togenerate periodicoscil-

lations, the system must have a negative feedback interaction

between its components (Novák and Tyson, 2008), which can

also be accompanied by a positive feedback that helps tune oscil-

latory behavior (Guantes and Poyatos, 2006; Tsai et al., 2008).

In contrast to periodic pulses, stochastic pulsatile activity

without a predominant period is also relevant in cells. This has

been reported, for instance, also in ERK (Albeck et al., 2013;

Aoki et al., 2013) and p53 (Loewer et al., 2010), in a number of

yeast transcription factors including Crz1 (Cai et al., 2008),

Msn2 (Garmendia-Torres et al., 2007; Gonze et al., 2008; Hao

and O’Shea, 2011; Jacquet et al., 2003), Mig1 (Dalal et al., 2014;

Lin et al., 2015), and even in bacteria, with examples such as the

entry into the competent state in Bacillus subtilis (Schultz et al.,

2007; S€uel et al., 2006) and the general stress-response factor

sB (Locke et al., 2011). In thesecases, themechanismsunderlying

pulse generation are diverse and not always well understood.

Currently known mechanisms for stochastic pulse generation

can be broadly classified into two groups. One group is mecha-

nisms where the system is readily activated to its maximal level

and switched off later on by an inhibitor. This has been proposed

to occur in genes regulated by negative feedback, as a result of

random switching from the inactive to the active promoter

state and the subsequent inhibitor production that eventually

switches gene expression off (Zambrano et al., 2015; Zavala

and Marquez-Lago, 2014). In this case, there is no amplification

of the initial perturbation. Similarly, an incoherent feed-forward

architecture, where the input simultaneously activates the target

and a repressor of the target (Mangan et al., 2006), can also

produce pulsatile behavior without amplifying any initial fluctua-

tion. In contrast, the majority of experimentally reported sto-

chastic pulsatile systems rely on the amplification of an initial
ell Systems 7, 453–462, October 24, 2018 ª 2018 Elsevier Inc. 453

mailto:jordi.g.ojalvo@upf.edu
https://doi.org/10.1016/j.cels.2018.08.012
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cels.2018.08.012&domain=pdf


Box 1. A Motivational Case Study: Stochastic Pulsing in Yeast PKA

Msn2 is a yeast transcription factor that translocates between the nucleus and the cytoplasm in a pulsatile manner (Görner et al.,

1998; Jacquet et al., 2003). Different stresses can differentially modulate pulse amplitude, duration, and frequency, with pulses

being particularly relevant under glucose deprivation conditions (Hao and O’Shea, 2011). Msn2 contains nuclear localization

and export sequences that are controlled by phosphorylation, which favors nuclear exit (Görner et al., 1998). Although multiple

kinases and phosphatases have been shown to be involved in Msn2 localization (Petrenko et al., 2013), there is strong evidence

for PKA being a key regulator (Garmendia-Torres et al., 2007; Görner et al., 1998, 2002; Hao et al., 2013; Hao and O’Shea, 2011;

Jacquet et al., 2003; Sunnåker et al., 2013). PKA is well known to be regulated by negative feedback, and seminal work established

Msn2 pulses as limit cycle oscillations due to negative feedback in the PKA system (Garmendia-Torres et al., 2007; Gonze et al.,

2008). However, Msn2 pulses are highly irregular (Box Figure A; Hao and O’Shea, 2011; Lin et al., 2015). Most pulse durations are

around 2 min (Box Figure B), but the distribution of interpulse intervals lacks a clear mode, spanning over almost two orders of

magnitude, from a fewminutes to hours (Box Figure C). The amplitude distribution is also wide (Box Figure D). These observations

are more consistent with stochastic pulses rather than with noisy periodic oscillations. Although there are reports hinting at a pos-

itive feedback in the PKA system through the kinase Snf1 (Barrett et al., 2012; Jiang et al., 2017; Nicastro et al., 2015), this inter-

action is very difficult to demonstrate in vivo directly and unequivocally. This leaves the door open to the idea that other mecha-

nisms could, in principle, explain the same observations. We hypothesized that the negative feedback regulation of PKA could be

sufficient to generate stochastic pulses. Our aim here is not to describe the full behavior ofMsn2, which clearly depends onmultiple

cellular elements but rather to take it as a motivation to study the generation of stochastic pulses from negative feedback.

A

B C D

Box Figure. Stochastic Pulses of Msn2 Nuclear Localization

(A) Representative time traces of three cells under constant media conditions (0.075% glucose).

(B) Distribution of pulse durations.

(C) Distribution of interpulse intervals (time between consecutive peaks).

(D) Distribution of pulse amplitudes. Histograms are from a time series of cells in the same condition as in (A) and normalized by the total number of data

points. Data are the same as in Lin et al. (2015).
perturbation by positive feedback and its subsequent return to

basal level by negative feedback. This mechanism has been pro-

posed to act in the Bacillus subtilis sin operon, where SinR

represses its own transcription and that of SinI while the two pro-

teins cross-inhibit their activity (thus forming a mixed positive

and negative feedback) (Voigt et al., 2005). The same mecha-

nism based on a protein-antagonist operon arrangement has

been shown to underlie pulses in sB (Locke et al., 2011). In this

case, the process involves zero-order ultrasensitivity, a well-

studied phenomenon whereby small changes in the activity of

a saturated enzyme lead to much larger relative changes in its

target (Goldbeter and Koshland, 1981). In other cases, systems

have been described to operate in excitable regimes, where the

combination of positive and negative feedback interactions are

such that a small fluctuation forces the system to undergo a ste-

reotypic, large excursion in phase space that results in a pulse
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(Rué and Garcia-Ojalvo, 2011; S€uel et al., 2006). In all these, a

positive feedback is required for pulsing, which raises the ques-

tion of whether stochastic pulses arise in systems without this

type of interaction, where any other mechanisms to amplify fluc-

tuations might be at play.

Here,we aimed to explore the capacity of negative feedback to

generate noise-driven stochastic pulses on its own, taking the

PKA pathway (Box 1) as an idealized model. Starting with a min-

imalmodel of the PKA protein circuit and further simplifying it into

architectures of decreasing dimensionality, we show that a nega-

tive feedbackwith componentsworking in the zero-order kinetics

regime, together with correct timescales, is able to respond to a

small fluctuation in the levels of one component with a compara-

tively large pulse. This mechanism can generate both activation

and inactivation pulses, showing how negative feedbacks could

underlie stochastic pulses driven by noise in a variety of systems.
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Figure 1. Stochastic Pulses Can Arise from a Negative Feedback in the PKA Pathway

(A) Model of the PKA pathway (see text preceding and following Equations 1-4 for details).

(B) In response to an increase in the R degradation rate d by a factor 2 during 15 s (gray shaded area), the system exhibits a pulse of C inactivation. Model

parameters: a = 23 mM�2min�1, b = 17.4 mM�2min�1, L = 6.5 mMmin�1, d = 26.2 min�1, ks = 0.12 mMmin�1, kd = 25.5 min�1, k3 = 0.05 mM, g = 46.4 min�1,

3= 20 mMmin�1, Ptot = 0.2 mM, k1 = 0.0003 mM, k2 = 0.0002 mM, a = 0.015 mMmin�1, b = 0.06 min�1, k4 = 0.0005 mM, k5 = 0.0005 mM, and Mtot = 0.0052 mM.

(C) The system exhibits downregulation pulses in C which drive Mn pulses under noisy d. Stochastic simulations of the same parameter regime as in (B), with

t = 15 s, D = 0.07, and a time step of 10�5 min.

(D) The input-output response of the system, normalized with respect to the steady-state value. The solid line is computed from the deterministic model as in (B),

for different factors of increases in d. The dots are the results from a stochastic simulation over 200 hr of simulated time, computed from consecutive relative

maxima and minima. Inset schematizes what we consider an increase and decrease, which is normalized by the steady-state level.

(E) Cross-correlation between exp(h) and C for the same simulation conditions as in (C).

(F) Cross-correlation between exp(h) and C for a simulation with the same parameters as in (C) for Equations 1, 6, and 7 but the other rates set to 0.

(G and H) Distribution ofMn pulse duration and interpulse intervals, based on a threshold inMn of 0.0015 mM. Data are from 3 simulations of 200 hr with the same

parameters as in (C). Interpulse intervals are taken as the time between pulse peaks.
RESULTS

A Simplified PKA Model
We begin by studying the behavior of a simplified model of the

protein kinase A (PKA) system. The regulation of PKA involves

multiple steps and has been modeled previously as limit cycle

oscillations with deterministic (Garmendia-Torres et al., 2007;

Gonzales et al., 2013) and stochastic (Besozzi et al., 2012;

Gonze et al., 2008) approaches in a very detailed manner.

Here, we propose a much simpler model for PKA regulation

based on a single negative feedback, which is shown schemat-

ically in Figure 1A. The active form of PKA is given by its catalytic
subunit C, which is generated when cyclic adenosine mono-

phosphate (cAMP), denoted by A, causes its dissociation from

the inhibitory regulatory subunit R. C activates the phosphodi-

esterase (Hu et al., 2010; Ma et al., 1999), represented by Pa,

which in turn promotes the degradation of A, thereby allowing

C and R to re-associate into the inactive complex again, leading

to a negative feedback of C on itself. These processes are rep-

resented by the following systemof coupled ordinary differential

equations:

dC

dt
= 2

�
a A2 ðCtot � CÞ � b R C2

�
(Equation 1)
Cell Systems 7, 453–462, October 24, 2018 455



dR 2 2
dt
=a A ðCtot � CÞ � b R C +L� d R (Equation 2)

dA

dt
= ks � kd Pa A

k3 +A
(Equation 3)

dPa

dt
=
g C ðPtot � PaÞ
k1 +Ptot � Pa

� 3Pa

k2 +Pa

: (Equation 4)

The model assumes that the total amounts of the catalytic

subunit and phosphodiesterase are conserved (Ctot and Ptot,

respectively) as in Garmendia-Torres et al. (2007) and Gonze

et al. (2008). In particular, Pa follows a phosphorylation-dephos-

phorylation cycle in which the enzymatic reactions can saturate

(Equation 4). We include in Equation 2 a synthesis term L and

a degradation term dR since the stability of the regulatory

subunit R has been shown to be important for catalytic PKA ac-

tivity (Budhwar et al., 2010). Notice that these production and

degradation terms are phenomenological and could account

for any change in the levels of available R to bind C, due, for

instance, to subcellular relocalization, which is another relevant

regulatory mechanism (Tudisca et al., 2010). We should also

note that in its inactive form, PKA is a tetramer formed by two

catalytic subunits and two regulatory subunits. The regulatory

subunit is generally considered to be found either as a dimer

bound to cAMP or in the inactive holoenzyme formed by two reg-

ulatory and two catalytic subunits (Galello et al., 2014; Rinaldi

et al., 2010). Therefore, for simplicity, we disregard monomeric

regulatory subunits and consider only the dimeric form, which

we represent by the variable R. We also consider the constant

synthesis of A and a saturating degradation following Garmen-

dia-Torres et al. (2007) and Gonze et al. (2008). Moreover,

instead of modeling explicitly the binding of cAMP to the regula-

tory subunit (Garmendia-Torres et al., 2007), we assume that

A favors the dissociation of C in a nonlinear, concentration-

dependent manner. In order to account for the fact that four mol-

ecules of cAMP bind the R homodimer, we assume a certain

degree of cooperativity in its effect (not too large to avoid placing

too much of a weight on this nonlinearity).

As a downstream target of C, we include Msn2 (M) phosphor-

ylation and dephosphorylation, which we assume to reflect cyto-

plasmic (Mc) and nuclear (Mn) localizations, respectively, under

constant overall concentration (Mtot):

dMn

dt
=
a ðMtot �MnÞ
k4 +Mtot �Mn

� b C Mn

k5 +Mn

: (Equation 5)

Msn2 nuclear localization is inhibited by C. Therefore, we are

interested in the capability of themodel to exhibit downregulation

pulses of C in response to noise, as these would correspond to

pulses of Msn2 nuclear localization. Since the number of mole-

cules in the PKA system is large (Ghaemmaghami et al., 2003),

we hypothesize that fluctuations are most likely to come from

extrinsic sources that lead to variations in the reaction rates gov-

erning the system, rather than intrinsic noise due to a low number

of molecules in the PKA system itself. In particular, given that the

stability of the regulatory subunit has been shown to be relevant

for PKA activity (Budhwar et al., 2010; Tudisca et al., 2010), we

consider that its levels can fluctuate over time and study the

responseof the system toperturbations in its degradation rate (d).
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For an appropriate parameter regime, a 2-fold increase in the

degradation rate ofRduring 15 swas enough to increaseC levels

10% over the steady state, leading to a subsequent inactivation

pulse in C with a reduction of more than 50% (Figure 1B). Such

an inactivation pulse is generated as follows: the decrease in

R during the perturbation causes a small increase in C, which in

turn significantly increases the levels of active phosphodies-

terasePa, causing aquick drop in the levels ofA. This then causes

a decrease inC that results into a pulse ofCdeactivation.WhenC

levels drop, Pa returns to basal levels, and therefore A increases

again, eventually bringing all of the system back to the steady

state and finishing the pulse. The inactivation pulse in C causes

a downstream activation of Mn (Figure 1B, bottom). Notice that

the perturbation point is not playing any role in the pulse beyond

initially increasing C levels, and thus any other fluctuation that

would increase C levels would result in the same behavior.

In order to explore the capability of the system to pulse in the

presence of a dynamic noisy input, we introduced stochasticity

into the rate of R degradation. Since extrinsic fluctuations in

the levels or activity of proteins are unlikely to be instantaneous,

we assumed the noise to have a certain correlation time t, such

that it can be modeled by an Ornstein-Uhlenbeck process:
dR

dt
=a A2 ðCtot � CÞ � b R C2 +L� ehd R (Equation 6)

dh

dt
= � h

t
+

ffiffiffiffi
D

p

t
xðtÞ; (Equation 7)

where xðtÞ is a Gaussian white noise of zeromean and intensity 1,

and the exponential in the last term of Equation 6 is added so that

the noise in the degradation of R has a log-normal distribution (a

common assumption for biomolecules; Rosenfeld et al., 2005).

We then performed simulations of this system using the

stochastic-Heun algorithm (Toral and Colet, 2014) and observed

that indeed the system exhibits pulses (Figure 1C). As shown

in Figure 1D, small fluctuations are largely filtered out, but

once C increases over a certain threshold, a deactivation pulse

follows, with larger increases being followed by larger decreases

until the response saturates due to A being fully degraded.

In order to confirm that the deactivations are indeed the result of

the mechanism explained above and not just a mere reflection of

the fluctuations in R, we computed the cross-correlation function

between eh and C. We expect that high h leads to increases in R

degradation and therefore an increase in freeC levels. This should

lead to a positive correlation between the two variables at short

lags, which corresponds to the positive peak at almost zero lag

inFigure 1E.On the other hand, if the increase inC triggers a pulse,

this should lead to a decrease in C sometime after, resulting in a

negative peak in the cross-correlation function, which is also the

case. Incontrast, thisnegativepeak isnotobserved if the feedback

isdisruptedbypreventingthe timeevolutionofAandPa (Figure1F),

such that now the fluctuations in C are just mirroring those in R.

Therefore, this system is capable of actively converting initially

small increases in C into large deactivation pulses with just a

negative feedback loop. The duration of the pulses is around

2 min (Figure 1G), and since the pulses arise from noise and

are not just noisy oscillations, the distribution of times between

pulses has a long tail (Figure 1H), in agreement with the experi-

mental data in Box Figure.
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Figure 2. Stochastic Pulses from a General

3-Variable Negative Feedback Loop

(A) Scheme of the model.

(B–D) Inactivationpulses. (B) Input-output responseof

the system, calculated as in Figure 1D. (C) In response

to a 30% reduction of z deactivation rate b during 15 s

(gray shaded area), the system exhibits a pulse of z

inactivation. Parameter values: ks = 0.28 mMmin�1,

kd = 17.85 min�1, k3 = 0.01 mM, a = 10 mM�1min�1

b = 10 min�1, g = 46.4 min�1, 3= 20 mM min�1, k1 =

0.0015 mM, k2 = 0.001 mM, ztot =1 mM, and xtot = 1 mM.

(D) Stochastic simulations with D=0.025 and t=15 s

and same parameter values as in (C).

(E and F) Activation pulses. (E) Activation pulse in

response to a 2-fold increase in b during 15 s (gray

shaded area). Parameter values: ks = 0.75 mMmin�1,

kd = 0.964 min�1, k3 = 0.01 mM, a = 15 mM�1min�1,

b = 2.1 min�1, g = 574.2 min�1, 3= 110 mMmin�1,

k1 = 0.0015 mM, k2 = 0.001 mM, ztot = 1 mM, and

xtot = 1 mM. (F) Stochastic simulations for the same

parameters as in (E), with D = 0.05 and t=15 s.

See also Figures S1 and S2.
A General Negative Feedback Model for Stochastic
Pulsing
In order to simplify the previous model to a more general nega-

tive feedback motif, we next reduced the system to three

variables by converting the C activation process into an activa-

tion-deactivation cycle (Figure 2A) with its total concentration

conserved and by assuming mass action kinetics. To emphasize

the theoretical generality of such a model, we have relabeled the

variablesPa,A, andCa into x, y, and z, respectively, leading to the

following deterministic model:

dx

dt
=
g z ðxtot � xÞ
k1 + xtot � x

� 3x

k2 + x
(Equation 8)

dy kd x y
dt
= ks �

k3 + y
(Equation 9)

dz
dt
=a y ðztot � zÞ � b z: (Equation 10)

In this case, we perturbed (decreased) the z deactivation rate

b, and again this triggered a small increase in z and a large
decrease in response (Figure 2C). We also performed stochastic

simulations, assuming a noisy z deactivation rate, after modi-

fying the corresponding equation accordingly:

dz

dt
=a y ðztot � zÞ � eh b z (Equation 11)

dh

dt
= � h

t
+

ffiffiffiffi
D

p

t
xðtÞ: (Equation 12)

Again, stochastic simulations of the model exhibited a

nonlinear input-output response (Figure 2B) and inactivation

pulses in z (Figure 2D).

As explained in the previous section, we have used extrinsic

noise in our simulations because the number of molecules in

the PKA system is large. However, in many cellular systems,

the total amount of molecules of the system components is

low, such that noise arises from the stochasticity in themolecular

reactions. In order to test whether such intrinsic noise is also able

to generate z downregulation pulses in this generalized circuit ar-

chitecture, we performed stochastic simulations of this model
Cell Systems 7, 453–462, October 24, 2018 457



using the Gillespie algorithm and found that pulses also ap-

peared in this case (Figures S1A and S1B).

This simplified model provides insight into the key features un-

derlying the inactivation pulses in the target variable z (C in the

PKA model in Figure 1). First, the dynamics of x (corresponding

to the phosphodiesterase in the PKA model) are in a zero-order

kinetics regime, since k1 and k2 are very small in relationship to

the total concentration of x. In the biological system, this would

correspond to a situation in which the enzymes responsible for

these reactions are highly saturated, such that there is much

more substrate than enzyme. Under these conditions,

x deactivation is essentially constant at rate 3, and the activation

term becomes gz, such that at steady state, z determines x levels

in a switch-like manner, resulting in the well-studied phenome-

non of zero-order ultrasensitivity (Goldbeter and Koshland,

1981). If z is smaller than the threshold set by 3/g (dashed

line in the top panel of Figure 2C), x is inactive, whereas,

when z crosses the threshold, the steady state of x abruptly

switches to full activation. Since the steady-state levels of z are

very close to this threshold, small increases in z due to noise

are translated into relatively large increases in x (shaded gray

area in Figure 2C), as the variable moves toward the new steady

state set by the higher z values. However, the negative feedback

starts acting: the degradation rate of y increases, and if it

responds faster than z, y falls such that it leads to a subsequent

decrease in z below steady-state levels (downward pulse in the

z panel in Figure 2C). This then causes x to return to basal (inac-

tive) levels, with a subsequent increase in y and z, and the

pulse ends.

As in the case of the PKAmodel (Figure 1H), this general model

also exhibits a long-tailed distribution of interpulse intervals (Fig-

ure S1C). Aminimumnoise intensity (parameterD in Equation 12)

is needed to reproduce the qualitative characteristics of the

experimental observations: low noise strength leads to very

sparse pulsing (cool-colored lines in Figure S1C), whereas

pulses appear much more often for larger noise intensities

(warm-colored lines in Figure S1C). This is consistent with the

fact, as described above, that for a pulse to be generated,

z has to be perturbed sufficiently to allow x to increase and, sub-

sequently, y and z to decrease. The distributions of pulse

durations (Figure S1D) and amplitudes (Figure S1E) are much

less dependent on noise.

APulsatile 2-DimensionalModel of a Negative Feedback
In order to gain further understanding of the system, we next

simplified it to two variables, with a repressor (x) and an acti-

vator (y) (Figure 3A), such that the system can be studied in

the phase plane. After removing species z, x is now directly

activated by y, which will be the considered target. In its non-

dimensional form, the model reads

dx

dt
=
a2 y ð1� xÞ
h2 + 1� x

� x

hd2 + x
(Equation 13)

dy

dt
=a1 � d1 x y

1+ y
: (Equation 14)

In an appropriate parameter regime, the system responds to

an increase in the activator y with a subsequent large decrease
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(Figure 3B, blue line). When looking at the trajectory of the

system in the phase plane (Figure 3C), we observe that

the increase in x caused by the increase in y (gray line) forces

the system to return to the steady state with an undershoot

(black line) caused by the almost vertical downward flow early af-

ter the perturbation. Since the steady state is at the point where

the nullcline corresponding to Equation 13 (orange) rapidly

bends downward, the system is driven toward the steady state

following the nullcline and without spiraling. On the other hand,

if the two nullclines cross further to the right (in the plateau of

the orange nullcline), damped oscillations occur instead (Figures

3D and 3E). It is well known that damped oscillations in a nega-

tive feedback system can become sustained for a sufficiently

long delay (Novák and Tyson, 2008). Mathematically, such delay

can be given by additional intermediate variables. Indeed, the

three-variable model of the previous section can enter a sus-

tained oscillatory regime through a supercritical Hopf bifurcation

upon a single parameter change, which moves the system from

steady to pulsatile to oscillatory dynamics (Figures S2A and

S2B). This analysis shows that the pulsatile regime corresponds

to a region in parameter space close to the bifurcation point

where the steady state remains essentially constant. Upon

most single-parameter variations around this point, the system

still responds to a small perturbation with a well-defined pulse

(Figure S2C).

The Same Network Architecture Can Generate
Activation and Deactivation Pulses
Notably, the dx/dt (orange) nullcline in Figure 3C is symmetric,

suggesting that a similar mirror behavior can occur if the steady

state of the system is such that basal levels of the repressor

(x) are high. Indeed, by increasing a1, the blue nullcline shifts;

and after slightly adjusting the other rates, now the steady state

moves to the other bending point, and the system exhibits y acti-

vation pulses in response to a previous decrease in its levels (Fig-

ures 3F and 3G). In order to confirm the generality of this finding

beyond two variables, we went back to the 3-variable model

shown in Figure 2 and found that it also exhibits activation pulses

after readjusting the parameters such that, at steady state, x is

high and y and z are lower (Figures 2E and 2F).

The phase-plane analysis of the 2-dimensional system also

clarifies the role of zero-order ultrasensitivity, as discussed for

the 3-variable model. The capacity of the system to respond to

a given perturbation requires the bending of the orange nullcline

close to the steady state. Therefore, the inactivation pulses

require saturation in the deactivation of x (small hd2, compare

the two columns in Figure S3A for a configuration that allows

pulses—left column—and one that does not—right column),

while the activation pulses require saturation in the activation

of x (small h2, compare the two rows in Figure S3B).

Finally, we found that the behavior is not sensitive to themech-

anism of repression since the same results are obtained if the

repressor inhibits activator production rather than increases its

degradation (Figure S4).

DISCUSSION

Negative feedbacks are well known to produce oscillations

(Novák and Tyson, 2008) and in combination with positive
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Figure 3. Pulsing in a 2-Variable Activator-

Repressor Model

(A) Scheme of the model. The activator (y) activates

the repressor (x), which degrades the former.

(B) Inactivation pulse in response to a 5-fold

increase in a1 during 0.7 time units. Parameters

(in arbitrary units): a1 = 3.5, d1 = 140, a2 = 0.09,

h2 = 0.0025, and hd2 = 0.0025. Shaded gray area

indicates the time during which the system is

perturbed.

(C) Nullclines and trajectory on the phase plane

during the perturbation (gray line) and upon its

release (black line), corresponding to the simulation

in (B). Arrows indicate the direction of the flow; size

has been normalized for clarity and does not reflect

magnitude. The right panel is an inset of the region

highlighted by a dashed square on the left panel, to

better appreciate the region around the fixed point.

Notice that here the x axis is in log scale. The gray

dot indicates the fixed point of the system corre-

sponding to the perturbed state.

(D) Damped oscillations in response to a 5-fold in-

crease in a1 during 0.7 time units. a1=25, rest of

parameters as in (B).

(E) Nullclines and trajectory on the phase plane

corresponding to the simulation in (D), as explained

in panel (C).

(F) Upward pulse in response to a 30% decrease in

a1 during 0.7 time units. Parameters (in arbitrary

units): a1=140, d1=150, a2=0.04, h2=0.0025,

hd2=0.0025.

(G) Nullclines and trajectory on the phase plane, as

in panel (C). Notice that here the x axis is no longer in

log scale.

See also Figures S3 and S4.
feedback can also underlie the generation of noise-driven sto-

chastic pulses (Locke et al., 2011; Rué and Garcia-Ojalvo,

2011). We have shown here that in fact, the positive feedback

is not always required for the latter, and a negative feedback

loop alone can generate pulses driven by noise under appro-

priate circuit architecture and timescales.

To study how a negative feedback can produce stochastic

pulses, we started with a simplified model of the yeast PKA

pathway, since pulses in Msn2 nuclear localization have

been typically attributed to those in its upstream regulator

PKA (Garmendia-Torres et al., 2007; Gonze et al., 2008; Hao

and O’Shea, 2011). Our analysis shows that the PKA pathway

could exhibit pulses of PKA inactivation that could lead to the

dephosphorylation of Msn2 and a subsequent pulse of nuclear

localization. This mechanism can explain the long-tail distribu-

tion of interpulse intervals that is observed experimentally,

which is difficult to attain under a noisy oscillatory regime.
Cell
However, Msn2 is regulated by other

kinases such as Snf1 and Hog1 and

phosphatases such as PP1, which are

important to fully explain the Msn2

response to stress identity and strength

(Jiang et al., 2017; Petrenko et al.,

2013). Even within the PKA system

considered here, we have made a num-

ber of simplifications, such as ignoring
the multiple phosphorylation sites on Msn2 (Hao et al.,

2013), the differences between the phosphodiesterases

PDE1 and PDE2, a second negative feedback on the produc-

tion of cAMP (Garmendia-Torres et al., 2007; Gonzales et al.,

2013; Stewart-Ornstein et al., 2017), and the subcellular local-

ization and transport of the circuit components, which are

likely to refine the behavior. It should be noted that, to our

knowledge, there has been no experimental study of yeast

PKA dynamics at the single-cell level that has not relied on

Msn2 as a reporter (see for instance Garmendia-Torres

et al., 2007; Stewart-Ornstein et al., 2017). Although a recent

report has shown irregular activation pulses of PKA in a

mammalian cell line, this was not followed up on, since the

main aim of that study was to describe a PKA reporter (Zhang

et al., 2018). Thus, it will be interesting to analyze specifically

the activity of PKA and see whether, in fact, it is pulsatile.

Given that PKA has a large number of targets and is
Systems 7, 453–462, October 24, 2018 459



conserved across species, elucidating the dynamical behavior

of this protein is of broad importance for cell biology.

More generally, our results show how a system can pulse by

transiently amplifying a small perturbation into a significant

change in activity in the opposite direction, due to a negative

feedback. In our circuits, this behavior crucially depends on the

zero-order ultrasensitivity in the response of the repressor to

the fluctuating activator, such that a small variation in the acti-

vator causes a large variation in the repressor, which leads to a

pulse in the activator due to the negative feedback. Besides

zero-order ultrasensitivity, there are other mechanisms that un-

der appropriate parameter regimes produce ultrasensitivity in

the response to an input, in the sense that small changes in the

input are translated into comparatively large changes in the

output. These include, for instance, molecular titration by an in-

hibitor, substrate competition, and various multistep processes

(Ferrell and Ha, 2014a). Therefore, a variety of circuits could be

built with such mechanisms coupled to an overall negative feed-

back with the potential to generate pulses in response to

fluctuations.

Another requirement for pulse generation in our models is

that the system variables must have appropriate timescales.

This is clear in the three-variable model in Figures 2A and 2C:

it is not sufficient that x increases during the perturbation but

that y needs to be quickly degraded and z has to follow slightly

more slowly. If y is made to respond more slowly, it cannot

decrease enough to generate the deactivation pulse in z. On

the other hand, if z responds too fast, it will decrease too

soon, leading to the return of x to the steady state before y

has decreased sufficiently to generate the deactivation pulse

in z. The fast response of the repressor x results from a post-

translational modification cycle (e.g., phosphorylation-dephos-

phorylation) that operates in a zero-order regime. This fast

behavior of x leads initially to a fast response of y since the

deactivation of the latter is assumed to be enzymatic and

thus to depend linearly on x. Once x decays, the y deactivation

term becomes very small, leading to a very slow relaxation of y.

The separation of timescales thus relies on a fast species (x)

that deactivates enzymatically another species (y), which in

turn feeds back onto the first via a third species z, whose dy-

namics are also determined by post-transcriptional events.

We also notice that in our simplified 2-variable models, the de-

viations from the steady-state levels required to initiate the pulse

irrespective of its direction are quite large, which was not the

case when there was an additional intermediate variable. This

suggests that some delay in the system is required in order for

the system to be able to amplify sufficiently small initial noise-

driven fluctuations.

Negative feedback with ultrasensitivity is well known to

generate oscillations (Ferrell and Ha, 2014b), and in fact, our

three-variable model is also capable of oscillating, with single

parameters having the capacity to change the dynamical regime

from nonresponsive, to pulsatile, to oscillating. As the experi-

mental methods to study dynamical behavior at the single-cell

level improve, it will be interesting to elucidate whether cells

display one dynamics or another or even whether they can tran-

sition between such regimes, as recently reported for p53

(Mönke et al., 2017), and the functional relevance of that

behavior.
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Rué, P., and Garcia-Ojalvo, J. (2011). Gene circuit designs for noisy excitable

dynamics. Math. Biosci. 231, 90–97.

Sanft, K.R., Wu, S., Roh, M., Fu, J., Lim, R.K., and Petzold, L.R. (2011).

StochKit2: software for discrete stochastic simulation of biochemical systems

with events. Bioinformatics 27, 2457–2458.

Schultz, D., Ben Jacob, E., Onuchic, J.N., andWolynes, P.G. (2007). Molecular

level stochastic model for competence cycles in Bacillus subtilis. Proc. Natl.

Acad. Sci. USA 104, 17582–17587.

Shankaran, H., Ippolito, D.L., Chrisler, W.B., Resat, H., Bollinger, N., Opresko,

L.K., and Wiley, H.S. (2009). Rapid and sustained nuclear-cytoplasmic ERK

oscillations induced by epidermal growth factor. Mol. Syst. Biol. 5, 332.

Stewart-Ornstein, J., Chen, S., Bhatnagar, R., Weissman, J.S., and El-Samad,

H. (2017). Model-guided optogenetic study of PKA signaling in budding yeast.

Mol. Biol. Cell 28, 221–227.

S€uel, G.M., Garcia-Ojalvo, J., Liberman, L.M., and Elowitz, M.B. (2006). An

excitable gene regulatory circuit induces transient cellular differentiation.

Nature 440, 545–550.
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METHOD DETAILS

Deterministic simulations were performed using the odeint function from the Python Scipy library. Stochastic Langevin simulations

were performed using a custom implementation in C code of the stochastic Heun algorithm (Toral and Colet, 2014), and Gillespie

simulations were executed in StochKit2 (Sanft et al., 2011) through the Python package GillesPy (Abel et al., 2016). Bifurcation dia-

grams were performed with the Python package PyDSTool (Clewley et al., 2007). Data analysis and plotting was done in Python.
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