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Abstract

DNA methylation may be one of the mechanisms by which alcohol consumption is
associated with the risk of disease. We conducted a large-scale, cross-sectional,
genome-wide DNA methylation association study of alcohol consumption and a lon-
gitudinal analysis of repeated measurements taken several years apart. Using the
lllumina HumanMethylation450 BeadChip, DNA methylation was measured in blood
samples from 5606 Melbourne Collaborative Cohort Study (MCCS) participants. For
1088 of them, these measures were repeated using blood samples collected a median
of 11 years later. Associations between alcohol intake and blood DNA methylation

were assessed using linear mixed-effects regression models. Independent data from
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the London Life Sciences Prospective Population (LOLIPOP) (N = 4042) and Cooper-
ative Health Research in the Augsburg Region (KORA) (N = 1662) cohorts were used
to replicate associations discovered in the MCCS. Cross-sectional analyses identified
1414 CpGs associated with alcohol intake at P < 1077, 1243 of which had not been
reported previously. Of these novel associations, 1078 were replicated (P < .05) using
LOLIPOP and KORA data. Using the MCCS data, we also replicated 403 of 518 pre-
viously reported associations. Interaction analyses suggested that associations were
stronger for women, non-smokers, and participants genetically predisposed to con-
sume less alcohol. Of the 1414 CpGs, 530 were differentially methylated (P < .05)
in former compared with current drinkers. Longitudinal associations between the
change in alcohol intake and the change in methylation were observed for 513 of
the 1414 cross-sectional associations. Our study indicates that alcohol intake is asso-
ciated with widespread changes in DNA methylation across the genome. Longitudinal
analyses showed that the methylation status of alcohol-associated CpGs may change

with alcohol consumption changes in adulthood.
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1 | INTRODUCTION

Deoxyribonucleic acid (DNA) methylation is the addition of methyl
groups to the 5’ carbon of cytosine in cytosine-guanine dinucleotides
(CpGs) and is thought to play a role in the development of disease
through its influence on gene expression and cellular function.l?
DNA methylation is strongly affected by the underlying genetic DNA
sequence,’ sex, age, and ethnicity*> and is modified by lifestyle fac-
tors and environmental exposures such as smoking and adiposity.*°

Alcohol consumption is a major lifestyle risk factor contributing to
the worldwide burden of disease, responsible for an estimated 2.7 mil-
lion deaths and 4% of the global burden of disease annually.! Even
modest use of alcohol may increase disease risk, but greatest risks
are observed with heavy and long-term drinking. Alcohol consumption
is a potentially modifiable risk factor that can be targeted with preven-
tive interventions at both the policy and the individual levels.*? Molec-
ular mechanisms such as DNA methylation are thought to underlie or
enhance a predisposition to addictions and substance abuse, including
alcohol drinking,*® but although there is a plausible relationship
between alcohol intake and altered 1-carbon metabolism and DNA

4 most evidence comes from studies that either had

methylation,1
small sample size, were not specific to humans, or were carried out
using tissues other than blood.*>*® |dentifying associations between
alcohol consumption and DNA methylation may be useful to derive
biomarkers of alcohol-related conditions. To our knowledge, only
one large genome-wide study of blood DNA methylation and alcohol
consumption has been conducted.'?

In the present study, we sought to (a) identify novel associations
between alcohol consumption and blood DNA methylation and assess

EWAS, HM450 assay, longitudinal data

whether these were modified by factors such as age, sex, or genetic
prediction to drink alcohol, (b) replicate previously reported associa-
tions, (c) assess the reversibility of associations, (d) assess associations
with changes in alcohol consumption using longitudinally collected
data, and (e) assess overrepresentation of the discovered genes in bio-
logical pathways to investigate the potential functional implications of
our findings. We used samples from the Melbourne Collaborative
Cohort Study (MCCS) to discover potential associations and sought
to replicate the findings using samples from the Cooperative Health
Research in the Augsburg Region (KORA) and London Life Sciences
Prospective Population (LOLIPOP) studies.

2 | MATERIALS AND METHODS

2.1 | Study participants

Between 1990 and 1994 (baseline), 41 513 participants were
recruited to the MCCS. The majority (99%) were aged 40 to 69 years,
and 41% were men. Southern European migrants were oversampled
to extend the range of lifestyle-related exposures.?° Participants were
contacted again between 2003 and 2007. Blood samples were taken
at baseline and follow-up from 99% and 64% of participants, respec-
tively. Baseline samples were stored as dried blood spots on Guthrie
cards for the majority (73%), as mononuclear cell samples for 25%
and as buffy coat samples for 2% of the participants. Follow-up
samples were stored as buffy coat aliquots and dried blood spots on

Guthrie cards.
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All participants provided written informed consent, and the study
protocols were approved by the Cancer Council Victoria Human
Research Ethics Committee.

The present study sample comprised MCCS participants selected
for inclusion in one of seven previously conducted nested case-
control studies of DNA methylation.?*2> Controls were matched to
incident cases of prostate, colorectal, gastric, lung or kidney cancer,
urothelial cell carcinoma, or mature B-cell neoplasms on sex, year
of birth, country of birth, baseline sample type, and smoking status
(the latter for the lung cancer study only). Participants included in
each nested case-control study were free of cancer at baseline. After
quality control, methylation data for baseline blood samples (baseline
study) were available for 5606 MCCS participants. Methylation

30f 13

measures were repeated in DNA extracted from blood samples col-
lected on Guthrie cards at follow-up (longitudinal study) and, after
quality control, were available for a subset of 1088 of the controls

who also had their baseline sample collected on a Guthrie card
(Table 1).

2.2 | Alcohol and other variables

At both baseline and follow-up, participants completed questionnaires
that included detailed questions on demographic characteristics,
medical history, cigarette smoking, alcohol consumption, physical

activity, and diet, the latter using food frequency questionnaires. On

TABLE 1 Characteristics of participants in the Melbourne Collaborative Cohort Study (MCCS) at baseline and follow-up visits

Cross-sectional Analysis

(N = 56006)
Age in years, median (IQR) 61 (54-65)
Sex, male 3793
Country of birth
AU/NZ/Other 3744
Greece 434
Italy 819
UK 609

Longitudinal Analysis

Baseline data Follow-up data

(N =1088) (N =1088)

59 (51-64) 70 (63-76)
68% 740 68% 740 68%
67% 831 76% 831 76%
8% 44 4% 44 4%
15% 89 8% 89 8%
11% 124 11% 124 11%

BMI (kg/m?), median (range)

Smoking status

26.9 (24.5-29.5)

26.3 (24.1-29.0)

26.8 (24.2-29.4)

Never 2519 45% 549 50% 545 50%
Former, >15 y ago 1152 21% 230 21% 485 45%
Former, <15 y ago 1,100 20% 196 18%

Current, <20 cig/d 322 6% 62 6% 58 5%
Current, >20 cig/d 513 9% 51 5%

Drinking status

Lifetime abstainers 1314 24% 209 20% 168 16%
Former drinkers 569 10% 94 9% 111 11%
Current drinkers 3626 66% 759 71% 744 73%
Missing 97 2% 26 2% 65 6%

Median (IQR) for intake in last decade (g/day)
Median (IQR) for intake in last week (g/day)
Median (IQR) for lifetime intake (g/day)
Median (IQR) for intake in last year (g/day)

Median (IQR) for the difference between follow-up
and baseline (last week) (g/day)

Median (IQR) for the difference between follow-up
and baseline (lifetime) (g/day)

Alcohol uptake (non-drinkers at baseline who were
drinkers at follow-up) (yes)

Alcohol cessation (drinkers at baseline who were
non-drinkers at follow-up) (yes)

4.6 (0.0-21.5) missing: N = 97
4.3 (0.0-18.7) missing: N = 41
8.4 (0.3-23.5) missing: N = 115

7.5 (0.0-21.3) missing: N = 26
7.4 (0.0-19.0) missing: N = 23
8.8 (1.3-22.3) missing: N = 42

8.9 (0.3-22.7) missing: N = 70
0.0 (-2.5 to 6.4)

0.0 (-5.5 to 5.0)
107 10%
88 8%
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both occasions, anthropometric measurements were obtained by
trained personnel using standard procedures. Height was only mea-
sured at baseline.

Alcohol intake at baseline was recorded as frequency and quantity
of intake per drinking occasion by type (beer, wine, spirits) and by
decade of age starting from 20 years. Participants were also asked
about their alcohol intake on each day during the previous week, in
terms of the number, measure, and type of drink (eg, two glasses of
wine). At follow-up, the frequency and quantity of intake, by type of
drink, during the previous calendar year were assessed as described
above. Grams per day (g/day) were calculated as reported previ-
ously.?% Participants who reported a weekly or current intake higher
than 200 g/day were excluded. Four alcohol consumption variables
were considered: g/day in the last week (continuous), g/day in the cur-
rent decade (continuous), g/day over the lifetime (continuous), and
drinking status (never, former, or current; based on current decade

and lifetime variables).

2.3 | DNA methylation and genetic data

Methods relating to DNA extraction and bisulfite conversion,
DNA methylation data processing, normalisation and quality control,

and genotyping are described in the Supporting Information, methods.

2.4 | Statistical analysis

241 | Methylome-wide association study

We assessed cross-sectional associations at each individual CpG by
regressing DNA methylation M-values on alcohol consumption using
linear mixed-effects regression models, using the function Imer
from the R package Ime4. Alcohol intake was represented using
three continuous variables (consumption in the previous vyear,
consumption in the previous week, and lifetime consumption, in
g/day) that were modelled separately. Models were adjusted by
fitting fixed effects for age (continuous), sex, smoking status (never;
former, >15 years ago; former, <15 years ago; current, <20 ciga-
rettes per day; current, >20 cigarettes per day), body mass index
(BMI) (<25, >25 to <30, and >30 kg/m?), country of birth (Austra-
lia/New Zealand, Italy, Greece, UK), sample type (peripheral blood
mononuclear cells, dried blood spots, buffy coats), and white blood
cell composition (percentage of CD4+ T cells, CD8+ T cells, B cells,
NK cells, monocytes, and granulocytes, estimated using the House-
man algorithm?”), and random effects for study, plate, and chip. A
significance threshold of P value < 1077 was used to account for
multiple testing.” The false discovery rate (FDR) was used to identify
suggestive associations.

Interaction terms were tested between alcohol consumption (pre-
vious week) and each of age (continuous), sex, smoking status
(pseudo-continuous variable: 1, never to 5, current smoker greater
than 20 cigarettes/day), BMI (continuous), country of birth (as
categorised above), future cancer case status, and a polygenic score

for alcohol consumption, the latter derived as described below.
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These analyses were restricted to CpGs associated at P < 1077 in
the cross-sectional analysis with any of the three continuous alcohol
variables (“last week,” “current decade,” and “lifetime” intake).

Associations for each type of alcohol (beer, wine, spirits) were
assessed by including the three variables in a same model, so that
intake of each type was adjusted for the two others. This was done
for the current decade and lifetime alcohol intake variables because
type of alcoholic beverage was not determined for the “alcohol last
week” variable.

Sensitivity analyses were conducted to assess potential con-
founding by (a) fitting the same models without adjustment for
smoking or BMI, (b) fitting the same models with additional adjust-
ment for socioeconomic status, educational attainment, a physical

28 and a score of

activity score based on metabolic equivalents,
healthy dietary habits,?’ (c) examining whether methylation was
associated with these covariates, and (d) using less stringent adjust-
ment for white blood cell composition by omitting each one of the
six cell-type variables.

24.2 | Differentially methylated regions

We also tested for regions of contiguous CpGs associated with alcohol
using the DMRcate package,®C with default options (bandwidth of A =
1000 base pairs and a scaling factor C = 2 for the Gaussian kernel
smoother). The models were adjusted using as fixed effects age (con-
tinuous), sex, smoking status, country of birth, sample type, white cell
composition (all categorised as described above), study, and plate.
Associations with region-wise Stouffer P value < 1077 were consid-
ered statistically significant.

2.4.3 | Replication of novel associations

CpGs associated with alcohol intake at P < 1077 in the MCCS were
selected for replication using data from the KORA cohort (N = 1662,
assessed in 1999-2001) including German participants and the
LOLIPOP cohort (N = 4042, assessed in 2003-2008), including pre-
dominantly Asian participants, respectively.3¥%? Alcohol intake in
KORA was defined as the average of alcohol intake “in previous day”
and “in previous week.” Alcohol intake in LOLIPOP was defined over
a week (Supporting Information, methods). Each cohort applied a nor-
malisation method based on control probes®® and adjusted models for
the same covariates defined in a similar way to those used in the
MCCS analyses (Table S1; Supporting Information, methods). Results
from the two cohorts were pooled using fixed-effects meta-analysis
with inverse-variance weights.>* An association was considered repli-
cated if P < .05 and the direction of association was the same as in the
Mccs.’

2.4.4 | Polygenic score for alcohol consumption

A polygenic score for alcohol consumption was constructed using
MCCS data based on the genome-wide association study by Clarke

and colleagues, which identified 14 single nucleotide polymorphisms
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(SNPs) associated with alcohol consumption using UK Biobank data.®®
Data for 13 out of the 14 SNPs were available and were combined
using the formula: Polygenic scoreli] = b1*dy; + ... b13* di3;, where dy;
is the imputed allele dosage of variant k for person i, and by the per-

allele regression coefficient reported for SNP k.

2.4.5 | Replication of previously reported associa-
tions with alcohol consumption

Using MCCS data, we assessed replication (P < .05) of associations
with alcohol consumption (g/day) reported in a recent pooled, large-
scale analysis of Europeans and African Americans.’? A total of 518
CpGs were considered, comprising 363 identified for participants of
European ancestry and a further 155 CpGs identified for those of Afri-
can ancestry.

2.4.6 | Reversibility of associations

We calculated regression coefficients for comparisons of “former”

n o«

with “never,” “current” with “never,” and “current” with “former”
drinkers using MCCS data. As there were too few never drinkers in
the KORA data (N = 22), we only considered the comparison of former
with current; we pooled the latter using fixed-effects meta-analysis.

In the MCCS, we calculated a “reversibility coefficient,” expressed
as a percentage defined as coefficient (former compared with cur-
rent)/coefficient (never compared with current). These analyses were
undertaken for CpGs with P < 1077 in the MCCS methylome-wide
association study (EWAS).

2.4.7 | Longitudinal associations

We further examined longitudinal associations with alcohol consump-
tion for CpGs with P < 1077 in the MCCS EWAS, incorporating data
from follow-up. Linear mixed-effects regression models were used to
assess the association between changes in DNA methylation (out-
come) and changes in alcohol consumption (exposure) at each CpG.
The change in alcohol consumption was computed in g/day as the dif-
ference between follow-up (alcohol intake in previous year) and base-
line (previous week intake); study was included as a random effect,
and the following variables were included as fixed effects: baseline
alcohol intake, baseline BMI and change in BMI (continuous), baseline
age and change in age (continuous), sex, smoking status at baseline (as
defined previously), smoking status at follow-up (yes/no), country of
birth (as defined previously), baseline cell composition (as defined pre-
viously), change in each cell-type composition (continuous), and base-
line methylation M value. The change in methylation was calculated as
the difference between follow-up and baseline ComBat-normalised
methylation M values. The same analyses were conducted for the
KORA cohort, in which methylation measures taken approximately
7 years later (2006-2008) were available for 1332 participants
(Supporting Information, methods). As adjustment for baseline methyl-

ation in analyses of change in methylation may lead to bias in some
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circumstances,”® we conducted a sensitivity analysis using models

without adjustment for baseline methylation in the MCCS.

2.5 | Pathway analyses

We used the gometh function from the missMethyl package®” for
pathway analyses assessing over-representation relative to all Kyoto
Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology
(GO) pathways.®®%? To investigate potentially different biological
pathways underlying (a) acute compared with chronic alcohol
consumption and (b) most dynamic compared with least dynamic
methylation sites, gometh was applied, respectively, to (a) CpGs
associated with last week and lifetime alcohol intake and (b) CpGs
with a reversibility coefficient greater and lower than 50%. A nomi-
nal P value lower than.05 was considered to indicate a potentially
relevant pathway.

All statistical analyses were performed using the software R (ver-
sion 3.4.0).

3 | RESULTS

Altogether, 5606 MCCS participants were included in the cross-
sectional analysis; their median age was 61 years (IQR: 54-65), 68%
were males, and alcohol intakes were wide-ranging (Table 1). There
were moderate-to-high correlations between the baseline alcohol
variables and between the baseline and follow-up variables, with
Spearman correlations ranging from 0.68 to 0.76 (Table S2). Partici-
pants in the longitudinal analysis were younger and generally had

healthier lifestyle.

3.1 | Methylome-wide association study

Across the three cross-sectional continuous alcohol variables consid-
ered, we observed 1414 associations with P < 1077, The most statisti-
cally significant associations are presented in Table 2. There were
1318, 358, and 392 CpGs associated with alcohol intake over the last
week, decade, and lifetime, respectively (Table S3, Figure S1). Associ-
ations were consistently stronger for alcohol intake in the previous
week (Figure S2).

Of these 1414 associations, 1243 were novel (ie, not reported in
Liu et al*?), and the CpGs were located in 842 genes; 241 CpGs were
intergenic. Compared with the rest of the HM450 assay, alcohol-
associated CpGs were over-represented in gene bodies (binomial pro-
portion test, P = .001), promoter regions TS$1500 (P =5 x 10™%) and 5’
UTR (P = 3 x 10"®); unannotated regions were underrepresented (P =
2 x 107°). These 1414 associations corresponded to 1084 unique clus-
ters when considering that CpGs separated by less than 50 kb of each
other formed a single genomic region (Table S4). For the overwhelm-
ing majority (99%) of associations, greater alcohol intake was associ-
ated with lower methylation. The number of CpGs associated with

alcohol intake over the last week, decade, and lifetime was 16 732,



DUGUE ET AL

WI LE Y- R

6 of 13

"ApN}S 1oyoD) dAI3eI0qe([0D) SWINO]IBIA ‘SDDIN ‘Uoleindod dA130ads0ld S2USIDG 9417 UopuoT ‘dOdITOT ‘uoiSay 8ing
-s8ny 8y} Ul YoJeasay YieaH aAiesadoo) VIO {(dOdITOT PUe WHO) S|opow uoissaiSal Jeaul| Jo (SDDIA) S|9POW UoIssa13al paxiw Jeaul| WOy SIUSIDI}JS0D UOISSaISI “3ST DWOSOWOoIYD “IyD) SUOIJeIARIqY

‘uoljewloju] Suipdoddng ay3 ul pajuasaid ae synsad [Ny 3Yl ‘000T Aq paldinw pue Aep Jad sweid uj Saxejul 104 USAIS a1e SJUSIDI4J90D UOoIS
53189y ‘'dOdIT107T PUB VYO W04 S} NSl JO SISA[eue-Bl1aW $3109449-paxi) 9y} WOy S}nsal ale pajood 4 pue pajood ‘353 '$399)40 Yd3eq pue (wyjLioS|e uewasnoH ay3 Suisn pajew3ss ‘sajAdojnuels pue ‘sajAoouow
‘S[192 MN ‘S|[22 g ‘S|192 1 +8AD ‘S||192 1 +AD 40 23ejuadiad) uoisodwod |92 poojq a3ym pue adAy ajdwies ‘Yuiq Jo A1unod ‘[N g ‘Sniels Sunjows ‘Xas ‘93e 10) $309449 pax1y Sumily Aq paisnipe a1om sjppowl ||y ‘230N

S9A 0T xZ OT- ,0TxT €I- ,0IxZ [0- gOIxE [TI- ,OIxT TT- O0IxZ TI-
SN ,0TxZ O0T- gOLx9 TT- ;0Tx¥ ¥O0- g OLXxZ 6T- ; 0Ix/L €T- ,O0IxZ vI-
SOA 0T XT L0- 4OLXE 80- ;0Tx¥ TO- g OIxT +I- ,O0IxE 60- gOLxt 60-
SOA 0T X6 €€ ,; 0TXZ L€ ¢O0Lx¥ 9T »OIX9 [€ ¢ OIxC 8Z- OLxy Te-
SOA 0T xS 90- ¢O0IxZ V¥0- ,0Tx¥ 60- »Olxt CTI- ¢ O0IxE 60- ¢ OILxE 80-
SOA 0T XE€ TT- 5 OTXT TT- gOIxS TT- OIXT +I- & O0Ix€ TT- - O0Ixy TT-
SOA 40T XE€ €T~ G OIx/Z ¥I- 40Ix9 TT- O0Ix9 +I- 5 0IxE 0T~ ;- OIxT CI-
S9A ;. 0TXT 60- o OTXE TT- ¢O0Tx¥ [0- oz O0Lx9 GTI- ,,0IxC CTI- ¢OTxS €T-
SOA g 0Tx/ OT- ;. 0TxZ OT- ¢0Ix8 O0T- OIxZ TT- 5 O0Ix9 80- g OIxE OT-
SOA ¢ 0T x¥ 60- 0T x§G 60- ,0TxZ 80- ,0Ix8 GI- ,OIXxE 60- LOLxS OT-
SOA ;. 0TXE€ 6T- 4, 0TXE 6T- ,0TxE€ [T- 0Tx9 +T- 5 0I%xC 9T- HOIx6é 61-
SOA 6, 0T X8 0C- 1 0TxT TT- ¢O0TxZ [T- ;00xZ 1T . 001%x8 ¥I- 0TxT G&I-
S9A ;. 0Tx9 €T- . O0Tx§ ¥I- L0TXE 60- 5 0lxT TT- ;. 01x8 €I- O0Ixg [TI-
SOA 0T XE 9T- 4 0TxX8 6C- ,O0lxb 6T- g OIX/L €8 ¢ OIXE €7 4.01%xC V-
SOA 4, 0TxT 8T- »OIxE TZ- ¢O0Tlx¥ €T- OIXE TT- g O0IxS 9T- ,O0lxv 8I-
pajeoiiday d 7 d 75 d 7 d 75 d 753 d 753
pajood dodI101 VHOM  Of23Msnoinald  3pedsp Juaund awnayI

(dOdIT071 pue WYOM) s19S ejeq uonedijday

(SDJIN) 39S ere@ Atan0dsiq

8€°0
670
JA4Y)
¢so
190
650
70
81°0
960
€50
850
6€0
0€0
110
€0

ueaj

Apog
Apog
Apog
Apog
00TSSL
dLNS
dLne
dLNS
00STSSL
Apog
Apog
Apog
dLNS
Apog
00STSSL

uopeso]

GXNS
9cNgd
¢aHd
XIAN
0TNQYd
ITADINY
d134d
V6vNV4
SVID1S
¢ldo
CNVY1S
ar4vi
T3INdD
gCEdNY
VETSY4S

auan

EOVEY6LT
66V/LL66L
T/9051€6
T/LSTCTIET
T65/186¢CT
65CC5568
16995¥€0C
CIvSy891
0T¥68CLY
76161691
0C9166¢ST
6881/17€6
¥8c6veve
£9//¥/00T
91SL0EVC

uonisod

(014
€1
ST
61
125
91

T

4
61
91

125
(014

glTh)

¥28.45,082
TL0T9Z#032
S0T6688082
€0S.9€1082
ZT/801ET3d
€5288¢5082
890T#89¢8>
0946289032
TG9¥TTG18d
6789€¢82
$€€5290282
€£5£09€082
8009281182
8817270082
6879589782

odd

dOdIT01 pue

VYO SHOYO0D [eula)xa uj uoijedljdas pue §ODIAl SU} Ul paJaA0dsIp UoijejAyiaw YN POO|q pue axejul [oyodje uaamiaq (S4ZT = N) SUOIBID0SSE [9A0U Juedijiusis Aj[ed13siiels 3sow GT 2yl ¢ 319Vl



DUGUE T AL.

5751, and 6585, respectively when considering an FDR-adjusted P <
.05 (Table S3).

3.11 |
intake

Genomic regions associated with alcohol

Applying DMRcate to the MCCS data, association with alcohol intake
in last week was observed for methylation at 221 regions of contigu-
ous CpGs (P < 1.0 x 1077) (Table 519). Several of the most statistically
significant regions contained a large number of CpGs annotated to
genes that were not ranked among the highest in the EWAS; for
example, a cluster was identified in each of MAB21L1 (23 CpGs, P =
2 x 107%); HOXA4 (25 CpGs, P = 3 x 107%%); GAS5 (9 CpGs, P = 4 x
10739); SNHG1(9 CpGs, P = 6 x 107%°).

3.1.2 |
nal data

Replication of novel associations using exter-

Of the 1243 novel associations, 1078 (87%) were replicated using data
from KORA and LOLIPOP. Replication rates were 87%, 89%, and 93%
for CpGs associated with alcohol intake over the last week, decade,
and lifetime, respectively (P < .05; Table 2 and Table S5).

3.1.3 | Interaction analyses

Using the Bonferroni correction for multiple testing (P = .05/1414 =
3.5 x 107°) and the last week alcohol intake variable, we observed
stronger associations for women at cg13446906 (MIR548F5), and
cg22363327 (SFRS13B), and weaker associations for smokers at
cg05104080 (ILKAP), cg17058475 (CPT1A), and cg01395047 (TLR9).
At P < .05, stronger associations were observed for women at
200 CpGs (test for binomial proportions, P = 6 x 107%%); weaker
associations were observed for participants with a higher smoking
score (N = 159, P = 6 x 107?°) and a higher BMI (N = 165, P = .003)
(Table 3; Table S15).

TABLE 3
Positive Negative
Interaction Interaction
Variable (P < .05) (P < .05)
Sex (F vs M) 200 5
Age 53 11
Smoking score® 7 159
Body mass index 7 65
Case status (Case vs. control) 35 16
Polygenic score for alcohol drinking 8 156

SSAE" | 7013

For the MCCS sample with genetic and DNA methylation data (N =
3859), the polygenic score was positively associated with alcohol
intake in previous week (P = 9 x 10™°) (Table $13). Weaker associa-
tions (P < .05) for participants with higher polygenic score were
observed for 156 CpGs (P = 2 x 107%), although none passed the
Bonferroni correction (Table 3 and Tables S12 and S13). There was
only weak evidence of association with methylation at CpGs located
in regions including SNPs in the polygenic score (Table S14).

3.1.4 | Alcohol types

For alcohol intake in the previous decade, the regression coefficients
were the greatest for beer intake for 917 (65%) CpGs, for spirit intake
for 309 (22%) CpGs, and for wine intake for 188 (13%) CpGs, whereas
these percentages were 27%, 32%, and 41%, respectively, for lifetime
alcohol intake (Table S16).

3.1.5 | Sensitivity analyses

Age, sex, smoking, BMI, country of birth, and cell composition were
associated with methylation at many alcohol-associated CpG sites.
Adjustment for smoking, but not BMI, made a substantial difference
to the estimated coefficients; for the “previous week” alcohol intake
variable, 1985 associations were observed when no adjustment for
smoking was made. Adjusting the models for additional health-related
variables or not adjusting for all white blood cell types made virtually

no difference to the results (Supporting Information).

3.2 | Replication of previously reported associations
using MCCS data

We examined the replication of the associations between alcohol
intake and whole-blood DNA methylation previously reported in Liu
et al with P < 1077.1? Of the 518 associations, we replicated 403
(78%) at P < .05, using the MCCS “previous week” alcohol intake

Interaction between alcohol intake and other factors in association with DNA methylation changes for 1414 alcohol-related CpG sites

Genes Annotated to CpGs for which Strongest
Evidence of Interaction Observed (P < .001)

P* (full results in Table S13)

6 x107% MIR548F5, SFRS13B, MIR548F5, MGAT5B, NSD1, ABI3,
SARM1, NFIX, SC65, NTF3, ADRA2A, ESRP2, ZNF532

0.07 SLC7A11

6 x 10720 TLRY, CPT1A, ILKAP, MYB, SLC7A11, HDAC1, GPR39,
AKR1A1, RPP21, Céorf227

0.003 BCAN, JAK1, TOPIMT

1 -

2x107% RPL6, DOPEY2, NPM1, MSI2, VPS54

*P value from test of binomial proportions that the greatest number (eg, 200 for sex) is greater than 35 (number of associations expected by chance). P
values were calculated assuming independence between methylation values at the 1414 CpGs.

2Smoking was coded as a pseudo-continuous score: O: never; 1: former, >15 years ago; 2: former, <15 years ago; 3: current, <20 cig/day; 4: current, >20

cig/day.
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variable; 169 reached genome-wide significance P < 1077 (Table 4,
Table S5). Replication was substantially higher for associations identi-
fied in European ancestry individuals (335/363, 92%), compared with
those of African ancestry (68/155, 44%).

3.3 | Reversibility of associations

The current decade alcohol consumption variable of the MCCS was
classified into current, former, and never. Of the 1414 CpGs consid-
ered, 280 were differentially methylated (P < .05) between former
and never drinkers and 282 were differentially methylated (P < .05)
between former and current drinkers, with only two overlapping
CpGs. The reversibility coefficients, assessing, for former drinkers,
the degree of return to the average methylation levels of never
drinkers, were wide-ranging (median: 47%, IQR: 19%-79%) (Table
S7). In KORA, there was also substantial reversibility, as 332 CpGs
were differentially methylated when comparing former with current
drinkers. A total of 86 CpGs were differentially methylated in both
data sets for the comparison of former with current drinkers, and
530 CpGs when pooling results from both cohorts (P < .05); the most
significant associations are presented in Table 5.

3.4 | Longitudinal associations

We further tested the 1414 CpGs with cross-sectional associations
for longitudinal associations using the MCCS and KORA. Repeated
methylation measures and alcohol information were available a
median of 11 and 7 years apart in the MCCS and KORA, respec-
tively. Change in alcohol intake was associated with change in meth-
ylation (P < .05) for 267 CpGs in the MCCS and for 331 CpGs in
KORA, with 92 overlapping associations. After pooling the results,
we observed evidence of change over time for 513 CpG sites
(Table S8). The most statistically significant longitudinal associations
are shown in Table 6. Fewer associations were observed in the
MCCS when no adjustment for baseline methylation levels was made
(N = 125; Supporting Information, material). The analyses of alcohol
cessation (N = 88 participants, 8%) and uptake (N = 107, 10%)
revealed 147 and 40 associations, respectively, overlapping little with
the 513 identified CpGs (N = 65 and N = 19, respectively). CpG sites
that showed stronger evidence of association in the longitudinal
analysis appeared somewhat more reversible in the cross-sectional
analysis (Figure S5), and 245 CpGs appeared differentially methyl-
ated in both analyses (Table S10).

3.5 | Gene description and pathway analyses

The role of each of the 842 identified genes is summarised in Table
S20. The gometh function was applied separately to CpG sites associ-
ated with lifetime (N = 392) and last week alcohol intake (N = 1318)
and for associations with reversibility coefficients lower and greater
than 50% (N = 753 and N = 661, respectively) (Table S11). The most

significant KEGG pathways were for the last week variable: “chronic
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myeloid leukaemia,” “ribosome,” and “glycosaminoglycan biosynthe-
sis”; lifetime variable: “regulation of actin cytoskeleton,” “biosynthesis
of amino acids,” and “platelet activation”; persistent associations: ribo-
some and “human cytomegalovirus infection”; reversible associations:
“cellular senescence” and “MAPK signalling pathway.” There was
strong evidence for enrichment of many GO pathways, and the stron-
gest associations were observed for the last week variable: “negative
regulation of gene expression”; persistent associations: “homophilic
cell adhesion via plasma membrane adhesion molecules”; reversible

associations: “translation” (Table S12).

4 | DISCUSSION

Our study identified 1481 methylation sites associated with alcohol
consumption, including 1078 discovered in the MCCS and replicated
in independent cohorts and 403 replicated from a previous large
EWAS. An additional 513 CpGs discovered in the cross-sectional anal-
ysis were indirectly replicated in the longitudinal analysis. The findings
using a less conservative significance threshold than P < 1077 (ie, 16
732 associations observed using FDR adjusted P < .05 for previous
week variable) indicate that many more alcohol-associated CpGs are
likely to exist across the genome. The majority of CpG sites we identi-
fied were hypomethylated with increased alcohol intake. The overrep-
resentation of gene body probes in our analysis could be explained by
an overall hypomethylation resulting from the potential disruption of
1-carbon metabolism induced by increased alcohol consumption and
might not have specific functional implications. In contrast, aberrant
hypomethylation of gene promoter CpGs, which were also overrepre-
sented, might affect specific gene functions, but the functional rele-
vance of our findings could not be tested in the present study.
Alcohol-related hypomethylation appears to be largely reversible
upon alcohol cessation; this was inferred from three analyses. First,
we observed substantially more and stronger associations with alcohol
consumed in the last week than in the last decade or lifetime, indicat-
ing that the alcohol intake most relevant to DNA methylation was that
closest to blood draw. Similar data were not available from other
cohorts to replicate this finding. Second, the cross-sectional compari-
son of current and former with never drinkers revealed that the differ-
ence in terms of DNA methylation between former and current
drinkers was on average half that between never and current drinkers,
with wide-ranging estimates; we also identified CpG sites that were
consistently differentially methylated in former compared with current
drinkers in MCCS and KORA. Third, using longitudinal data taken sev-
eral years apart (11 years in the MCCS and 7 years in KORA), we iden-
tified a set of 513 CpG sites that varied with change in alcohol
consumption, and 245 of these corresponded to differentially methyl-
ated sites in the comparison of former with current drinkers (cross-
sectional). The longitudinal analysis had less power because of a lower
number of included participants and relatively small variation in drink-
ing status over the periods considered and because the variable
reflecting changes in alcohol drinking may have been measured with

error. In the MCCS, the assessment of alcohol consumption was not
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TABLE 4 Replication of the strongest associations (P < 107*) reported in Liu et al, Mol. Psychiatry, 2016 using MCCS data

CpG

cg11610002
cg15061231
€g22524735
cg25729907
cg25120484
cg07710247
cg05538701
cg02583484
cgl3729116
cg13057576
cg07470207
cg09935388
cg05593667
cg02003183
cg13620705

Chr.

W W 00 W W

14
17

Position

126080368
186353575
144779094
146263345
197186156
55268669
116866658
54677008
1859262
64692154
132828746
92947588
35490744
103415882
73559492

Gene

BREA2
PLSCR1

NARS
FAM26D
HNRNPA1
LETM1
SYNE2

GFI1

CDC42BPB
LLGL2

Location

TSS200
TSS1500

3'UTR
5'UTR
Body
TSS1500
Body

Body

Body
Body

Note. The full results are presented in the Supporting Information.

Discovery Set
Ancestry

African
African
African
African
African
African
African
white
white
African
African
African
white
African

African

Est.
Liu
-0.10
-0.09
-0.03
-0.05
-0.05
-0.04
-0.04
-0.39
-0.18
-0.04
0.04
-0.17
-0.25
0.10
-0.09

P Liu

1x107%
9 x 10728
1x10™%
4x107%*
2 x 1072
1x107%°
1x107%
2x 107"
7 x 10718
9 x 10718
1x107Y
2x 107"
4 %1071
7 x 1071
9 x 1071

P for Alcohol Intake in

Previous Week (MCCS)

0.06
0.6
0.8
0.7

1
0.8
05

2x107%
1x10°°
0.1
05
2x107°
3x107
0.04
02

9 of 13

Replicated

Yes

Yes

Yes

Yes

Abbreviations: Chr., chromosome; Est. Liu, regression coefficient reported in the study by Liu et al, Mol. Psychiatry, 2016; MCCS, Melbourne Collaborative

Cohort Study.

TABLE 5 Reversibility of associations (cross-sectional current vs former vs never) for the fifteen most significant associations in the MCCS
EWAS for the “current decade” alcohol intake variable

Current Decade Intake, g/day

Former vs Never

Current vs Never

CpG

cg06690548
cgl4476101
cg12825509
cg02711608
cg18120259
cg18336453
cg19693031
cgl1376147
€g26856289
cgl17058475
cgl6246545
cg06644515
cg02583484
cg15804598
cg00252472

Chr.

11
1
11
1
1
12
17
6

Position

139162808
120255992
185648568
47287964
43894639
43082296
145441552
57261198
24307516
68607737
120255941
173834831
54677008
43224418
150739173

Est.

-6.6
-34
-24
-2.1
-1.9
-1.3
-2.5
-1.5
-1.6
-3.6
-1.7
-1.6
-14
-11
-2.7

P

7 x107°
6 x 1073
2x107%
2 x 107
1x10™%°
2x 107"
5x107%
1x107%
5x107'®
9 x 10718
1x107"
6x 107
1x107%
1x107%
1x107%

Est.

-0.01
-0.02
-0.05
-0.01
-0.04
-0.03
-0.02
-0.04
-0.01
-0.07
0.00
0.00
-0.02
-0.02
-0.03

p

0.8
0.4
0.009
0.5
0.009
0.01
0.3
0.001
0.5
0.03
0.9
0.9
0.2
0.1
0.3

Est.

-0.12
-0.10
-0.07
-0.04
-0.05
-0.04
-0.06
-0.05
-0.05
-0.16
-0.04
-0.04
-0.05
-0.04
-0.08

P
2x1078
2x1071°
2x1078
8 x107°
6x107°
5x 1078
3x10™*
3x1077
4x107¢
5x 10713
1x10™
3x10*
3x107
2x1077
5x107°

Reversibility
Coefficient®

95%
81%
31%
76%
14%
32%
61%
7%
78%
56%
104%
106%
62%
52%
63%

Note. All models were adjusted by fitting fixed effects for age, sex, smoking status, BMI, country of birth, sample type and white blood cell composition
(percentage of CD4+ T cells, CD8+ T cells, B cells, NK cells, monocytes, and granulocytes, estimated using the Houseman algorithm), and batch effects.
Regression coefficients are given for intakes in grams per day and multiplied by 1000. The full results are presented in the Supporting Information.

Abbreviations: Chr., chromosome; Est., regression coefficients from linear mixed regression models (MCCS); EWAS, methylome-wide association study;
MCCS, Melbourne Collaborative Cohort Study.

®Reversibility coefficient, expressed as a percentage defined as coefficient (“former” compared with “current”)/coefficient (“never” compared with

“current”).
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TABLE 6 Longitudinal associations (P < 107%) assessed in the MCCS and in KORA (data collected 11 and 7 years apart, respectively)

Cross-sectional Data

Longitudinal Data

MCCS (previous week)

CpG Chr  Position Gene Location Est.
cg06690548 4 139162808 SLC7A11 Body -7.9
cg18120259 6 43894639  LOC100132354 Body -24
cg02711608 19 47287964  SLCI1AS5 1stExon -2.6
cgl4476101 1 120255992 PHGDH Body -4.0
cgl6246545 1 120255941 PHGDH Body -2.2
cgl1376147 11 57261198  SLC43A1 Body -21
cg20732160 3 48590040  PFKFB4 Body -1.7
cg03068497 7 30635838  GARS Body -3.0
cg07626482 19 47289503  SLCI1AS5 TSS1500 -14
cgl13526915 14 24164078 -21
cgl4756878 2 12568736 -1.2
cg04460609 4 16532808  LDB2 Body 2.2
cg21626848 17 39969267  SC65 TSS1500 =L@
cg03533472 16 46919112  GPT2 Body -2.2

MCCS KORA Pooled?®
P Est. P Est. P Est. P
1x10%  -47 2x10° -54 7x10* -52 5x107%°
4 x107% -15 5x10° -15 5x10® -15 8x107%°
6x107%° 20 4x10% -14 1x10° -15 3x107
2x10% -29 1x10* -18 3x10°¢ -21 3x107°
4x 1072 -17 2x10° -14 7x107 -14 4x107°
2x10% -10 8x10°% -14 1x10° -13 3x10°
3x 107 -16 3x10° -12 1x10° -13 1x10”7
3x10% 20 2x102 -24 4x10° -23 2x107
4x10%° -12 2x10° -10 4x10° -11 3x1077
8x 10718 -12 8x102 -17 1x10° -16 3x10°
3x1077 -14 2x10° -09 4x10% -10 3x10°
3x107Y -12 2x102? -13 1x10% -13 5x10°
1x10* -18 2x10% -08 2x10°% -11 8x10°
1x107® -25 9x10% -17 2x10°% -20 9x10°

Note. All models were adjusted by fitting fixed effects for age, sex, smoking status, BMI, country of birth, sample type and white blood cell composition
(percentage of CD4+ T cells, CD8+ T cells, B cells, NK cells, monocytes, and granulocytes, estimated using the Houseman algorithm), and batch effects.
Regression coefficients are given for intakes in grams per day and multiplied by 1000. The full results are presented in the Supporting Information.

Abbreviations: Chr., chromosome; Est., regression coefficients from linear mixed regression models (MCCS) or linear regression models (KORA); KORA,
Cooperative Health Research in the Augsburg Region; MCCS, Melbourne Collaborative Cohort Study.

?Est. and P refer to the pooling of results from the MCCS and KORA using fixed-effects meta-analysis.

identical at baseline (alcohol in the previous week) and follow-up (alco-
hol in the previous year). These findings taken together indicate a sub-
stantial degree of reversibility in the associations, which was not
assessed by previous studies.

Another potential limitation of our study is residual confounding,
most notably by smoking or white blood cell-type composition, which
are both strongly associated with alcohol drinking and DNA methyla-
tion.® We observed that many CpG sites associated with alcohol
drinking were also associated with other factors such as smoking,
white blood cell composition, BMI, and other factors, which may indi-
cate that these loci are very sensitive to the environment. Cell compo-
sition was estimated with the widely used Houseman algorithm

2740 and we did not assess sensitivity

modified by Jaffe and Irizarry,
to the method used for deriving cell composition.** Although our
adjustment for smoking was relatively comprehensive, our sensitivity
analyses demonstrate that alcohol and smoking may exert joint influ-
ences on many CpGs across the genome.

We observed less substantial replication for CpGs discovered in
individuals of African ancestry, which may indicate that alcohol-
associated methylation changes are not generalizable to all human
populations. Associations in individuals of African ancestry in the
study by Liu et al were discovered by pooling data from a smaller num-
ber of studies so might have been less replicable by nature.

The associations between alcohol consumption and methylation
were stronger for people with genetic predisposition to consume less

alcohol, as defined by a 13-SNP polygenic score. Several genes

included in the polygenic score are involved in alcohol metabolism,
for example, those of the alcohol dehydrogenase family (ADH1B,
ADHI1C, and ADH5) and GCKR (glucokinase regulatory protein,
involved in glucose metabolism), which could provide a biological
explanation for the interaction between the polygenic score and alco-
hol intake, given links between alcohol metabolism pathway and epi-
genetic mechanisms.*2

Associations appeared weaker for smokers and men, consistent
with the observation that these population subgroups tend to drink
more alcohol in most cultures, perhaps because of being less suscepti-

ble to the harmful effects of alcohol.*3

Women have previously been
reported to have slower alcohol metabolism than men.** These find-
ings should be confirmed by further studies. We included in the anal-
ysis participants who later developed cancer, which could give rise to
collider bias when both DNA methylation and alcohol are associated
with cancer risk.**> We found no evidence of differences in associa-
tions by case/control status in our study. Further, that most discov-
ered associations were replicated in independent cohorts of healthy
participants with distinct ethnic origin is a strong testament that our
findings were not driven by the inclusion of future cancer cases.

Our study is difficult to compare with studies other than that by
Liu et al, because of differences in terms of study design, measure-
ment of DNA methylation, and tissue analysed. Auta et al*® measured
global methylation levels in liver and cerebellum tissue of rats and con-
cluded that each tissue was characterised by a distinct methylation

signature of alcohol consumption, but no results at specific genetic
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loci were reported. In a US study including over 600 samples, the
association between alcohol dependence and epigenetic aging in var-
ious sets of blood, liver, and prefrontal cortex tissue was investi-
gated.*” The authors found some evidence of accelerated epigenetic
aging although results were only partly consistent across tissues; sig-
nificant associations were found in one set of blood samples and in
liver. In a previous study using MCCS data, we also found accelerated
epigenetic aging in the blood of heavy drinkers.*® Lohoff and col-
leagues analysed data from multiple cohorts and tissues and found
that alcohol use disorder was associated with differential methylation
at the promoter region of PCSK9.*° Interestingly, the association
was observed in blood, brain, and liver, and PCSK9 is a gene
primarily expressed in the liver. However, PCSK9 was not differentially
methylated with respect to alcohol consumption in our study or that
of Liu et al.

Another example of general lack of replication is a cross-sectional
analysis of DNA methylation measures (lllumina 27 K assay) in the
blood of 81 drinkers and 81 age- and sex-matched controls, which
reported 906 differentially methylated CpG sites.”® However, these
findings were not independently replicated, and as reported by the
authors, only two of these were identified at P < 107 in the study
by Liu et al'?; these were also identified in our study. Tay and col-
leagues studied 1287 adolescents for whom blood DNA methylation
was measured using the HM450K assay®? to identify associations with
psychosocial stress and substance use, including alcohol consumption.
There was weak evidence of an association between alcohol use and
methylation of the SPDEF gene, the latter being associated with num-
ber of stressful life events. The SPDEF gene was not associated with
alcohol consumption in our study.

The review by Zhang and Gelernter identified a number of small
studies (N < 200 participants) that examined associations of DNA
methylation at candidate genes with various alcohol use or disorder
outcomes.'® Even for the largest of these studies, associations were
generally weak and not replicated in our study, for example, reported
associations for the MAOA gene,52 for OPRM1,°® for POMC>* at which
an association in the opposite direction was observed in our study
(cg09916783 promoter of POMC: P = 1.9 x 107° for last week intake).
Several studies investigated the SLC6A3/4 genes for which there was
very weak evidence of association in our study (P > 4 x 10™%). A study
of 383 heavy drinkers whose DNA methylation was measured in saliva
samples using a custom assay targeting six CpG sites in the promoter
region of the dopamine D2 receptor (DRD2) gene reported associa-
tions of DNA methylation with activation of neural reward regions,
as well as severity alcohol use disorder symptoms.® In our setting,
we did not observe associations between DRD2 DNA methylation
and alcohol consumption, and only marginally significant associations
with other DRD genes. Finally, Bruckmann et al observed hypomethy-
lation of GDAP1 in alcohol-dependent patients, with a dose-response
relationship by clinical severity®; interestingly, we also observed
hypomethylation of GDAP1 promoter at cg23779890 (last week
intake, P = 3.1 x 107).

The newly discovered CpG sites with strongest evidence of associ-

ation with alcohol consumption were all located in genes, including in

11 of 13

regulatory regions. The five most strongly differentially methylated
newly identified CpGs located in regulatory regions were in SFRS13A
(Serine and Arginine Rich Splicing Factor 10, a splicing factor that in
its dephosphorylated form acts as a general repressor of pre-mRNA
splicing), CPNE1

phospholipid-binding protein that plays a role in calcium-mediated

(encoding Copine 1, a calcium-dependent
intracellular processes), SLC1A5 (Solute Carrier Family 1 Member 5,
encoding a sodium-dependent neutral amino acid transporter),
FAM49A (Family with sequence similarity 49, member A), and PRELP
(Proline And Arginine Rich End Leucine Rich Repeat Protein, which
encodes a leucine-rich repeat protein present in connective tissue
extracellular matrix). We searched the literature for these genes and
found little evidence of obvious links to alcohol metabolism, consump-
tion, or alcohol-related diseases. We did not examine causality in our
study; we hypothesise that if DNA methylation were the cause of
alcohol drinking, it would likely be at a restricted number of loci
involved in addiction mechanisms and alcohol metabolism. Our inves-
tigation of biological pathways using two enrichment databases did
not clearly identify pathways or mechanisms known to play a key role
in alcohol metabolism or alcohol-related diseases such as cancer, car-
diovascular disease, and mental health and addiction pathologies. Fur-
ther analyses at the gene expression level, in particular for the most
significant pathways we identified, are required to investigate to what
extent the methylation changes associated with alcohol drinking iden-
tified in our study are involved in epigenetic regulation of genes or
networks of genes. Our study identified methylation patterns in blood
whose usefulness as biomarkers to predict or monitor alcohol-related
disease should be validated in further studies.

Our study shows that alcohol consumption is associated with wide-
spread changes in blood DNA methylation. These changes appear
more pronounced in women, non-smokers, and individuals with lower

genetic predisposition to drink alcohol and are at least partially reversible.
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