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Abstract 
Objective 
Restless legs syndrome is a frequent neurological disorder with substantial burden on 

individual wellbeing and public health. Genetic risk loci have been identified but the 

causatives genes at these loci are largely unknown, so that functional investigation and 

clinical translation of molecular research data are still inhibited. To identify putatively 

causative genes we searched for highly significant mutational burden in candidate genes. 

Methods 
We analyzed 84 candidate genes in 4,649 patients and 4,982 controls by next generation 

sequencing using molecular inversion probes that targeted mainly coding regions. The 

burden of low-frequency and rare variants was assessed, and in addition, an algorithm 

(binomial performance deviation analysis) was established to estimate independently the 

sequence variation in the probe binding regions from the variation in sequencing depth. 

Results 
Highly significant results (considering the number of genes in the genome) of the 

conventional burden test and the binomial performance deviation analysis overlapped 

significantly. Fourteen genes were highly significant by one method and confirmed with 

nominal significance by the other to show a differential burden of low-frequency and rare 

variants in restless legs syndrome. Nine of them (AAGAB, ATP2C1, CNTN4, COL6A6, 

CRBN, GLO1, NTNG1, STEAP4, VAV3) resided in the vicinity of known restless legs 

syndrome loci while five (BBS7, CADM1, CREB5, NRG3, SUN1) have not previously been 

associated with restless legs syndrome. Burden test and binomial performance deviation 
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analysis also converged significantly in fine-mapping potentially causative domains within 

these genes. 

Interpretation 
Differential burden with intragenic low-frequency variants reveals putatively causative genes 

in restless legs syndrome. 

Introduction 
The contribution of low frequency variants to the genetic architecture of common diseases 

has gained considerable attention recently1-3. However, the required sample size in 

association analysis of single rare variants is inversely proportional to their allele frequency, 

necessitating strategies to overcome this power problem1, 4-6. Increasing the sample size 

while minimizing genotyping/sequencing costs, is one such strategy. Class-wise analysis of 

variants as in gene-wise burden testing, is another. 

We applied both strategies when investigating the contribution of rare (minor allele frequency 

MAF ≤ 1%) and low frequency variation (1% < MAF ≤ 5%) to restless legs syndrome (RLS), 

one of the most prevalent neurological disorders in Western countries. RLS affects 5-10% of 

the population, presenting with unpleasant symptoms in the legs, an urge to move at rest 

predominantly in the evening, and sleep disturbances7, 8. Previous genome-wide association 

studies of common variants revealed 19 RLS loci9-11. For the detection of low frequency 

variants in a set of 84 candidate genes we now applied tiling molecular inversion probes 

(MIPs) which allow for targeted enrichment and re-sequencing of large sample sizes12. 

MIP technology is based on two linked probes that bind to the same DNA target strand. Upon 

binding, the MIP is circularized enzymatically. Only then the captured DNA between the 

probes can be sequenced. To do so, next generation sequencing (NGS) adapters and 

multiplex tags are attached to the captured DNA by PCR. Sequencing reads are mapped to a 

reference so that polymorphisms can be detected. This and similar MIPs methods are widely 

used for resequencing of various traits 13-15. 

The standard MIP analysis focuses on variation found in the captured sequences. However, 

the MIP probes’ hybridization binding capacities are influenced by genetic variation within the 

probe binding sequences. While high reading coverage and double tiling of the MIPs may 

largely neutralize the potential impact of such variation on the sequencing results, which is 
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desirable especially in diagnostic applications on a limited number of genes16, it is also 

possible to regard the deviation of the yield of MIP sequencing reads as independent 

information on the genetic variation within the MIP probe binding sequences. Devoting our 

limited resources to the scientific analysis of a considerable number of genes in a large 

number of patients and controls, we followed the latter option and developed a tool called 

binomial performance deviation analysis (BIPEDAL) which assessed the differential variant 

burden directly from the difference in MIP read number. Incidentally, BIPEDAL is sensitive to 

copy number variations that may escape sequencing. BIPEDAL results were compared to 

standard burden of rare variant testing (BRVT)17 of the MIP target sequences. Examining 

11,214 MIPs at 84 RLS candidate genes we detected a large and significant overlap in the 

results of these two independent methods. The significant overlap of BRVT and BIPEDAL 

also holds in fine-mapping of intragenic domains. Beyond the mere calling of variants, 

enrichment-based NGS technologies provide quantitative hybridization data that can thus be 

made useful for the genetic study of complex traits. 

Methods 
Targeted sequencing, variant calling and quality control 
We designed molecular inversion probes (MIPs)12, 18 for extended exons (extending by 20 bp 

over the exon borders) and promotors (500 bp upstream from any transcription start site) of 

84 putative RLS genes. 65 genes were selected from loci detected in a previous GWAS11 

using eQTL and additional functional annotations as the major selection criteria. The 

remaining 19 genes were the top genes from a case-control Illumina ExomeChip study, 

where no gene had reached significance after multiple testing correction of the burden test19. 

These 19 genes were included in the MIPseq analysis because it covered more variants than 

the ExomeChip analysis and thus was potentially providing the burden test with sufficient 

power. The 84 candidate genes and their selection criteria are provided in Supplementary 

Table 1. MIP binding sites were selected such as to avoid variants with minor allele 

frequency (MAF) greater 1% listed in dbSNP Build 141. Alternatively, degenerated MIPs 

were used so as to neutralize the effect of the common single nucleotide polymorphisms 

(SNPs). MIPs were pooled and calibrated as described previously12, 15, 16, 19. We paired-end 

sequenced in batches à 186 samples on 6 Illumina HiSeq 4000 lanes19. Together, we 

sequenced 4,649 RLS cases collected from Germany/Austria and 4,982 controls from the 
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region of Augsburg (KORA) in the South-East of Germany20 (Table 1).. The study was 

approved by the respective IRB and participants provided informed written consent. RLS 

cases have been diagnosed by experienced neurologists based on the IRLSSG criteria21. 

Paired-end reads were merged using BBMerge22, trimmed at head/tail for the sequencing 

adapters, and mapped to the reference genome (GRCh37/hg19, hs37d5, downloaded from 

https://software.broadinstitute.org/gatk/download/bundle) using Bowtie223. We filtered 

mapped reads (mapping uniquely to target region, 108 < length < 113, Mapq > 30), counted 

the read numbers as input for BIPEDAL (see below), and called variants using GATK24 v3.5 

(in target region, Average base quality for reads supporting alleles  > 30, Root Mean Square 

of the mapping quality of reads across all samples> 30, primary alignments only, insertion-

deletion depth > 50, insertion-deletion fraction > 0.1, contamination = 0.01) as input for 

BRVT. We normalized variants using Bcftools25 v1.2 and removed those of low quality 

(genotype quality < 50, coverage depth < 10, and also SNPs with Root Mean Square of the 

mapping quality of reads across all samples ≤ 30, call rate < 0.5) using Vcftools26 v0.1.12b. 

Using Plink27, 28 (v1.07, v2.00aLM), we further removed individuals with low call rate (< 0.5) 

and excess heterozygosity ± 5 standard deviations (SD). We filtered variants on Hardy-

Weinberg equilibrium (HWE) in controls (p < 0.00001). Individuals were excluded if data on 

age or sex, or data on common SNP as assessed in our latest GWAS11 were missing. 

Moreover, we excluded duplicated individuals, related individuals (π̂ > 0.09375), and 

population outliers based on 10 principal components (PCs) and ± 6 SD (derived from 

common SNP array data11). We filtered variants on minor allele frequency (0 < MAF ≤ 0.05 in 

either cases or controls). For subsequent analysis we used R29 v3.0.2. 

Burden analysis (BRVT) 
We grouped variants by gene and ran a burden of rare variant test (BRVT), that is, a 

modified Morris-Zeggini test as described by Auer et al. 2013  including a correction for 

differential missing genotypes and covariates age, sex, PC1, PC2, batch, and sub-batch. The 

number of PCs was determined based on a Scree plot analysis. Multiple testing was 

corrected on a stringent scale (0.05/25,000, corresponding to the number of genes in the 

genome) in line with the previous ExomeChip analysis, whose results were used for 

candidate gene selection. 
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BIPEDAL 
To test for an association between disease and variant burden as revealed by target 

sequencing depth, we developed BIPEDAL (binomial performance deviation analysis). Data 

processing by BIPEDAL can be subdivided into a first step which identifies MIP targets that 

show Bonferroni significant difference in sequencing depth between cases and controls and 

comprises a calibration, and a second step which determines a gene-wise or segment-wise 

burden with these disease-associated MIPs. 

In the first step, the sequencing depth of each MIP target is compared between cases and 

controls. Therefore, for n MIP targets and m individuals, consider an n x m matrix H of MIP 

target depths. To normalize by total read number over all MIPs in an individual, we transform 

H to Z, so that zi,j = hi,j/(h1,j + h2,j + … + hn,j). The zi,j are limited to the interval [0,1]. Therefore, 

their logit ki,j = log(zi,j/(1 - zi,j)) is used in the basic regression model of BIPEDAL 

 

(equation 1) ki,j ~ gi,j + fi,j + dj + bi, 

 

where gi,j and fi,j measure genetic variation in the probe and target regions of MIP target i in 

individual j, respectively, dj quantifies individual bias, and bi is the baseline for MIP target i. 

The individual bias covariate is needed because the read depths of the MIPs of an individual 

are not independent of each other. They share the same chemical resources during the 

library preparation and they become interrelated via the normalization procedure (see 

above). Thus, for instance, if one particular MIP cannot bind due of a CNV, the read depths 

of all other MIPs in that individual will increase, especially if the drop-out affects a MIP with a 

high baseline. 

Baseline parameter bi may be estimated from a submatrix K* of K, comprising c controls. 

Vector b = c-1∙K*∙Jc,1 contains the baselines of all MIP targets. The baseline is only needed 

for the next step of the calibration, the estimation of dj. This is done by regression on the 

subset of MIP targets for which gi,j and fi,j are available in all individuals, k.j ~ b + g.j + f.j + dj. 

The intercept dj captures the individual bias. 

The genetic variation of individual j in MIP target i may be correlated with disease probability 

aj, so that gi,j + fi,j ~ logit(aj), which is the model for the burden of rare variant test. Hence, we 

rearrange equation 1 to 

This article is protected by copyright. All rights reserved.



 
 

 

(equation 2) logit(a) ~ ki. + d + bi 

 

which models the association between disease probability and the calibrated sequencing 

depth of each MIP. The regression parameters βi of the ki are determined by logistic 

regression and subsequently tested for significant association using the Wald test. Individual 

covariates such as age and sex may be added to the equation, while bi may be dropped as it 

would be captured by the intercept.  

In the worst case, there may be an overall bias between cases and controls, causing an 

imbalance of the effect directions sign(βi). For quantification and eventual correction of this 

bias, we estimate the probability pbin = P(βi < 0) of randomly drawing a MIP target with lower 

depth in cases under the null hypothesis of no association between MIP target depth and 

disease status. As an estimator of pbin we choose the proportion of betas below zero among 

all those betas with significance above the nominal threshold (0.05), thus excluding the true 

associations from the estimation. 

The second step of BIPEDAL addresses all those MIP targets that showed significant 

association (Bonferroni-corrected for the number of MIPs) to the disease. We group them by 

gene and, for each gene, perform a one-sided binomial test to see whether there are 

significantly more MIPs with negative betas in that gene than expected, yielding 

(equation 3) pBIPEDAL = s=r∑nB(s|pbin,n), 

where pbin, as indicated above, is the probability for negative beta under the null hypothesis, 

and n and r are the numbers of all MIPs and all negative MIPs, respectively, within the 

examined gene. As such, BIPDEAL is alike a burden test, operating in the spirit of a meta-

analysis, but allowing for correction for residual bias by setting the probability of success to 

pbin. 

Application of BIPEDAL 
In our data, we considered only MIPs loci with at least one read in the whole experiment and 

only individuals with at least 200,000 reads of all MIPs combined. We calibrated BIPEDAL 

based on variants and for individuals from a more stringent QC (i.e., QC as before, but 

heterozygosity filter at ± 3 SD, HWE filter at p < 0.0001, population outliers from 10 PCs 
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± 4 SD). We added age, sex, batch, sub-batch, and 10 PCs from common variants as 

covariates. Multiple testing was corrected on the same stringent scale (0.05/25,000) as in 

case of the BRVT. 

To assess the overlap between significant genes in BIPEDAL and in BRVT a two-sided 

Fisher exact test was applied. 

Independent tests for case-control bias 
In addition to the described methods to adjust for a putative case-control bias in BRVT or 

BIPEDAL, we applied a positive control. A general bias (null hypothesis) would create a false 

uniform genetic architecture across all genes. We sampled by permutations of gene-variant 

assignments (100x) or gene-MIP assignments (1,000x), each followed by BRVT and 

BIPEDAL, respectively, and then correlated (Spearman) the logit-transformed p-values with 

the gene sizes (as measured by the number of variants or MIP targets). We thus obtained an 

empirical null distribution of correlations to which we compared the observed correlation to 

get an empirical p-value for testing the null hypothesis. 

As an additional control approach we applied BRVT to variant subclasses binned by their 

predicted consequences. For each gene, we calculated the BRVT p-values 2,500 times in 

each subclass after jackknife-sampling of equal numbers of variants in each subclass. For 

each subclass we thus obtained an empirical distribution of λ, which is the median deviation 

of the genes' p-values from a random distribution. The subclasses’ λ distributions were 

empirically compared by ANOVA. 

Fine-mapping 
Fine-mapping was applied to the 14 genes with significance above the stringent threshold in 

BIPEDAL or BRVT and cross-wise Bonferroni-corrected confirmation (Table 2). In BIPEDAL 

fine-mapping we identified and excluded the subsegments within these genes that did not 

show a strong burden in cases, retaining those subsegments which carried the burden. To 

test subsegment z binomially (in analogy to eq. 3), we use: 

 

(equation 4) pz = s=0∑xzB(s|pbinH0,nz), 
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where xz of the nz MIPs have a differentially lower target depth, and pbinH0 is at least as large 

as the average proportion of MIP targets that have a differentially lower target depth (to 

reach high specificity, we chose pbinH0 = 0.99). In a sliding window approach, nz is set to n (= 

window size) for all subsegments which determines the α and β errors: 

 

(equation 5) αn = 0.05/(m/n), 

 

(equation 6) βn = s=kn+1∑nB(s|pbinH1,n), 

 

where m is the number of all considered MIP targets and pbinH1 is expected to be 0.5. Both 

errors are linked by the critical binomial quantile 

 

(equation 7) kn = qbinom(αn, n, pbinH0). 

 

We chose the smallest n for which 1 - βn ≥ 0.99. 

For BRVT fine-mapping, we merged overlapping promotors and exons from all considered 

transcripts, and subjected the variants within the merged segments to BRVT with covariates 

as described above, one-sided significance testing for a greater burden in cases, and 

Bonferroni correction for the number of tested segments. BRVT might be underpowered if 

applied to small segments such as a single exon. Therefore, if possible, we extended BRVT 

fine-mapping to the segments that had been identified in BIPEDAL fine-mapping before. 

Fine-mapping interpretation 
To test for an overlap between the results of BIPEDAL and BRVT fine-mappings (excluding 

the results of extended BRVT fine-mapping), we performed 500 rounds of permutation. 

Within the set of genes subjected to fine-mapping, each round of permutation randomly 

reassigned the positions of BIPEDAL fine-mapped segments and randomly resampled the 

same number of BRVT subsegments. The significance level was determined by comparing 

the resulting empirical distribution of overlapping base pairs with the observed overlap. 

For segments that were detected in both the BIPEDAL fine-mapping and the extended BRVT 

fine-mapping, we determined the called variants and MIP probes that indicated a higher 

burden of genetic variation in cases. We annotated these probes/variants using Variant 
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Effect Predictor (VEP)30 variant consequences as well as functional regions downloaded from 

the UCSC table browser31 for ENCODE transcription factor binding sites (TFBS) and 

conserved TFBS32, DNase clusters V3 and UMass brain H3K4Me3 peaks33, miRNA 

regulatory sites34 and UNIPROT protein annotations. 

Results 
Targeted sequencing, variant calling and quality control 
We designed 11,214 molecular inversion probes (MIPs) for targeted sequencing of 84 

positional and functional RLS candidate genes. After quality control, 8,379 individuals (4,001 

cases) and 31,445 variants with MAF ≤ 5% in either cases or controls (Supplementary 

Tables 2 and 3)  remained. DNA aliquots from two individuals were processed on each PCR 

plate, serving as replicates for quality control. Their median pairwise concordance was 

0.9992 (95%CIl: 0.9984 to 0.9998) and 0.9994 (95%CI 0.9981 to 0.9999), respectively. 

BRVT 
We performed burden of rare variant testing (BRVT)17. Highly significant burden was found 

for 14 genes, i.e. COL20A1, CREB5, AAGAB, DMPK, CNTN4, MICALL2, VAV3, CADM1, 

BBS7, CRBN, ATP2C1, GLO1, NTNG1, and ASTN2 (p ≤ 0.05/25,000). Conditioning BRVT of 

each gene on the respective GWAS lead SNP or on variant burden of neighboring genes 

indicated the independence of the signals (Supplementary Table 1). Variant burdens in 

MEIS1 which comprises the strongest RLS GWAS signal11 and its paralog MEIS2 were 

significant (p = 5E-04 and p = 4E-05, respectively) but did not overcome the stringent 

threshold. The BRVT p-values were not a sole effect of a potential genotyping bias between 

cases and controls (p = 0.03, 100 permutations of gene-to-variant assignments). All 

significant genes showed a higher burden of minor alleles in the cases, suggesting that their 

effects in RLS are detrimental. When we binned variants by predicted consequence, 

performed BRVT in each bin subclass, and determined the deviation of the genes’ p-values 

from a random distribution (λ), we observed a significant difference between the classes (p = 

0.001). In subclasses with likely low effect sizes, λ was low. Intronic variants outside of 

TFBS, for instance, implied λ = 1.9 which was not significantly different from 1 (95%CI 0.7 to 

3.9), while missense and 5’-UTR variants implied λ of 2.7 and 3.2, respectively, that were 

significantly larger than 1 (95%CIs 1.2 to 5.0 and 1.4 to 4.8, respectively). 
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BIPEDAL 
We applied BIPEDAL to MIPseq data of RLS 4,649 cases and 4,982 controls. For estimation 

of their individual biases (accounting for individual leanings of the MIP targets’ depths) in the 

first step of BIPEDAL we selected a subset of 880 MIPs with 9,193 variants mapping to 

respective probe and target regions. The burden of variants and the MIPs’ general baselines 

explained a major proportion of the targets’ depths variance in each individual (95%CI of R²: 

0.72 to 0.89). The median effect sizes of the burden in probe and target regions were -0.37 

and 0.02 (95%CIs -80 to 15 and -1.34 to 1.52), respectively, suggesting that variants in the 

probe binding regions had a stronger effect on target depth. This negative effect was also 

observed for the individual variants (Fig 1A to C). As expected, the individual bias was 

slightly larger in cases (linear regression of individual bias on disease status, R² = 0.064, 

p < 2E-16, β = 0.40): Some MIPs usually generate many reads. If the target depth of such a 

MIP is substantially lowered in an individual, e.g. due to a copy number variation in the probe 

binding regions, then the other MIPs’ relative proportion of reads in that individual may 

increase, resulting in a relevant individual bias. This scenario is more likely in cases since 

they tend to have more genetic variation. We succeeded to calibrate BIPEDAL for 9,434 MIP 

targets, of which 5,664 showed a significantly different target depth between cases and 

controls after multiple testing correction. Among the non-significant MIP targets (p > 0.05), 

effect directions were balanced (pbin = 0.501). 

We then performed BIPEDAL analysis by gene. 16 genes showed stringent significance, i.e. 

ATP2C1, NTNG1, LAMA1, STEAP4, PTPRM, VAV3, ADAM22, CNTN4, PTPRD, SUN1, 

OSBP, RIMS2, BBS7, COL6A6, CREB5, and NRG3. 

Comparison of BRVT and BIPEDAL 
BIPEDAL confirmed 10 genes that had stringent significance in BRVT and, vice versa, BRVT 

confirmed 10 genes detected by BIPEDAL with stringent significance, resulting in 14 genes 

cross-wise confirmed with Bonferroni-corrected significance of p < 0.05/14 and p < 0.05/16, 

respectively (Table 2). Six genes showed stringent significance in both BRVT and BIPEDAL 

analysis, i.e. ATP2C1, BBS7, CNTN4, CREB5, NTNG1, VAV3. A set of that size was highly 

unlikely to occur by chance (two-sided Fisher’s exact test, p = 0.023, 95%CI 1.03 to 18.40). 
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Fine-mapping 
We performed fine-mapping in the 14 genes with stringent high significance in BRVT or 

BIPEDAL and cross-wise validation. For BIPEDAL fine-mapping a sliding window of 11 MIPs 

was selected (see Supplemental Data) resulting in 36 fine-mapped segments with 1 to 6 

segments in each of the genes while extended BRVT fine-mapping yielded 19 segments with 

1 to 4 segments in 12 of the 14 genes. (As described in the Methods section, BRVT fine-

mapping was extended, if feasible, to BIPEDAL fine-mapped segments because it may have 

been underpowered if applied to single exons only.) 

BIPEDAL fine-mapped segments intersected significantly with BRVT fine-mapped segments 

(35,614 bp, 17 overlapping segments with p = 0.002 after 500 permutations, excluding 

extended segments to avoid any statistical bias), demonstrating the reliability of the two 

methods. 

Intersecting BIPEDAL fine-mapping results with the results of extended BRVT fine-mapping 

yielded 19 validated segments in 13 genes (88,457 bp of the tiling MIP target regions): 3 in 

ATP2C1, 2 in BBS7, 1 in CADM1, 1 in CNTN4, 1 in COL6A6, 1 in CRBN, 3 in CREB5, 1 in 

GLO1, 1 in NRG3, 1 in NTNG1, 1 in STEAP4, 1 in SUN1, and 2 in VAV3 (details are given in 

Supplementary Table 4). Fifteen of these segments harbored open chromatin loci or 

transcription factor binding sites. Of note, the analysis revealed RLS-associated segments 

relating to brain open chromatin marked by H3K4Me3 patterns in CNTN4, NRG3 and 

NTNG1. COL6A6 and CADM1 seemed to be affected by regulatory alterations in RLS cases. 

Thirteen of 19 segments comprised protein coding sequences of which eight have a 

functional assignment (Table 3). Among these, the calponin-homology domain of VAV3, the 

Cation-ATPase-N domain of ATP2C1, and the VOC domain of GLO1 seemed to be affected 

by moderately or severely detrimental variants. The ATP2C1 locus overlaps with the ASTE1 

locus, which thus also showed detrimental effects in RLS cases. 

Discussion 
Common variants contribute to rare disease, and rare variants contribute to common 

disease35. The present paper demonstrates that the latter also applies to RLS, one of the 

most common neurological disorders. By MIP sequencing of a large case control sample of 

RLS patients we detected a significant burden of low frequency and rare variants in 14 genes 

(Table 2). In keeping with the preponderance of RLS GWAS loci in the selection of candidate 
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genes subjected to the MIP analysis, 9 of the 14 genes resided at one of these 19 known 

RLS loci. Due to the non-random selection of candidate genes we applied a stringent 

significance threshold in the gene discovery (p ≤ 0.05/25,000, corresponding to the number 

of genes in the genome) in order to avoid p-value hacking. With a Bonferroni correction for 

only the number of candidate genes, the set of significant results would have been larger and 

would have included the leading RLS gene MEIS1 and its paralogue MEIS2.  

The detection of genes with rare variants affecting the pathogenesis of RLS leads to the 

question whether allelic series in these genes may include highly penetrant variants that 

cause monogenic RLS and are detectable by linkage analysis4. A recent study that assessed 

the segregation pattern of rare protein-altering variants from significant GWAS loci in 7 large 

French-Canadian families had negative results36. We observed 21 of the reported variants, 

most of them with small effect sizes estimates. When we checked the low-frequency variants 

detected by the present study for linkage in European RLS families whose index patient we 

had included in the MIPseq analysis, we also could not detect significant co-segregation 

(unpublished). While this does not exclude the role of rare variants with nearly complete 

penetrance in the genetic architecture of RLS, we emphasize that for some multifactorial 

disorders monogenic subgroups may not exit. 

Our study has demonstrated that the search for low frequency and rare variant burden is 

useful in identifying the putatively causative genes at GWAS loci. This might include 

surprises such as the identification of GLO1 at the locus of BTBD9 while the latter previously 

appeared to be the likely RLS gene37. Glyoxalase 1, the gene product of GLO1, detoxifies 

methylglyoxal. Decreased Glo1 activity or increased maternal methylglyoxal levels derange 

neurogenesis in embryonic mice and cause long-term alterations in cortical neurons 

postnatally38, in keeping with the concept of RLS being a disorder of neurodevelopment11. Of 

note, a GWAS locus may contain more than one disease-associated gene, by chance or due 

to functional or developmental relation between genes within the same chromosomal 

domain39. Indeed, at three RLS GWAS loci we detected two genes each having significant 

burdens of low frequency variants (Table 2).  

Identifying causative genes at GWAS loci is important for guiding further functional research 

in molecular pathology and pharmacology. We identified CRBN, for instance, the gene of 

cereblon, a substrate receptor of the cullin-4 RING E3 ligase (CRL4). Cereblon is bound by 

thalidomide which inhibits the binding, ubiquitination and proteosomal degradation of CRL4’s 
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endogenous substrate MEIS240, 41. We therefore assume that thalidomide may have 

therapeutic potential in RLS cases where its teratogenicity is irrelevant, that is, in men and in 

women without childbearing potential. 

Our MIP analysis aimed for complete assessment of a comparatively large number of genes 

in a large number of individuals. Accordingly, in order to have as little gaps and dropouts as 

possible, the chosen MIP design and quality control thresholds were not maximized for 

sequencing precision as in diagnostic MIP applications, but allowed for potentially false 

variant callings within the MIP sequencing regions. In order to compensate for the latter, we 

developed BIPEDAL, a method for analyzing sequencing depth of MIPseq to obtain 

independent information on the variant burden within the MIP binding regions. As expected, 

BIPEDAL results showed significant and substantial overlap with the BRVT results. BIPEDAL 

therefore qualifies as a cost-efficient and time-efficient tool for validation of MIP results if the 

MIP study is focused on segmental variant burden. Of note, however, BIPEDAL and BRVT 

may reach their maximal reliability in different scenarios: BIPEDAL is less affected by a high 

burden of variants (including unrecognized copy number variations) which would lead to 

many missing variant calls and thereby to an underpowered BRVT so that significant 

BIPEDAL signals might be of interest even if they are not confirmed by BRVT results. On the 

other hand, BIPEDAL signals represent the effect of variants on probe binding efficiency 

which differs between variant positions, for instance, and therefore implies a potential bias so 

that BIPEDAL cannot reach the performance of BRVT applied to hypothetical error-free 

genotype data. 

As we have demonstrated, BIPEDAL can also be used for fine-mapping of variation-sensitive 

domains of disease-associated genes. Again, there was a highly significant overlap with 

BRVT fine-mapping, resulting in the identification of regulatory regions or coding segments 

with the active centers of putatively causative genes (Table 3) (details are given in 

Supplementary Table 4). Together, our BIPEDAL results may trigger the reanalysis of 

existing MIPseq datasets and influence the design of future large-scale probe-based re-

sequencing analyses. 

In summary, we applied BRVT and BIPEDAL to MIPseq data of a very RLS patient-control 

sample. Significance thresholds were corrected for the number of genes in the genome, that 

is, more rigidly than the number of analyzed genes or even of MIP probes would have 

required. We detected RLS associations of 14 genes, i.e. AAGAB, ATP2C1, CNTN4, 
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COL6A6, CRBN, GLO1, NTNG1, STEAP4, and VAV3, as well as BBS7, CADM1, CREB5, 

NRG3, and SUN1. Their products mostly function in calcium transport and neurogenesis. 

With the exception of AAGAB, the association could be fine-mapped to coding and regulatory 

regions within these genes. The first nine of these genes are located in the vicinity of RLS-

GWAS signals, the latter five reside at loci that have not been associated with RLS before. 
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Figure Legends 
Figure 1 
Evidence that the target sequencing depth of a substantial proportion of MIPs is reduced by 

low frequency variants located in the corresponding MIP probe binding regions. Tiling design 

of the MIPs allowed us to identify low frequency and rare variants in probe binding regions of 

16% of all MIPs. 

A, B) Two examples of rare variants (SNP rs143456273 and indel rs1308722484) in MIP 

probe binding regions with effect on the MIP target sequencing depth. Genotypes on the 

horizontal axis, corrected residual depth (logit of normalized target count minus individual 

bias, kij – dj) on the vertical axis. The respective regression (grey dashed line) resulted in the 

effect size β of -0.71 and -0.75, respectively. 

C) β values for all MIPs with low frequency or rare variants in their probe binding regions 

(solid line). Comparison with sampling 1000 null distributions of random variant-to-MIP 

assignments (dashed). The substantial shift of the solid curve to the left indicates that the 

majority of such variants negatively impact the target sequencing depth. 

D) Distribution of the inflation parameter λ (solid line) of the 1,000 null distributions (see C) as 

compared to the observed λ (dashed vertical line). The very large observed λ of 5.2 indicates 

that most of the examined variants affect the target sequencing depth of the corresponding 

MIP. 
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Table 1. Demographics after quality control

Male/female ratio Mean age (SD) Mean age at onset (SD)

BRVT cases

(n = 4,001)

0.52 62.75 (12.60) 42.04 (18.04)

BRVT controls

(n = 4,378)

0.94 55.70 (13.18) NA

BIPEDAL cases

(n = 3,975)

0.52 62.67 (12.65) 41.15 (18.03)

BIPEDAL controls

(n = 4,261)

0.94 55.62 (13.18) NA
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Table 2. Fourteen genes identified with stringent significance* (p  0.05/25.000) in BRVT or 

BIPEDAL, and cross-wise confirmation by BIPEDAL and BRVT, respectively.

Gene & genomic 
position (hg19)

Protein function (extracted from RefSeq 
Summary, UniProtKB, OMIM)

pBRVT pBIPEDAL

AAGAB
chr15:67,493,012
RLS-GWAS locus

Functions in clathrin-coated vesicle trafficking, 
e.g. EGFR recycling. Loss of function (LoF) 
causes autosomal-dominant palmoplantar 
keratoderma, punctate type I.

8.8E-10* 2.1E-03 

ATP2C1
chr3:130,569,368
RLS-GWAS locus

Catalyzes the hydrolysis of ATP coupled with 
the transport of Ca2+. LoF causes autosomal-
dominant Hailey-Hailey skin disease.

7.6E-07* 1.4E-13*

BBS7
chr4:122,745,483

Part of the BBSome, which is required for 
ciliogenesis. LoF causes autosomal-recessive  
syndromic intellectual disability (Bardet-Biedl).

4.2E-07* 1.5E-07*

CADM1
chr11:115,044,344

Mediates cell-cell adhesion (Ca2+-independent). 
May function in synapse assembly, neuronal 
migration, and axon growth/pathfinding.

3.8E-07* 3.6E-05 

CNTN4
chr3:2,140,549
RLS-GWAS locus

Glycosylphosphatidylinositol-anchored axon-
associated cell adhesion molecule that functions 
in neuronal network formation and plasticity.

7.2E-09* 2.4E-09*

COL6A6
chr3:130,279,178
RLS-GWAS locus

Part of the basal lamina of epithelial cells, 
possibly regulating their cell-fibronectin 
interactions. 

2.1E-03 3.2E-07*

CRBN
chr3:3,191,316
RLS-GWAS locus

Substrate recognition component of an ubiquitin-
protein ligase (mediates degradation of e.g. 
MEIS2). May function in memory by regulating 
neuronal expression of large-conductance Ca2+-
activated K+-channels. LoF causes autosomal-
recessive nonsyndromic intellectual disability.

7.2E-07* 1.6E-04 

CREB5
chr7:28,338,939

Binds CRE (cAMP response element) as a 
homo-/heterodimer (with c-Jun or CRE-BP1). 
Functions as a CRE-dependent transactivator.

3.9E-10* 3.5E-07*

GLO1
chr6:38,643,700
RLS-GWAS locus

Synthesis of S-lactoylglutathione. Regulates the 
TNF-induced transcriptional activity of NF-
kappa-B. Required for osteoclastogenesis.

8.6E-07* 9.9E-04 

NRG3
chr10:83,635,070

Stimulates activation and phosphorylation of 
ERBB4. May influence neuroblast population, 
and act as survival factor in oligodendrocytes. 

3.3E-04 7.5E-07*

NTNG1
chr1:107,682,539
RLS-GWAS locus

Functions in patterning and neuronal circuit 
formation at the laminar, cellular, subcellular and 
synaptic levels. Promotes neurite outgrowth.

1.1E-06* 9.3E-13*

STEAP4
chr7:87,905,744
RLS-GWAS locus

Transmembrane metalloreductase for Fe3+ and 
Cu2+ in the Golgi apparatus. Ubiquitous 
expression, but not in brain.

6.3E-05 3.0E-11*

SUN1
chr7:855,194

Nuclear envelope protein which is required for 
radial neuronal migration in the cerebral cortex 
and glial migration.

8.1E-04 3.0E-08*

VAV3
chr1:108,113,781
RLS-GWAS locus

GTP exchange factors for Rho family GTPases. 
Functions in actin dynamics, angiogenesis and 
integrin-mediated cell adhesion.

1.6E-07* 2.7E-10*
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Table 3. Of 19 segments determined by intersecting BRVT and BIPEDAL fine-mapping 

results, ten coded for functional domains in eight genes.

Gene Functional domain
ATP2C1 Cation transporter/ATPase (N-terminus), Ca2+-binding sites
CRBN Cereblon domain of unknown activity, binding cellular ligands and thalidomide 

(CULT) and Lon protease-like (N-terminal)
CREB5 Basic leucine zipper (bZIP) domain
GLO1 Vicinal oxygen chelate (VOC) domain (with substrate and zinc binding sites)
NRG3 Extracellular neuregulin-3 (cleaved from membrane-bound pro-neuregulin-3)
NTNG1 NGL discriminant loops, EGF-like, and laminin-type EGF-like domains
SUN1 SAD1-and-UNC84 (SUN) domain
VAV3 Phorbol-ester/DAG-type zinc finger, calponin homology domain, Dbl homology 

(DH), pleckstrin homology (PH) and Src homology 3 (SH3) domains
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