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Inhibition of the Defense System Stimulating Interleukin-12 Interferon-y
Pathway During Critical Illness

By Wolfgang Ertel, Marius Keel, Regula Neidhardt, Ursula Steckholzer, Jean-Pierre Kremer, Udo Ungethuem,
and Otmar Trentz

Interleukin-12 (IL-12) and interferon-y (IFN-vy) exert protec-
tive effects during experimental endotoxemia through
upregulation of cellular immunity and phagocytic functions.
They are part of a positive regulatory feedback loop that
enhances the production of the other. Because critically ill
patients show a marked suppression of T-cell and macro-
phage functions with a high susceptibility to infection, po-
tential defects in the immunity/inflammation upregulating
IL-12 IFN-y pathway were studied. As an ex vivo model of
endotoxemia, lipopolysaccharide (LPS) stimulated whole
blood from 25 critically ill patients and 12 healthy individuals
was incubated with either recombinant human (rh) IL-12 or
rhIFN-y, respectively. IFN-y dose-dependently (P < .05) in-
creased the release of IL-12 p40 and p70 into LPS-stimulated
whole blood from healthy humans without effect in whole
blood from critically ill patients. RhiL-12 p70 enhanced (P <
.05) the secretion of IFN-y in controls, while it was ineffective
in LPS-stimulated whole blood from critically ill patients.
The observed inhibition of the IL-12 IFN-y pathway is not
specific to LPS, since Staphylococcus aureus Cowan strain

NTERLEUKIN-12 (IL-12) and interferon-y (IFN-vy) rep-
resent both potent immunoreactive mediators, which
upregulate immune functions pivotal for the protection
against infectious pathogens (for review, see Trinchieri® and
Farrar and Schreiber?). I1L-12 promotes TH1 type cytokine
response, enhances specific and nonspecific cytolytic lym-
phocyte responses, and stimulates the proliferation of acti-
vated T lymphocytes and natura killer (NK) cells.* INF-y
has potent microbicidal activities through upregulation of
monocytes/macrophages with an increased secretion of pro-
inflammatory cytokines.? Moreover, |FN-y promotes the an-
tigen presenting process through enhanced expression of the
major histocompatability complex (MHC) class Il antigen.?
IL-12 induces T and NK cells to produce IFN-y.3* On the
other hand, IFN-y upregulates the synthesis and release of
IL-12 by phagocytic cells, B cells, and neutrophils.>” The
interactions between IFN-y and IL-12 appear to be involved
in a positive feedback mechanism that results in the activa-
tion of phagocytic cells during bacterial and parasitic infec-
tion. In this light, most in vivo studies using murine sepsis
models demonstrated that the IL-12 IFN-y pathway plays
an important role during acute infection with heightened
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I (SAC)-stimulated whole blood from critically ill patients
showed similar suppression. The secretion of IL-12 and IFN-y
was less reduced in critically ill patients when using isolated
cultures of adherent cells or lymphocytes. Although precul-
ture of whole blood from healthy humans with IL-10, but not
with IL-4, mimicked suppression of the IL-12 IFN-y pathway
similar to that observed during critical iliness, the release of
antiinflammatory reacting cytokines (IL-4, IL-10, trans-
forming growth factor [TGFI-B8,) was decreased into LPS-
stimulated whole blood from critically ill patients. These
results indicate at least two mechanisms responsible for dra-
matic disturbances of the IL-12 IFN-y pathway during critical
iliness: (1) deactivation of IL-12 and IFN-y producing leuko-
cytes in vivo early after the primary insult, and (2) presence
of serum suppressive factors different from IL-4, IL-10, or
TGF-B,. Because IL-12 and IFN-y upregulate essential im-
mune functions, the marked inhibition of IL-12 and IFN-y
release may be pivotal for high susceptibility of critically ill
patients to infection.

© 1997 by The American Society of Hematology.

resistance to pathogens and reduced mortality to a septic
challenge.®*° However, excessive doses of recombinant IL-
12 appeared to decrease the resistance to a bacterial chal-
lenge after burn injury in mice.™*

Critically ill patients are often anergic and show a high
susceptibility to invading microorganisms through severe in-
hibition of the celular, humoral, and phagocytic immune
system.’® In this study, we investigated a potential down-
regulation of the IL-12 IFN-y pathway in critically ill pa-
tients and the underlying mechanisms using lipopolysaccha-
ride (LPS)-stimulated whole blood as an ex vivo model of
endotoxemia.** Although this system cannot completely de-
pict cytokine interactions in the whole body, it has consider-
able relevance with respect to local compartmentalized cyto-
kine interactions. Additionally, it excludes any influence of
cell preparation techniques on cell receptors and preserves
anatural environment.™

MATERIALS AND METHODS

Patient selection. Heparinized blood was obtained from 25 criti-
caly ill patients and 12 healthy volunteers. Whole blood from pa-
tients was taken either during the first 24 hours after severe injury
(n = 17; injury severity score [ISS]* 39.8 + 2.5 points, Acute
Physiology and Chronic Health Evaluation [APACHE 1] score'®
20.2 = 2.5 points) or after diagnosis of septic shock according to
the criteria of Bone et a*” (n = 8; APACHE Il score 20.3 = 3.3
points). All injured patients enrolled showed either multiple life-
threatening trauma or severe sepsis (Table 1). The group of healthy
individuals was comparable to the group of criticaly ill patients
with regard to age and sex. All patients were recruited into this study
under informed consent guidelines approved by the Human Ethical
Committee of the University of Zurich.

Whole blood assay. The whole blood assay was performed as
previously reported.* Blood was drawn into heparinized syringes
(20 U heparin/mL; heparin was tested for endotoxin: <5 pg/mL
heparin). Aliquots of 5 mL blood were placed in sterile polypropyl-
ene tubes (Falcon; Becton Dickinson, Lincoln Park, NJ). For baseline
values, one blood sample was immediately processed as described
below. Baseline values reflect circulating levels of different cyto-
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INHIBITION OF THE DEFENSE SYSTEM

Table 1. Demographic Data of Patients With Multiple
Injuries or Severe Sepsis

Patients after severe injury
No. 17
Mean ISS™ 39.8 + 2.5 (range, 22-59 points)
Mean APACHE II'® 20.2 + 2.5 (range, 9-29 points)
Injury pattern

Head 77%
Thorax 92%
Abdomen 15%
Spine 30%
Pelvis 30%
Extremities 54%

Death 5/17 (29%)*

Patients with sepsis
No. 8

Mean APACHE II'®

Sepsis origin
Pneumonia (n = 6)
Meningitis (n = 1)
Wound infection (n = 1)

Death

20.3 + 3.3 (9-31 points)

2/8 (25%)t

* Death due to brain edema (n = 4), hemorrhage (n = 1).
1 Death due to multiple-organ dysfunction syndrome (MODS) (n =
2).

kines in vivo at time of blood sampling. In addition, heparinized
blood was incubated with or without 1 ng/mL LPS; Escherichia coli
055:B5; Sigma Chemical Co, St Louis, MO) in the presence of
various concentrations of either recombinant human (rh) 1L-12 (50,
5, 1, 0.1 ng/mL; biological activity 1.5 x 10°® U/mg, endotoxin
contamination 12 EU/mg in the Limulus assay; a gift from Dr M.
Gately, Hoffmann-LaRoche, Nutley, NJ) or rhIFN-y (100, 50, 10,
5, 1 ng/mL; biological activity 3 X 10" U/mg; endotoxin contamina-
tion <0.3 EU/mg; kindly provided by Dr G.R. Adolf, Bender, Wien,
Austria). The blood containing tubes were placed on a rotator in a
5% CO, atmosphere at 37°C. At 8 hours and 24 hours of incubation,
the samples were removed. Plasmawas prepared through centrifuga-
tion with 2,100 rpm at 4°C, aliquoted, and stored at —80°C until
assayed for cytokines. In addition, whole blood from both groups
was incubated with Saphylococcus aureus Cowan strain | (SAC;
Pansorhin; 0.075% wt/vol; Calbiochem Corp, La Jolla, CA) for 8
hours and 24 hours, respectively. Plasma was prepared and stored
as described above.

The contamination of blood samples from the two groups with
endotoxin through the added reagents was excluded using the Limu-
lus amebocyte assay.
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Isolation of adherent cells and lymphocytes. Peripheral blood
mononuclear cells (PBMC) were separated from heparinized blood
samples using density gradient centrifugation (Ficoll-Histopaque,
Sigma Chemical Co, d = 1.077). After washing PBMC three times,
viability was tested with trypan blue exclusion and cells counted for
monocytes according to their cell configuration. After adjusting the
cell suspension to 1 X 10%mL viable cells with typical monocytic
cell configuration, cells were allowed to adhere onto 24-well plates
(Costar, Cambridge, MA) at 37°C for 2 hours. The supernatants
containing nonadherent cells were removed by repeated washing
with Click’s medium (Irvine Scientific, Irvine, CA). Thereafter,
monolayers of adherent cells were stimulated with or without LPS
(1 ng/mL; Escherichia coli 055:B5; Sigma Chemical Co) or SAC
(Pansorbin; 0.075% wt/vol; Calbiochem) in the presence or absence
of rhIFN-y (10 ng/mL) for 24 hours. Supernatants of adherent cell
cultures were harvested, filtered, aliquoted, and stored at —80°C until
assayed for IL-12 p40 and p70.

The supernatants obtained after adherence of PBMC contained
the nonadherent cell populations. After washing nonadherent cells
three times, viability was tested using trypan blue exclusion and
nonadherent cells adjusted to 1 x 10° cellsmL in RPMI 1640 me-
dium (GIBCO-BRL, Life TechnologiesLTD, Paisley, Scotland) sup-
plemented with 10% fetal caf serum (FCS; GIBCO-BRL). Since
fluorescence-activated cell sorter (FACS; Profile Epics flow cyto-
meter; Coulter, Hialeah, FL) analysis of nonadherent cells demon-
strated the presence of >90% lymphocytes in both groups using
fluorescein isothiocyanate (FITC)-conjugated anti-CD3 (T lympho-
cytes; clone UCHT1; Coulter) and phycoerythrin (PE)-conjugated
anti-CD19 (B lymphocytes; clone 89B; Coulter) for detection, these
cell suspensions are referred to as lymphocyte cultures throughout
this report. A total of 1 x 10° lymphocytessmL/well were cultured
with or without LPS (1 ng/mL; Escherichia coli 055:B5; Sigma
Chemical Co) or SAC (Pansorbin; 0.075% wt/vol; Calbiochem) in
the presence or absence of rhiL-12 p70 (5 ng/mL) for 24 hours.
Supernatants of lymphocyte cultures were harvested, filtered, ali-
quoted, and stored at —80°C until measured for IFN-vy.

Additionally, whole blood from healthy individuals was preincu-
bated with either IL-4 (1,000 pg/mL; biological activity 1 x 107
U/mg; Genzyme Corp, Cambridge, MA) or IL-10 (2,500 pg/mL;
biological activity 1.5 x 10” U/mg; endotoxin contamination <10
EU/mg; Schering-Plough Research Institute, Kenilworth, NJ) for
12 hours. Thereafter, PBMC were harvested using density gradient
centrifugation as described above, washed three times, and incubated
with LPS (1 ng/mL; Escherichia coli 055:B5; Sigma Chemical Co)
for 24 hours. PBM C supernatants were harvested, filtered, aliquoted,
and stored at —80°C until assayed for cytokines.

Cytokine measurements. Levels of IFN-y in plasma and lym-
phocyte supernatants were measured with specific sandwich enzyme-
linked immunosorbent assay (ELISA) using the antihuman |FN-vy

Table 2. Secretion of IL-12 p40 and p70 Into Whole Blood

IL-12 p40 (pg/mL)

IL-12 p70 (pg/mL)

LPS LPS + rhIFN-y LPS LPS + rhIFN-y
8h Control 691.1 = 122.7 1,618.8 = 319.2* 10.0 * 45 236.6 + 63.8%
Patient 46.6 + 6.2t 159.0 = 31.2*t ND NDt
24 h Control 964.9 + 185.8 1,673.7 = 254.5*% 9.0 =35 299.8 + 105.1*
Patient 52.7 + 6.8t 223.1 = 47.0*1t ND ND*t

Whole blood obtained from healthy individuals (controls, n = 12) and critically ill patients (n = 25) was incubated with LPS (1 ng/mL) in the
presence or absence of rhIFN-y (10 ng/mL) for 8 hours and 24 hours, respectively. Plasma levels of IL-12 p40 (pg/mL) and p70 (pg/mL) were

measured using specific ELISA. Data are presented as mean = SEM.
Abbreviation: ND, not detectable.
* P < .05 LPS versus LPS + rhIFN-y.
1T P < .05 patient versus control.
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monoclonal antibodies NIB42 for capture and 4S.B3 for detection
(Pharmingen, San Diego, CA). Standards of rhIFN-y (Pharmingen)
werediluted in normal human plasma. The ELISA showed a sensitiv-
ity of >100 pg/mL. Concentrations of IL-12 p40 in plasma and
supernatants of adherent cells were measured using the rat mono-
clona anti-human IL-12 p40 antibody 2-4A1 for coating and the
peroxidase-conjugated anti—IL-12 p40 antibody 4D6 for detection
(antibodies and recombinant human 1L-12 p40 kindly provided by
Maurice K. Gately, Hoffman-LaRoche) (sensitivity >10 pg/mL).*®
IL-12 p70 was determined with a commercially available ELISA kit
(R & D Systems Inc, Minnesgpolis, MN) according to the manufac-
turer's guidelines. The ELISA uses a capture antibody that recog-
nizes the IL-12 p70 heterodimer with a sensitivity >5 pg/mL.

IL-4 and transforming growth factor (TGF)-3, in plasma samples
were measured using commercially available ELISA kits (Genzyme)
with a sensitivity of >30 pg/mL for IL-4 and >50 pg/mL for TGF-
B1. For measurements of TGF-4,, plasma samples were acidified
as previously described.™® Without acidification, TGF-3, was neither
detectable in plasma from healthy humans, nor in criticaly ill pa-
tients. IL-10 was measured in plasma by ELISA with the rat antihu-
man 1L-10 monoclonal antibody JES3-9D7 for capture and a rabbit
antihuman IL-10 polyclonal antibody for detection (antibodies
kindly provided by Satwant Narula, PhD, Schering-Plough Research
Ingtitute, Kenilworth, NJ).* Recombinant hiL-10 (Schering-Plough)
diluted in normal plasma was used for the standard curve. The
ELISA showed a sensitivity of >20 pg/mL.

All samples were tested in duplicate.

Statistics.  Results are demonstrated as mean + standard error of
mean (SEM). Statistical analysiswas performed using nonparametric
Mann-Whitney U-test with Bonferroni correction for multiple com-
parisons.

RESULTS

IFN-y induced release of IL-12 p40 and p70 into whole
blood. [L-12 p40 was not detectable at baseline (0 hours
incubation time) in healthy individuals, while very low con-
centrations were found in plasma samples from critically ill
patients (159 = 2.4 pg/mL; 7 of 25 patients [28%]). In
contrast to previous studies,? rhIFN-vy dightly enhanced the
release of IL-12 p40 in both groups, though these levels
reflected only 10% of those detected in the presence of
rhIFN-y and LPS. Levels of 1L-12 p40 in IFN-y stimulated
whole blood from critically ill patients (47.1 = 11.5 pg/
mL) were significantly decreased by 73% compared with the
control group (172.7 = 38.0 pg/mL). IL-12 p70 was not
detectable at baseline and its secretion could not be induced
through rhIFN-+y in any of the two groups during an incuba-
tion period of 24 hours, which isin line with previous stud-
ieS.21'22

In the control group, LPS in a concentration of 1 ng/mL
resulted in a significant increase of 1L-12 p40 at 8 hours and
24 hours of incubation compared with baseline, while only
minimal levels of IL-12 p70 (10.0 = 4.5 pg/mL) were de-
tected (Table 2). The amounts of produced IL-12 p40 largely
exceeded those of IL-12 p70, which isin line with previous
studies.® Because high concentrations of 1 ug/mL LPS led
to detectable IL-12 p70 levels in whole blood from healthy
volunteers (41.3 = 13.5 pg/mL), maximum release of 1L-12
p40 and p70 seem to be dependent on the LPS dosage.?® In
this study, LPS was used in a concentration of 1 ng/mL,
since this LPS dosage reflects clinically relevant endotoxin
concentrations that have been detected in patients with se-
vere sepsis.®
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Fig 1. Dose-dependent effect of various concentrations of either
rhiIFN-y or rhiL-12 p70 on IL-12 p40 (A), p70 (B), and IFN-v (C) release
into LPS-stimulated (1 ng/mL) whole blood obtained from either
healthy individuals (O) (n = 3) or critically ill patients (e) (n = 3).
Plasma levels of IL-12 p40, p70, and IFN-y were measured after 24
hours of incubation using specific ELISA. Data are presented as mean
+ SEM.
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Table 3. Secretion of IFN-y Into Whole Blood

rhiL-12 p70 LPS LPS + rhIL-12 p70

8 h Control 613.9 + 155.0 1,241.3 = 217.9% 1,255.0 = 179.8* 2,690.8 = 595.6*
Patient 244.0 = 51.8t 442.7 = 117.41 314.6 = 67.91 333.7 = 86.0t

24 h Control 712.4 + 188.7 1,458.1 + 217.6* 1,301.8 + 186.6* 3,223.8 + 527.8%
Patient 327.3 = 86.7 328.4 + 87.7t 278.2 + 54.2t 282.6 = 70.01

Whole blood obtained from healthy individuals (controls, n = 12) and critically ill patients (n = 25) was incubated with or without LPS (1 ng/
mL) in the presence or absence of rhIL-12 p70 (5 ng/mL) for 8 hours and 24 hours, respectively. Plasma levels of IFN-y (pg/mL) were measured

using specific ELISA. Data are presented as mean + SEM.

* P < .05 without agent versus rhlL-12 p70, LPS, or LPS + rhlL-12 p70.

T P < .05 patient versus control.

The addition of rhIFN-y and LPS to whole blood from
healthy individuals led to a significant rise in IL-12 p40 and
p70 secretion at 8 hours and 24 hours with a dose-dependent
effect (Table 2, Fig 1A and B). Though rhIFN-+y increased
the release of IL-12 p40 into whole blood from critically ill
patients, total amounts of secreted IL-12 p40 were markedly
suppressed by 89% at 8 hours and 87% at 24 hours compared
with healthy individuals (Table 2). In addition, rhIFN-vy did
not induce secretion of 1L-12 p70 into L PS-stimulated whole
blood obtained from critically ill patients at any time point
or with any dosage of rhIFN-y (Table 2, Fig 1B). Previous
reports® using isolated cell cultures suggested peak levels of
IL-12 p70 release after 48 hours of incubation. To exclude
the possibility that 1L-12 p70 release into whole blood from
critically ill patients occurs after 24 hours of incubation,
control studies stimul ating whole blood with LPS and rhlIFN-
v for 36 hours were performed. These studies did not demon-
strate a further increase of I1L-12 p70 release between 24
hours and 36 hours of incubation in any of the two groups
(data not shown).

Interleukin-12 p70 induced release of IFN-y into whole
blood. Baseline levels (0 hours incubation time) of IFN-y
were similar in both groups (controls, 263.3 = 98.2 pg/mL;
patients, 213.2 = 52.5 pg/mL). rhiL-12 p70 in the absence
of LPS resulted in a marked increase of IFN-y by 102% at
8 hours and by 105% at 24 hours of incubation in the control
group, while it did not enhance secretion of IFN-vy in criti-
cally ill patients (Table 3). LPS aone significantly enhanced
the release of IFN-y in controls, but did not affect secretion
of IFN-vy in criticaly ill patients (Table 3). The addition of
rhiL-12 p70 to whole blood from healthy humans in the
presence of LPS resulted in a dose-dependent and significant
increase of IFN-y release at 8 hours (+338%) and 24 hours
(+353%), while rhiL-12 p70 did not augment IFN-y secre-
tion into L PS-stimulated whole blood from critically ill pa-
tients (Table 3, Fig 1C).

The suppression of the IL-12 IFN-y pathway in whole
blood from critically ill patients was gradually higher in
patients with severe sepsis compared with injured patients,
though these differences were not statistically different (Ta-
ble 4). In contrast, the degree of suppression was not differ-
ent between survivors and nonsurvivors (data not shown).

SAC induced release of IL-12 p40, p70, and IFN-y into
whole blood. To exclude a LPS-specific phenomenon, the
release of IL-12 p40, p70, and IFN-y was studied after the
addition of SAC. In whole blood from healthy humans, the
addition of SAC resulted in a significant secretion of IL-12

p40, p70, and IFN-y (Fig 2A through C), which could be
dramatically increased in the presence of either rhIFN-y or
rhiL-12 p70, respectively (Fig 2A through C). In contrast,
SAC-induced secretion of these three cytokines was signifi-
cantly suppressed in whole blood obtained from critically ill
patients (Fig 2A through C).

Secretion of I1L-12 p40, p70, and IFN-vy by isolated adher-
ent cells and lymphocytes.  In addition, I1L-12 p40 and p70
secretion by isolated adherent cells and IFN-y release by
purified lymphocytes was determined. These experiments
give further information, whether differential leukocyte pro-
files on one hand and soluble suppressive factors in serum
on the other hand, are responsible for suppression of the IL-
12 IFN-y pathway in whole blood. Isolated adherent cell
and lymphocyte cultures, stimulated either with LPS or with
SAC, demonstrated similar suppression of IL-12 p40, p70,
and IFN-vy release in criticaly ill patients compared with
healthy humans (Fig 3A through C). The addition of rhlFN-
v to adherent cell cultures in the presence of LPS did not
only augment secretion of 1L-12 p40, but also of IL-12 p70
in critically ill patients (Fig 3A and B). Moreover, rhiL-12
p70increased L PS-induced release of IFN-vy by lymphaocytes
from critically ill patients (Fig 3C), which was not seen in
the whole blood assay. Thus, the responsiveness to either
rhiL-12 p70 or to rhIFN-y in the presence of a bacteria
challenge seemsto beincreased inisolated cell culturesfrom
critically ill patients compared with the results obtained with
whole blood, though the absolute secretory capacity of ad-
herent cells and lymphocytes from critically ill patients is
still reduced compared with healthy individuals (Fig 3A
through C).

Release of antiinflammatory cytokines into whole blood.
Since cytokines such as IL-4, IL-10, TGF-3, have been
found to inhibit synthesis and/or release of IL-12 and IFN-
v,%%% |evels of these cytokines have been determined in
LPS-stimulated whole blood from both experimental groups
(Table 5). Although IL-4 was only detected in minimal
amounts in both groups, LPS-induced release of IL-10
(—92%) and of TGF-g, (—54%) was significantly decreased
into whole blood from critically ill patients compared with
controls (Table 5).

Effect of preincubation of whole blood with IL-4 or IL-
10. To mimic apotentia priming effect of IL-4 and IL-10
in vivo with consequent inhibition of secretory capacity of
PBMC ex vivo, whole blood was preincubated with either
rhiL-4 or rhiL-10 in concentrations observed in criticaly ill
patients (Neidhardt et al, manuscript in preparation). There-
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Table 4. Effect of Trauma and Sepsis on Release of IL-12 p40, p70, and IFN-y Into Whole Blood

Sepsis (n = 8)

Trauma (n = 17)

Control (n = 12)

LPS + rhIL-12

LPS + rhiL-12

LPS + rhIL-12 p70 LPS LPS + rhIFN-y p70 LPS LPS + rhIFN-y p70

LPS + rhIFN-y

LPS

161.4 = 79.5¢

61.3 = 14.5t

256.2 + 58.4*t

48.1 = 7.1t

1,673.7 = 254.5*%

964.9 + 185.8

p40
p70

299.8 + 105.1* NDt ND*T NDt ND*T
320.0 = 74.7t 187.7 = 45.51

9.0 + 35
1,301.8 = 186.6

205.2 = 72.7t

321.3 = 98.8t

3,223.8 + 527.8*

IFN-y

Whole blood obtained from healthy individuals (controls, n = 12) and critically ill patients (n = 25) was incubated with LPS (1 ng/mL) in the presence or absence of either rhiL-12 p70 (5 ng/mL) or

rhIFN-y (10 ng/mL) for 24 hours. The group of critically ill patients was divided according to the origin of the insult (trauma v sepsis). Plasma levels of IL-12 p40 (pg/mL), p70 (pg/mL), and IFN-y (pg/

mL) were measured using specific ELISA. Data are presented as mean = SEM.

Abbreviation: ND, not detectable.

* P < .05 LPS versus LPS + rhIFN-y/LPS + rhiIL-12 p70.

Tt P < .05 patient versus control.

personal use only.
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Fig 2. Whole blood from healthy individuals (controls, n = 4) and
critically ill patients (n = 4) was incubated with SAC (0.075% wt/vol)

in the presence or absence of either rhIFN-y (10 ng/mL) (A, B) or rh
IL-12 p70 (5 ng/mL) (C) for 24 hours. Plasma levels of IL-12 p40 (A),
p70 (B), and IFN-y (C) were determined using specific ELISA. Data
are presented as mean + SEM; *P <. 05 SAC versus SAC + rhIFN-y
or SAC + rhiIL-12 p70; #P < .05 patient versus control.

after, PBMC were isolated and stimulated with LPS. The
pretreatment with rhiL-10 markedly inhibited suppression of
LPS-induced release of 1L-12 p40 and IFN-vy, while rhiL-4

was ineffective (Table 6). Addition of rhiL-12 p70 to LPS-
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Fig 3. Adherent cells and lymphocytes were isolated from whole
blood of healthy humans (controls, n = 4) and critically ill patients
(n = 4). Adherent cells were incubated either with LPS (1 ng/mL) or
SAC (0.075% wt/vol) in the presence or absence of rhIFN-y (10 ng/mL)
for 24 hours (A, B). In addition, lymphocytes from both experimental
groups were incubated with LPS (1 ng/mL) or SAC (0.075% wt/vol)
in the presence or absence of rhiL-12 p70 (5 ng/mL) for 24 hours (C).
Concentrations of IL-12 p40 and p70 in adherent cell supernatants and
of IFN-y in lymphocyte supernatants were determined with specific
ELISA. Data are presented as mean + SEM; *P < .05 LPS/SAC versus
LPS/SAC + rhiFN-y/rhIL-12 p70; #P < .05 patient versus control.
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stimulated PBM C cultures could not attenuate I L -10-induced
suppression of IFN-y release and vice versa (data not
shown).

DISCUSSION

The results presented here indicate that the IL-12 IFN-vy
pathway, which plays a key role in activation of phagocytic
cells and of T-cell driven immunity, is significantly compro-
mised in critically ill patients. These results are in line with
previous animal experiments that demonstrated a reduced
release of IFN-y and IL-12 by splenocytes obtained from
burned mice.® In whole blood from healthy individuals,
IFN-y and IL-12 operate through a positive feedback loop
through which IL-12 induces synthesis and release of IFN-
v and vice versa. This positive feedback mechanism is dra-
matically inhibited in whole blood obtained from critically
ill patients. Monocytes as target cells of IFN-y, as well
as TH1-lymphocytes as target cells of IL-12 seem to be
deactivated during critical illness with a reduced capacity to
synthesize these inflammation upregulating cytokines.
Though the pathogenesis of patients with severe injury is
different from that of septic patients, the observed defects
occur in both groups. The origin of critical illness does not
seem to influence these disturbances in the IL-12 IFN-y
pathway.

The observed suppression of the IL-12 IFN-y pathway is
not specific to LPS, since parallel experiments using SAC
as stimulus demonstrated a similar inhibition of IL-12 and
IFN-vy secretion into whole blood from critically ill patients.
Furthermore, experiments using isolated lymphocyte and ad-
herent cell cultureswere performed to exclude the possibility
that suppression of IL-12 and IFN-vy release is due to alter-
ations of differential leukocyte profiles, as they occur during
critical illness.®* These experiments showed similar results
than those obtained with whole blood. LPS-induced secre-
tion of IL-12 p40 and p70 by adherent blood cells and |FN-
v release by lymphocytes were markedly inhibited in criti-
caly ill patients compared with healthy individuals. Thus,
the suppression of LPS-induced release of 1L-12 p40, p70,
and IFN-y release into whole blood from critically ill pa
tients seemsto be dueto intracellular defects of PBMC rather
than aterations of their absolute numbers. These observa-
tions are in line with our previous findings, which demon-
strated that inhibition of LPS-induced proinflammatory cyto-
kine release (TNF-a, IL-13, IL-6) during severe sepsis
(endotoxin tolerance) is related to reduced half-life of cyto-
kine mRNA expression.™

With regard to the mechanisms of action of suppressed
IL-12 IFN-y pathway, two basic concepts were investigated
in this study. The first concept involves a potentialy in-
creased release of antiinflammatory reacting cytokines such
as IL-4, IL-10, and/or TGF-4;, which are rapidly produced
after shock, mechanical trauma, and during sepsis.®** These
cytokines exert potent antiinflammatory and immunosup-
pressive abilities through deactivation of monocytes and sup-
pression of T-helper and NK cell functions. Moreover, they
markedly reduce proinflammatory cytokine release and
inhibit 1L-12, as well as IFN-y synthesis and secre-
tion. 81925283435 \When measuring the release of 1L-4, 1L-10,
and TGF-£, into L PS-stimul ated whol e blood, the concentra-
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Table 5. Release of Antiinflammatory Cytokines Into Whole Blood
Control (n = 6) Patient (n = 6)
—LPS +LPS —-LPS +LPS
IL-4 (pg/mL) ND 7878 21.3+11.2 22.7 = 16.5*
IL-10 (pg/mL) 68.0 + 36.0 1,818.7 = 394.9 123.8 + 54.8 147.8 + 41.7*
TGF-3; (pg/mL) 25,757 + 1,256 28,771 + 3,594 9,648 + 2,219* 13,314 = 2,612*

Heparinized whole blood obtained from healthy individuals (controls, n = 6) and critically ill patients (n = 6) was incubated with or without
LPS (1 ng/mL) for 24 hours. Plasma levels of IL-4, 10, and TGF-3; were measured using specific ELISA. Data are presented as mean = SEM.

Abbreviation: ND, not detectable.
* P < .05 patient versus control.

tions of these antiinflammatory reacting cytokines were sig-
nificantly decreased in blood from criticaly ill patients.
These results are in line with previous studies indicating
reduced secretion of IL-10 by PBMC from injured patients
and by splenocytes harvested from mice in a trauma-sepsis
model 3%

Though these antiinflammatory reacting mediators do not
seem to cause suppression of the IL-12 IFN-y pathway ex
vivo in whole blood from critically ill patients, recent stud-
ies® led us to hypothesize that an enhanced release of antiin-
flammatory mediators in the very early period after trauma
or during sepsis may cause deactivation of monocytes and/
or lymphocytes in vivo. This hypothesis was supported by
measurements of 1L-4 and IL-10 plasma levels in the first
10 hours after injury (Ertel et a, personal communication,
July 1996, data not shown). In this early period after injury,
plasma levels of IL-4 and IL-10 were markedly increased
and demonstrated peak levels with decreasing concentrations
close to the detection limit thereafter. Most of our whole
blood assays of criticaly ill patients were performed 24
hours after injury or after diagnosis of sepsis. Deactivation
of monocytes and lymphocytes may aready have occurred
in vivo during this time period. Moreover, because IL-10
self-limits its own and the synthesis of other antiinflamma-
tory reacting cytokines as an autoregul atory feedback mecha-
nism,>** the reduced release of IL-10 and TGF-/3, observed
in LPS-stimulated whole blood from critically ill patients
may already be caused by desensitization of monocytes in
vivo in the first hours after the insult.

The hypothesis of early in vivo deactivation of PBMC is
further supported by experiments in which whole blood from
healthy humans was preincubated with either rhiL-4 or rhiL-
10, thus mimicking the above described in vivo scenario

during critical illness. Preincubation with rhiL-10 resulted
in a significant suppression of LPS-induced secretion of IL-
12 p40 and IFN-y. In contrast to rhlL-10, rhlL-4 was ineffec-
tive. TGF-8,; was not tested, since recent studies clearly
demonstrated a failure of TGF-3, to induce hyporespon-
siveness of monocytes to LPS.* These data together with
previous studies® indicate that IL-10, but not IL-4 or TGF-
B1, plays a pivotal role in the downregulation of the proin-
flammatory reacting cascade including the IL-12 IFN-vy path-
way.

The observation that isolated subpopulations of PBMC
(adherent cells, lymphocytes) in contrast to whole blood can
be activated through rhiL-12 p70 to release IFN-y and vice
versa implies that additional mechanisms of action may in-
hibit the IL-12 IFN-y pathway. The second potential mecha-
nism is based on previous animal experiments and clinical
studies demonstrating the presence of circulating serum sup-
pressive factors during experimental endotoxemia and after
severe trauma.®2*® These suppressive proteins may explain
two observations of our experiments: (1) the degree of sup-
pressed IL-12 p40, p70, and IFN-y release in critically ill
patients was lower in isolated adherent cell and lymphocyte
cultures than in whole blood, and (2) isolated adherent cells
and lymphocytes responded to rhIFN-vy or rhiL-12 p70 with
an increased release of I1L-12 p70 and IFN-vy, which was not
observed in whole blood from critically ill patients. These
results suggest a potential involvement of circulating pro-
teins, which may suppress secretory capacity of leukocyte
subpopulations, especially in the later posttraumatic course.
Thus, besides in vivo deactivation and desensitization of
PBMC very early during critical illness through antiinflam-
matory reacting IL-10, the presence of serum suppressive
peptides may contribute to the severe disturbancesin the IL-

Table 6. Effect of rhiL-4 and rhIL-10 on Cytokine Secretion by PBMC

— +rhiL-4 (1,000 pg/mL)

+rhlIL-10 (2,500 pg/mL)

p40 (pg/mL) IFN-y (pg/mL) p40 (pg/mL) IFN-y (pg/mL) p40 (pg/mL) IFN-y (pg/mL)
Exp 1 LPS 106 404 114 430 15 0
Exp 2 LPS 132 410 198 422 36 0
Exp 1 SAC 572 694 618 572 151 378
Exp 2 SAC 251 868 137 704 45 472

Whole blood obtained from healthy individuals (n = 2) was preincubated with either rhlL-4 (1000 pg/mL) or rhIL-10 (2500 pg/mL) for 12 hours.
Thereafter, PBMC were isolated and stimulated with either LPS (1 ng/mL) or SAC (0.075% wt/vol) for 24 hours. Levels of IL-12 p40 and IFN-y
in supernatants from PBMC were determined with specific ELISA.

Abbreviation: Exp, experiment.
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12 IFN-y pathway. Since IL-4, IL-10, and TGF-4; are only
responsible for 10% of total serum suppressive capacity dur-
ing endotoxemia,* additional, not yet identified, suppressive
proteins may be involved. Furthermore, prostanoids such
as prostaglandin E,, which dramatically inhibits release of
cytokine by monocytes and lymphocytes represent potential
mediators involved in the suppression of the IFN-y IL-12
pathway .34

The lack of proinflammatory reacting cells to adequately
synthesize and secrete IL-12 and |FN-vy as potent stimulators
of essential lymphocyte and phagocytic functions indicates
asevere defect in the immune system of critically ill patients.
The inhibition of this positive autoregulatory loop, which
amplifiesinflammatory responsesto microbes, may represent
apivotal pathophysiologic mechanism that is responsible for
critical immunosuppression and reduced responsiveness of
monocytes/macrophages to bacterial challenges (endotoxin
tolerance), as it was demonstrated in patients after severe
injury and during sepsis.***

Previous reports-*+*? emphasized a potential use of recom-
binant IFN-y and/or IL-12 as therapeutic agents in the treat-
ment of severe infection or inimmunocompromised patients.
However, our results make these suggestions questionable,
since in critically ill patients, the target cells of IL-12 and
IFN-y do not seem to react to either one of these two media-
tors. Thus, further therapeutical strategies haveto be directed
towards neutralization of downregulatory mechanisms of the
IL-12 IFN-y pathway instead of infusion of recombinant IL-
12 or IFN-vy.
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