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The SNP heritability (hSNP
2 ) of a trait is the fraction of phenotypic var-

iance explained by additive contributions from SNPs1. Accurate esti-
mates of hSNP

2  are central to resolving the missing heritability debate, 
indicate the potential utility of SNP-based prediction and help design 
future genome-wide association studies (GWAS)2,3. Whereas tech-
niques for estimating (total) heritability have existed for decades4,5, 
the first method1 for estimating hSNP

2  was proposed only in 2010 but 
has since been applied to many hundreds of traits. Extensions of this 
method are now being used to partition heritability across chromo-
somes, according to biological pathways and by SNP function and to 
calculate the genetic correlation between pairs of traits6–8.

As the number of SNPs in a GWAS is usually much larger than 
the number of individuals, estimation of hSNP

2  requires steps to avoid 
overfitting. Most reported estimates of hSNP

2  are based on assigning 
the same Gaussian prior distribution to each SNP effect size, in 
a way that implies that all SNPs are expected to contribute equal 
heritability1,9. By examining a large collection of real data sets, we 
derive approximate relationships between the expected heritability 
of a SNP and MAF, levels of LD with other SNPs and genotype 
certainty. This provides us with an improved model for heritability 
estimation and a better understanding of the genetic architecture 
of complex traits.

RESULTS
When estimating hSNP

2 , the ‘LDAK model’ assumes

E h f f w rj j j
+

j j[ ] [ ( )] ( )2 11∼ − × ×α 1

where E hj[ ]2  is the expected heritability contribution of SNP j and fj  
is its (observed) MAF. The parameter α determines the assumed rela-
tionship between heritability and MAF. In human genetics, it is  

(1)(1)

commonly assumed that heritability does not depend on MAF, which 
is achieved by setting α = −1; however, we consider alternative rela-
tionships. The SNP weights w1, …, wm are computed on the basis of 
local levels of LD9; wj tends to be higher for SNPs in regions of low 
LD, and thus the LDAK model assumes that these SNPs contribute 
more than those in high-LD regions. Finally, rj ∈ [0,1] is an informa-
tion score measuring genotype certainty; the LDAK model expects 
that higher-quality SNPs contribute more than lower-quality ones.  
rj is defined in the Online Methods, where we also explain how model 
(1) arises by assuming a genome-wide random regression in which 
SNP effect sizes are assigned Gaussian distributions.

The ‘GCTA model’ is obtained from model (1) by setting wj = 1  
and rj = 1, and thus assumes that expected heritability does not vary 
with either LD or genotype certainty. Thus far, most reported esti-
mates of hSNP

2  have used the GCTA model with α = −1, which corre-
sponds to the assumption that E hj[ ]2  is constant, and so the expected 
contribution of a SNP set depends only on the number of SNPs it 
contains1. To appreciate the major difference between the GCTA 
and LDAK models, consider a region containing two SNPs: under 
the GCTA model, the expected heritability of these two SNPs is the 
same irrespective of the LD between them, whereas under the LDAK 
model two SNPs in perfect LD are expected to contribute only half 
the heritability of two SNPs showing no LD. See Figure 1 for a more 
detailed example.

An alternative method for estimating hSNP
2  is LDSC (LD score 

regression)10. The LDSC model expects that each SNP contributes 
equal heritability10,11 and therefore closely resembles the GCTA 
model with α = −1. When applied to the same data set, estimates from 
LDSC will typically have standard errors 25–100% higher than those 
from GCTA11; this is partly because the LDSC model includes an 
extra parameter, designed to capture confounding biases, and partly 
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because LDSC estimates are moment based, whereas GCTA (like 
LDAK) uses restricted maximum likelihood (REML)12,13. However, 
as LDSC requires only summary statistics (P values from single-SNP 
analysis), it can be used on much larger data sets than GCTA and 
LDAK, which need raw genotype data, and it can be applied to results 
from large-scale meta-analyses10.

SNP partitioning 
Model (1) can be generalized by dividing SNPs into tranches across 
which the constant of proportionality is allowed to vary (so E hj[ ]2  =  
ck × [fj(1 – fj)]1 + α × wj × rj for SNPs in tranche k). This is known 
as SNP partitioning6. Two examples are GCTA-MS14 and GCTA-
LDMS15; when applied to common SNPs (MAF ≥ 0.01), GCTA-MS 
divides the genome into five tranches on the basis of MAF, using the 
boundaries 0.1, 0.2, 0.3 and 0.4, while GCTA-LDMS first divides SNPs 
into four tranches on the basis of local average LD score10 and then 
divides each of these into five on the basis of MAF, resulting in a total 
of 20 tranches. In general, we prefer to avoid SNP partitioning when 
estimating hSNP

2  because it introduces (often arbitrary) discontinui-
ties in the model assumptions and can cause convergence problems. 
However, we show below that partitioning based on MAF enables reli-
able estimation of hSNP

2  when rare SNPs (MAF ≤ 0.01) are included. 
Additionally, SNP partitioning provides a way to visually assess the 
fit of different heritability models; it allows us to estimate average hj

2 
for different SNP tranches, which can then be compared to the values 
predicted under different assumptions.

Data sets
In total, we analyzed data for 42 traits. Table 1 and Supplementary 
Table 1 describe the 19 ‘GWAS traits’ (17 case–control and 2 quantita-
tive traits). For these traits, individuals were genotyped using either 
genome-wide Illumina or Affymetrix arrays (typically with 500,000 to 
1.2 million SNPs). We additionally examined data from eight cohorts 
of the UCLEB consortium24, which comprise about 14,000 individuals 
genotyped using the Metabochip25 (a relatively sparse array of 200,000 
SNPs selected on the basis of previous GWAS) and recorded for a wide 
range of clinical phenotypes. From these, we considered 23 quantitative  

phenotypes (average sample size 8,200), which can loosely be divided 
into anthropomorphic (height, weight, body mass index (BMI) and 
waist circumference), physiological (lung capacity and blood pres-
sure), cardiac (for example, PR and QT intervals), metabolic (glucose, 
insulin and lipid levels) and blood chemistry (for example, fibrinogen, 
IL-6 and hemoglobin levels) traits. In general, our quality control was 
extremely strict; after imputation, we retained only autosomal SNPs 
with MAF ≥ 0.01 and information score rj ≥ 0.99. We only relaxed 
quality control when, using the UCLEB data, we explicitly examined 
the consequences of including lower-quality and rare SNPs.

Further details of our methods and data sets are provided in the 
Online Methods. In particular, we explain how when estimating hSNP

2  
we give special consideration to highly associated SNPs, which we 
define as those with P < 1 × 10−20 from single-SNP analysis, and how 
for the UCLEB data we confirm that genotyping errors do not cor-
relate with phenotype (which is important for the analyses where we 
include lower-quality SNPs).

Relationship between heritability and MAF 
Varying the value of α in model (1) changes the assumed relationship 
between heritability and MAF; three example relationships are shown 
in Figure 2a. To determine suitable α values, we analyzed each of 
the 42 traits using seven values (–1.25, −1, −0.75, −0.5, −0.25, 0 and 
0.25), seeing which led to the best model fit (highest likelihood). Full 
results are provided in Supplementary Figure 1 and Supplementary 
Table 2. First, to remove any confounding due to LD, we used only 
a pruned subset of SNPs (with wj = 1); next, we repeated without 
LD pruning (the results for the GWAS traits are shown in Fig. 2b); 
and, finally, for the UCLEB traits, we repeated including lower- 
quality and rare SNPs. We found that model fit was typically best for 
−0.5 ≤ α ≤ 0, whereas the most widely used value, α = −1, resulted in 
suboptimal fit. On the basis that it performs consistently well across 
different traits and SNP filtering criteria, we recommend that α = 
−0.25 become the default. This value implies that expected heritability 
declines with increasing MAF; this is seen in Figure 2a, which reports, 
averaged across the 19 GWAS traits, the (weight-adjusted) per-SNP 
heritability for low- and high-MAF SNPs (see Supplementary Fig. 2  
for further details).

While α = −0.25 provided the best fit overall, for individual traits, 
optimal α may differ, and we therefore investigated the sensitivity of 
hSNP

2  estimates to the value of α (Supplementary Figs. 3–5). When 
analyzing only common SNPs, we found that changes in α had little 
impact on hSNP

2 . For example, across the 23 UCLEB traits, estimates 
from high-quality, common SNPs using α = −0.25 were on average 
only 5% (s.d. 4%) lower than those using α = −1 and 4% (s.d. 4%) 
higher than those using α = 0. However, this was no longer the case 
when rare SNPs were included in the analysis: for example, when the 
MAF threshold was reduced to 0.0005, estimates using α = −0.25 were 
on average 18% (s.d. 4%) lower than those using α = −1 and 30% (s.d. 
6%) higher than those from α = 0. Therefore, when including rare 
SNPs, we guarded against misspecification of α by partitioning on 
the basis of MAF (with boundaries at 0.001, 0.0025, 0.01 and 0.1); 
we found that this provided stable estimates of hSNP

2  and also allows 
estimation of the relative contributions of rare and common variants 
(Supplementary Fig. 6).

Relationship between heritability and LD 
The LDAK model assumes that heritability varies according to local 
levels of LD, whereas the GCTA model assumes that heritability is 
independent of LD. First, we demonstrated that choice of model 
matters when estimating hSNP

2 . For the GWAS traits, Figure 3a  

Region 1

X1

1.0 1.0 1.0 1.0 0 0 00.90.8 0.8

X2 X3 X4 X5 X6 X8 X9 X10X7

2

Low correlation High correlation

SNPs

Weights

GCTA model 5 5

4.6 1.9LDAK model

Expected (relative) contribution to h2
SNP

 of each region:

Figure 1  Comparison of the GCTA and LDAK models. Region 1 contains 
five SNPs in low LD (lighter shadings indicate weaker pairwise correlations). 
Each SNP contributes unique genetic variation, reflected by SNP weights 
close to one. Region 2 contains five SNPs in high LD (strong correlations). 
The total genetic variation tagged by the region is effectively captured by 
two of the SNPs, and so the others receive zero weight. Under the GCTA 
model, the regions are expected to contribute heritability proportional to 
their numbers of SNPs, which are equal here. Under the LDAK model, 
they are expected to contribute heritability proportional to their sums of 
SNP weights, which here have the ratio 4.6:1.9. Note that the expected 
heritability can also depend on the allele frequencies and genotype 
certainties of the SNPs, but for simplicity these factors are ignored here.
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reports the relative estimates of hSNP
2  from GCTA, GCTA-MS, GCTA-

LDMS and LDAK (all using α = −0.25); see Supplementary Figure 7 
for an extended version. We found that estimates based on the LDAK 
model were on average 48% (s.d. 3%) higher than estimates based on 
the GCTA model. For the UCLEB traits, estimates from LDAK were on 
average 88% (s.d. 7%) higher than those from GCTA (Supplementary 
Fig. 8). Figure 3a also includes results from LDSC, run as described 
in the original publication10 (see Supplementary Table 3 for numeri-
cal values). Estimates from LDSC were not significantly different to 
those from GCTA, which is to be expected considering that GCTA 
and LDSC assume the same relationship between heritability and LD.  
In Supplementary Figure 9, we consider alternative versions of 
LDSC (for example, varying how LD scores are computed, forcing 
the intercept term to be zero and excluding highly associated SNPs). 
While changing settings can have a large impact, in all cases, the aver-
age estimate of hSNP

2  from LDSC remained substantially below that  
from LDAK.

A recent article that asserted that GCTA estimates hSNP
2  more accu-

rately than LDAK based this claim on a simulation study in which 
causal SNPs were assigned effect sizes from the same Gaussian dis-
tribution, irrespective of LD6. This resembles the GCTA model but 
not the LDAK model, and so it does not seem surprising that GCTA 
performed better. Figure 3b shows that, if effect size variances had 
instead been scaled by SNP weights and so varied with LD similar to 
the LDAK model, then the study would have found LDAK to be supe-
rior to GCTA. Thus, using simulations to compare different heritabil-
ity models is problematic because the conclusions will depend on the 
assumptions used when generating phenotypes. See Supplementary 

Figure 10 for a full reanalysis of the reported simulation study and 
Supplementary Figure 11 for further simulations.

Rather than using simulations, we compared LDAK and GCTA empir-
ically. Supplementary Table 4 shows that when α = −0.25, assuming the 
LDAK model led to higher likelihood than assuming the GCTA model 
for all 19 GWAS traits and for 17 of the 23 UCLEB traits (if we instead 
used α = −1, likelihood was higher under the LDAK model for 31 of the 
42 traits). To visually demonstrate the superior fit of the LDAK model, 
we partitioned SNPs into low- and high-LD tranches (for this, we ranked 
SNPs according to the average LD score10 of non-overlapping 100-kb 
segments, the metric used by GCTA-LDMS15). First, we partitioned so 
that the two tranches contained an equal number of SNPs. The left half 
of Figure 4 reports, for each of the GWAS traits, the contribution of the 
low-LD tranche, estimated using the GCTA model (with α = −0.25). 
Under the GCTA model, the low-LD tranche is expected to contribute 
50% of hSNP

2 ; under the LDAK model, it is expected to contribute 72% 
of hSNP

2 . We saw that the estimated contribution of the low-LD tranche 
was consistent with the GCTA model (the 95% confidence interval 
included 50%) for only 5 of the 19 traits, whereas it was consistent with 
the LDAK model (the confidence interval included 72%) for 18 traits. 
Next, we partitioned so that the low-LD tranche contained one-quarter  
of the SNPs; then, the low-LD tranche is predicted to contribute 26% 
of hSNP

2  under the GCTA model but 47% of hSNP
2  under the LDAK 

model. The right half of Figure 4 shows that its estimated contribution 
was consistent with the GCTA model for only 7 of the 19 traits, but  
again was consistent with the LDAK model for 18 traits. Additional 
results are provided in Supplementary Figure 12; these show that, 
regardless of whether we estimated heritabilities using LDAK (rather 

Table 1  Properties of data sets and estimates of hSNP
2

Collection Trait (disease prevalence, %) n m wjj
m

=∑ 1 hGWAS
2

Previous LDAK

hSNP
2 s.d. Ref. hSNP

2 s.d.

WTCCC 1 Bipolar disorder (0.5) 1,840 + 2,913 2,729,000 79,000 0.02 0.24 0.04 7 0.35 0.03

Coronary artery disease (6) 1,907 + 2,918 2,739,000 80,000 0.03 0.25 0.06 7 0.40 0.06

Crohn’s disease (0.5) 1,691 + 2,905 2,724,000 79,000 0.21 0.26 0.01 21 0.32 0.03

Hypertension (5) 1,918 + 2,916 2,740,000 80,000 <0.01 0.33 0.06 7 0.46 0.06

Rheumatoid arthritis (0.5) 1,846 + 2,918 2,736,000 80,000 0.19 0.09 0.03 7 0.21 0.03

Type 1 diabetes (0.5) 1,941 + 2,907 2,732,000 80,000 0.27 0.13 0.03 7 0.31 0.02

Type 2 diabetes (8) 1,896 + 2,917 2,736,000 80,000 0.08 0.42 0.07 7 0.54 0.07

WTCCC 2 Barrett’s esophagus (1.6) 1,861 + 5,138 3,831,000 116,000 <0.01 0.25 0.05 16 0.32 0.04

Ischemic stroke (2) 3,769 + 5,139 3,797,000 115,000 <0.01 0.25 0.03 17 0.34 0.03

Parkinson’s disease (0.2) 1,687 + 5,136 3,820,000 116,000 0.03 0.27 0.05 18 0.20 0.03

Psoriasis (0.5) 2,267 + 5,143 3,815,000 116,000 0.21 0.35 0.06 19 0.34 0.02

Schizophrenia (1) 2,068 + 2,615 3,481,000 111,000 0.07 0.23 0.01 20 0.30 0.04

Ulcerative colitis (0.2) 2,614 + 5,327 4,062,000 115,000 0.12 0.19 0.01 21 0.28 0.02

WTCCC 2+ Celiac disease (1) 2,492 + 7,376 2,682,000 88,000 0.29 0.33 0.04 22 0.35 0.02

Multiple sclerosis (0.1) 8,553 + 5,667 3,702,000 113,000 0.17 0.17 0.01 7 0.24 0.01

Partial epilepsy (0.3) 1,217 + 5,152 3,399,000 108,000 <0.01 0.33 0.05 3 0.27 0.04

RPTB Pulmonary tuberculosis (4) 5,142 + 5,283 2,987,000 102,000 <0.01 None None None 0.26 0.03

Blue Mountains Intraocular pressure 2,235 4,149,000 125,000 0.02 None None None 0.38 0.17

CHOP Wide-range achievement test 3,747 2,593,000 88,000 <0.01 0.43 0.10 23 0.21 0.09

UCLEBa 23 quantitative traits 6,458 to 11,005 353,000 39,000

n is the sample size (cases + controls), m is the number of SNPs and w jj
m

=∑ 1  is the sum of SNP weights, which can be interpreted as an effective number of independent SNPs. All 

values are from after quality control. For UCLEB, m and wjj
m

=∑ 1  refer to our main analysis, which considered only high-quality, common SNPs. The final two columns provide our 

best estimates of hSNP
2  from common SNPs, computed using LDAK with α = −0.25 (see main text for explanation of α). For comparison, we include previously published estimates 

of hSNP
2  (note that the previous analyses for rheumatoid arthritis, type 1 diabetes and multiple sclerosis excluded major histocompatibility complex (MHC) SNPs, which we estimate 

contribute 0.07, 0.20 and 0.05, respectively), as well as hGWAS
2

, the proportion of phenotypic variance explained by SNPs reported as GWAS significant (P < 5 × 10−8). For disease 

traits, estimates of hSNP
2

 and hGWAS
2  have been converted to the liability scale assuming the stated prevalence.

aResults appear in Supplementary Table 1.
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than GCTA), whether we used α = −1 (instead of α = −0.25) or whether 
we analyzed the UCLEB traits, it remained the case that the LDAK model 
better predicted the heritability contribution of each tranche than the 
GCTA model.

Relationship between heritability and genotype certainty
The LDAK model assumes that SNP heritability contributions vary 
with genotype certainty (measured by the information score, rj). Thus 
far, our analyses have used only very high-quality SNPs (rj ≥ 0.99), 
so this assumption has been redundant. We now also include lower-
quality, common SNPs; we focus on the UCLEB traits, as for these we 
were earlier able to test for correlation between genotyping errors and 
phenotype (Supplementary Fig. 13). Supplementary Table 5 com-
pares model fit with and without allowance for genotype certainty; 
it shows that including rj in the heritability model tends to provide 
a modest improvement in model fit, resulting in a higher likelihood 
for 18 of the 31 traits.

Estimates of hSNP
2  for the GWAS traits 

Table 1 presents our final estimates of hSNP
2  for the 19 GWAS traits, 

obtained using the LDAK model (with α = −0.25). For comparison, we 
include previously reported estimates of hSNP

2 , as well as the proportion  

of phenotypic variance explained by SNPs reported as genome-wide 
significant (Supplementary Table 6). For the disease traits, estimates 
are on the liability scale, obtained by scaling according to the observed 
case/control ratio and (assumed) trait prevalence26,27. We were unable 
to find previous estimates of hSNP

2  for tuberculosis or intraocular pres-
sure, indicating that, for these two traits, we are the first to establish 
that common SNPs contribute sizable heritability. Extended results 
are provided in Supplementary Table 7. These show that our final 
estimates of hSNP

2  were on average 43% (s.d. 3%) and 25% (s.d. 2%) 
higher, respectively, than those obtained using the original versions 
(with α = −1) of GCTA28 and GCTA-LDMS15. Results for the UCLEB 
traits are provided in Supplementary Table 1.

Role of DNase I hypersensitivity sites
Gusev et al.7 used SNP partitioning to assess the contributions of 
SNP classes defined by functional annotations. Across 11 diseases, 
they concluded that the majority of hSNP

2  was explained by DNase 
I hypersensitivity sites (DHSs), despite these containing fewer than 
20% of all SNPs. For Figure 5, we performed a similar analysis using 
the ten traits we had in common with their study (for nine of these, 
we used the same data). When we copied Gusev et al. and assumed 
the GCTA model with α = −1, we estimated that on average DHSs 
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Figure 2  Relationship between heritability and MAF. (a) The parameter α 
specifies the assumed relationship between heritability and MAF:  
in human genetics, α = −1 is typically used (solid blue line), while in 
animal and plant genetics α = 0 is more common (orange); we instead 
found that α = −0.25 (red) provides a better fit to real data. The gray  
bars report (relative) estimates of the per-SNP heritability for SNPs with 
MAF < 0.1 and MAF ≥ 0.1, averaged across the 19 GWAS traits (vertical 
lines provide 95% confidence intervals); the dashed lines indicate the 
per-SNP heritability predicted by each α  value. (b) For each tranche,  
we compare α on the basis of likelihood; higher likelihood indicates 
better-fitting α. Lines report log likelihoods from LDAK for seven values  
of α, relative to the highest observed likelihood. Line colors indicate  
the seven trait categories, while the black line reports averages.  
M. sclerosis, multiple sclerosis; IOP, intraocular pressure; WRAT,  
wide-range achievement test.
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Figure 3  Comparison of methods for estimating hSNP
2  for real and 

simulated data. (a) Relative estimates of hSNP
2  for the GWAS traits. hSNP

2  
estimates from LDSC, GCTA-MS (SNPs partitioned by MAF), GCTA-LDMS 
(SNPs partitioned by LD and MAF) and LDAK are reported relative to 
those from GCTA. For versions of GCTA and LDAK, we use α = −0.25 
(see main text for explanation of α). Line colors indicate the seven trait 
categories; the black line reports the (inverse-variance-weighted) averages, 
with gray boxes providing 95% confidence intervals for these averages. 
Numerical values are provided in Supplementary Table 3. (b) Phenotypes 
were simulated with 1,000 causal SNPs and hSNP

2  = 0.8 (black horizontal 
line) and then analyzed using GCTA, GCTA-MS, GCTA-LDMS, LDAK and 
LDAK-MS (LDAK with SNPs partitioned by MAF). Bars report average hSNP

2  
across 200 simulated phenotypes (vertical lines provide 95% confidence 
intervals). Left, copying the study of Yang et al.15, causal SNP effect sizes 
are sampled from N(0,1), similar to the GCTA model. Right, causal SNP 
effect sizes are sampled from N(0,wj), similar to the LDAK model.
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contributed 86% (s.d. 4%) of hSNP
2 , close to the value they reported 

(79%). When instead we assumed the LDAK model (with α = −0.25), 
the estimated contribution of DHSs was reduced to 25% (s.d. 2%). 
Under the LDAK model, DHSs were predicted to contribute 18% of 
hSNP

2 , so 25% represents a 1.4-fold enrichment. To add context, we 
also considered ‘genic’ SNPs, which we define as SNPs inside or within 
2 kb of an exon (using RefSeq annotations29), and ‘intergenic’ SNPs 
further than 125 kb from an exon; these definitions ensure that these 
two SNP classes are also predicted to contribute 18% of hSNP

2  under 
the LDAK model. We estimated that genic SNPs contributed 29% (s.d. 
2%), while intergenic SNPs contributed 10% (s.d. 2%), representing 
1.6-fold and 0.6-fold enrichment, respectively. When we extended this 
analysis to all 42 traits, DHSs on average contributed 24% (s.d. 2%) of 
hSNP

2 , and, in contrast to Gusev et al., enrichment remained constant 
when we reduced SNP density (Supplementary Figs. 14 and 15, and 
Supplementary Table 8).

Finucane et al.30 performed a similar analysis but considered 52 
SNP classes and estimated enrichment using LDSC; across nine traits, 
they identified five classes with >4-fold enrichment, the highest of 
which, ‘conserved SNPs’, had 13-fold enrichment. When we used 
LDAK to estimate enrichment for our 19 GWAS traits, the results were 
more modest; the highest enrichment was 2.5-fold, with only 1.3-fold 
enrichment for conserved SNPs (Supplementary Fig. 16).

Relaxing quality control
For the UCLEB data, we considered nine alternative SNP filtering set-
tings. Supplementary Figure 17 reports estimates of hSNP

2  for each 
trait–filtering combination, while Figure 6a provides a summary.  
First, we varied the information score (rj) threshold to greater than 
0.99, 0.95, 0.9, 0.6, 0.3 and 0 (each time continuing to require MAF  
≥ 0.01). Simulations suggested that, by including all 8.8 million com-
mon SNPs (rj ≥ 0) instead of using just the 353,000 high-quality ones 
(rj ≥ 0.99), we can expect estimates of hSNP

2  to increase by 50–60% 
(Supplementary Fig. 18). This is similar to what we observed in prac-
tice, as across the 23 traits estimates of hSNP

2  (using α = −0.25) were on 
average 45% (s.d. 8%) higher. The simulations further predicted that, 
even though the Metabochip provides relatively low coverage of the 
genome (after quality control, it contains only ~60,000 SNPs, predom-
inantly within genes), we can expect estimates of hSNP

2  to be approxi-
mately 80% as high as those obtained starting from genome-wide 
genotyping arrays. While we were unable to test this claim directly, 
it is consistent with our results for height, BMI and QT Interval, the 

three traits for which reasonably precise estimates of common SNP 
hSNP

2  are available6 (Fig. 6b). For the final three SNP filtering set-
tings, we varied the MAF threshold to be greater than 0.0025, 0.001 
and 0.0005 (all with rj ≥ 0). Across the 23 traits, we found that rare 
SNPs contributed substantially to hSNP

2 : for example, when we used 
the 17.3 million SNPs with MAF ≥ 0.0005, estimates of hSNP

2  (using 
α = −0.25 and MAF partitioning) were on average 29% (s.d. 12%) 
higher than those based on the 8.8 million common SNPs (median 
increase 22%), with rare SNPs contributing on average 33% (s.d. 5%) 
of hSNP

2  (Fig. 6a).

DISCUSSION
With estimates of hSNP

2  so widely reported, it is easy to forget that 
calculating the variance explained by large numbers of SNPs is a chal-
lenging problem. To avoid overfitting, it is necessary to make strong 
prior assumptions about SNP effect sizes, but different assump-
tions can lead to substantially different estimates of hSNP

2 . Previous 
attempts to assess the validity of assumptions have used simulation 
studies14,15, but this approach will tend to favor assumptions similar 
to those used to generate the phenotypes. Instead, we have compared 
different heritability models empirically, by examining how well they 
fit real data sets.

We began by investigating the relationship between heritability 
and MAF. Across 42 traits, we found that the best fit was achieved 
by setting α = −0.25 in model (1), which implies that average herit-
ability varies with (MAF(1 – MAF))0.75. As explained in the Online 
Methods, the value of α corresponds to the scaling of genotypes. 
Therefore, our result indicates that the performance (detection power 
and/or prediction accuracy) of many penalized and Bayesian regres-
sion methods, for example, Lasso, ridge regression and BayesA31,32, 
could be improved simply by changing how genotypes are scaled. 
Although we recommend α = −0.25 as the default value, with suf-
ficient data available, it should be possible to estimate α on a trait-
by-trait basis or to investigate more complex relationships between 
heritability and MAF. In particular, with a better understanding of 
the relationship between heritability and MAF for low frequencies, 
it may no longer be necessary to partition by MAF when rare SNPs 
are included.

We also examined the relationship between heritability and LD. 
Thus far, most estimates of hSNP

2  have been based on the GCTA model; 
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estimated contributions are compared to those expected under the GCTA 
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this model can be motivated by a belief that each SNP is expected to 
have the same effect on the phenotype, from which it follows that the 
expected heritability of a region should depend on the number of SNPs 
it contains. By contrast, the LDAK model views highly correlated SNPs 
as tagging the same underlying variant and therefore believes that the 
expected heritability of a region should vary according to the total 
amount of distinct genetic variation it contains. Across our traits, we 
found that the relationship between heritability and LD specified by the 
LDAK model consistently provided a better description of reality.

This finding has important consequences for complex trait genet-
ics. First, it implies that, for many traits, common SNPs explain con-
siderably more phenotypic variance than previously reported, which 
represents a major advance in the search for missing heritability2. 
It also affects a large number of closely related methods. For exam-
ple, LDSC10, like GCTA, assumes that heritability contributions are 
independent of LD, and it therefore also tends to underestimate hSNP

2 .  
Similarly, we have shown that estimates of the relative importance of 
SNP classes via SNP partitioning can be misleading when the GCTA 
model is assumed7,30. Further afield, most software for mixed-model 
association analyses (for example, FAST-LMM, GEMMA, MLM-LOCO  
and BOLT) use an extension of the GCTA model33–36, which is also 
the case for most bivariate analyses, including those performed by 

LDSC8,37,38. It remains to be seen how much these methods would be 
affected if they employed more realistic heritability models.

Attempts have been made to improve the accuracy of heritabil-
ity models via SNP partitioning14,15,39. We find that partitioning by 
MAF can be advantageous, as it guards against misspecification of 
the relationship between heritability and MAF when rare variants are 
included. Figure 3a and Supplementary Figure 7 indicate that the 
realism of the GCTA model can be improved by partitioning based 
on LD; for example, across the GWAS traits, estimates from GCTA-
LDMS are on average 16% (s.d. 2%) higher than those from GCTA and 
only 23% (s.d. 2%) lower than those from LDAK. The improvement 
arises because model misspecification is reduced by allowing SNPs 
in lower-LD tranches to have higher average heritability. However, 
Supplementary Table 9 illustrates why we consider such an approach 
suboptimal; in particular, SNP partitioning can be computationally 
expensive and, even with LD partitioning, model fit tends to be worse 
than that from LDAK.

While we have investigated the role of MAF, LD and genotype cer-
tainty, there remain other factors on which heritability could depend, 
in particular the available functional annotations of genomes40. For 
example, our comparison of genic and intergenic SNPs indicates 
that the effect size prior distribution could be improved by taking 
into account proximity to coding regions. By way of demonstration, 
Supplementary Table 10 shows that model fit is improved by assuming 
E h = c f fj w r D +j k j

+
j j j[ ] [ ( )] ( )/2 11 exp( 50 ) × − × × × −α 500  where Dj  

is the distance (in kb) between SNP j and the nearest exon (under this 
model, genic SNPs are expected to have about twice the heritability of 
intergenic SNPs). In general, we believe that modifications of this type 
will have a relatively small impact; we note that, across the 19 GWAS 
traits, this modification increases model log likelihood by on average 
only 1.5, much less than the average increase obtained by using α = −0.25  
instead of α = −1 (8.9) or by choosing the LD model specified by LDAK 
instead of GCTA (17.7), and does not significantly change estimates  
of hSNP

2 . However, with sufficient data, it may be possible to obtain 
more substantial improvement by tailoring model assumptions to 
individual traits.

When estimating hSNP
2 , care should be taken to avoid possible 

sources of confounding. Previously, we advocated a test for infla-
tion of hSNP

2  due to population structure and familial relatedness3. 
The conclusions of a recent paper claiming that hSNP

2  estimates are 
unreliable41 would have changed substantially had this test been 
applied (Supplementary Fig. 19). We also recommend testing for 
inflation due to genotyping errors, particularly before including 
lower-quality and/or rare SNPs. For the 23 UCLEB traits, we showed 
that including poorly imputed SNPs resulted in significantly higher 
estimates of hSNP

2  and made it possible to capture the majority of 
genome-wide heritability, despite the very sparse genotyping pro-
vided by the Metabochip. We found that including rare SNPs also 
led to significantly higher hSNP

2 . Although sample size prevented us 
from obtaining precise estimates of hSNP

2  for individual traits, our 
analyses indicate that, for larger data sets, including rare SNPs will 
be both practical and fruitful in the search for the remaining miss-
ing heritability2.

URLs. LDAK, http://www.ldak.org/; PLINK, http://www.cog-genomics. 
org/plink2; SHAPEIT, http://www.shapeit.fr/; IMPUTE2, http:// 
mathgen.stats.ox.ac.uk/impute/impute_v2.html; DHS annotations, 
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/
wgEncodeRegDnaseClustered/wgEncodeRegDnaseClusteredV3.bed.
gz; RefSeq annotations, http://hgdownload.cse.ucsc.edu/goldenPath/
hg19/database/refGene.txt.gz.
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Figure 6  Varying quality control for the UCLEB traits. We consider three 
SNP filtering settings: 353,000 high-quality common SNPs (information 
score ≥ 0.99, MAF ≥ 0.01), 8.8 million common SNPs (MAF ≥ 0.01) and 
all 17.3 million SNPs (MAF ≥ 0.0005). (a) Blocks indicate SNP filtering; 
bars report (inverse-variance-weighted) average estimates of hSNP

2   
using LDAK (vertical lines provide 95% confidence intervals). Bar color 
indicates the value of α used. For blocks 1–3, hSNP

2  is estimated using 
the non-partitioned model. For block 4, SNPs are partitioned by MAF; 
we find this is necessary when rare SNPs are included and it also allows 
estimation of the contribution of SNPs with MAF < 0.01 (hatched 
areas). (b) Bars report our final estimates of hSNP

2  for height, BMI and 
QT interval—the three traits for which common SNP heritability has 
previously been estimated with reasonable precision6 (orange lines mark 
the 95% confidence intervals from these previous studies). Bar colors now  
indicate SNP filtering; all estimates are based on α = −0.25, using either  
a non-partitioned model (red and blue bars) or with SNPs partitioned  
by MAF (purple bars).
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Methods, including statements of data availability and any associated 
accession codes and references, are available in the online version of 
the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
The Supplementary Note summarizes the different analyses we performed 
and the conclusions we drew from each. In general, we assume there are n 
individuals, recorded for p covariates and genotyped (either directly or via 
imputation) for m SNPs: the length–n vector Y contains phenotypic values the 
n × p matrix Z contains covariates, and the n × m matrix S contains (expected) 
allele counts.

Information score rj. Let the vector Sj = (S1,j, …, Sn,j)T ∈ [0,2]n denote the 
allele counts for SNP j (Sj is column j of S). Our information score rj estimates 
the squared correlation between Sj and Gj = (G1,j, …, Gn,j)T ∈ {0,1,2}n, the true 
genotypes for SNP j. When using imputed data, Gj is typically not known; 
instead, for each individual, we have a triplet of state probabilities pi,j,0, pi,j,1, 
pi,j,2, where pi,j,g = P(G1,j = g) and pi,j,0 + pi,j,1 + pi,j,2 = 1. Therefore, we define 
rj by taking expectations over the 3n possible realizations of Gj

r =
E S S G G

S S E G G
j

i, j j i, j j

i, j j i, j j

−( ) −( )





−( )



 −( )



∑
∑ ∑

2

2 2 


where 

S =
n

Sj i, j
1 ∑

and 
G =

n
Gj i, j

1 ∑

Sj is known, so computing S Si, j j−( )∑ 2
 is straightforward. The two expecta-

tions can also be calculated explicitly 

E S S G G = S S E G

= S S p

i, j j i, j j j j i, j

j j i, j,

−( ) −( )



 −( ) − 

−( )
∑ ∑

∑
µ

11 22+ pi, j, −( )µ

E G G = E G

= p + p +

j j j

i, j, i, j,1

−( )





−( )





−( ) −( )

∑ ∑2 2

0
2 21

µ

µ µ ppi, j,2 2 2−( )



∑ µ

where 

µ = E G =
n

p + pj i, j, i, j,  ( )∑1 21 2

For our analyses, we use expected allele counts (dosages), so Si,j = pi,j,1 + 
2pi,j,2. In this case, 

E S S G G = S Si, j j i, j j i, j j−( ) −( )



 −( )∑ ∑ 2

and so the score reduces to 

r = S S G Gj i, j j i, j j−( ) −( )∑ ∑2 2
/

 For a directly genotyped SNP, each triplet of state probabilities will be 
(1,0,0), (0,1,0) or (0,0,1), which will result in Si,j = Gi,j for all i and rj = 1; 
so for these SNPs, in place of rj, we use the metric r2_type2 reported by 
IMPUTE2 (ref. 42). Additional details on our information score are provided 
in Supplementary Figure 20.

Estimating hSNP
2 . We first construct the n × m genotype matrix X, by centering 

and scaling the allele counts for each SNP according to Xij = (Sij – 2fj) × [2fj 
(1 – fj)]α/2, where fj = Σi Sij/2n. If wj and rj denote the LD weight9 and infor-
mation score for SNP j, then the LDAK model for estimating SNP heritability 
hSNP g g e

22 2 2= +s s s/( ) is 

Y = Z + X + e

N r w W e N W

i k i,k j i, j i

j j j g i e

θ β

β σ σ

∑ ∑
( ) ( )with 0, 0, and2 2∼ ∼/ , == r w f fj j j j

+
∑ −( )



2 1
1 α

( )2
(2)(2)

θk denotes the fixed-effect coefficient for the kth covariate and βj and ei are 
random effects indicating the effect size of SNP j and the noise component 
for individual i, while sg

2 and se
2  are interpreted as genetic and environmental  

variances, respectively. Note that the introduction of rj is an addition to the 
model we proposed in 2012 (ref. 9). Model (2) is equivalent to assuming43,44,

Y N Z K Ig e∼ ( , ) ( )q s s2 2 3+ ,

with 

K = X X
W

TΩ

where I is an n × n identity matrix and Ω denotes a diagonal matrix with 
diagonal entries (r1w1, …, rmwm). The kinship matrix K, also referred to as a 
genetic relationship matrix (GRM)1 or genomic similarity matrix (GSM)45, 
consists of average allelic correlations across the SNPs (adjusted for LD and 
genotype certainty). Model (3) is typically solved using REML12, which returns 
estimates of θ1, …, θp, sg

2  and se
2 (ref. 12).

The heritability of SNP j can be estimated by hj j j
2 2= b var(X )/var(Y),  

which under model (2) and assuming Hardy–Weinberg equilibrium46,47 has 
expectation 

E h =
E Var X

Var Y
=

r w W f f
j

j j j j g j j
+

2
2 2 1

2 1
 

  × ( )
( )

× −( )



β σ
α

/

VVar Y( )
( )4

If P1 and P2 index two sets of SNPs of size |P1| and |P2|, then under  
the LDAK model they are expected to contribute heritability in the ratio  
W1:W2, where 

W = r w f fl j j j j
+

∑ −( )



2 1
1 α

The GCTA model corresponds to setting wj = rj = 1, in which case 

W = f fl j j
+

2 1
1

−( )



∑
α

Most applications of GCTA have further assumed α = −1, so that Wl = |P1|, 
which corresponds to the assumption that SNP sets are expected to contribute 
heritability proportional to the number of SNPs they contain.

Model (2) assumes that all effect sizes can be described by a single prior 
distribution. This assumption is relaxed by SNP partitioning. Suppose that 
the SNPs are divided into tranches P1 …, PL of sizes |Pl|, ., |PL|; typically, these 
will partition the genome so that each SNP appears in exactly one tranche and  
Σl |Pl| = m, but this is not required. This corresponds to generalizing model (2), so 
that SNPs in tranche l have effect size prior distribution b sj j j l lN r w~ , /W0 2( ).  
Letting Σ = s s1

2 2, ..., L then hSNP e
22 = +( )Σ Σ/ s  and s1

2 / Σ  represents the  
contribution to hSNP

2  of SNPs in tranche l. This model can equivalently be 
expressed as Y K K I~ , ...N L L eZθ s s s1

2 2 2+ + +( ), where K1 represents allele 
correlations across the SNPs in tranche 1.

For analyses under the LDAK model, we used LDAK v.5; for analyses under 
the GCTA model, we used GCTA v.1.26. For about one-third of GCTA-LDMS 
analyses, the GCTA REML solver failed with the error “information matrix 
is not invertible,” in which case we reran the analysis using LDAK (while the 
GCTA and LDAK solvers are both based on average information REML28,48, 
subtle differences mean that, when using a large number of tranches, one might 
complete while the other fails). For the few occasions when both solvers failed, 
we instead used GCTA-LD (SNPs divided only by LD, rather than by LD and 
MAF), which we found gave very similar results to GCTA-LDMS for traits 
where both completed (Supplementary Fig. 7). For diseases, we converted 
estimates of hSNP

2  to the liability scale on the basis of the observed case/control 
ratio and assumed prevalence26,27. In general, we copied the prevalences used 
by previous studies; however, for tuberculosis, where no previous estimate of 
hSNP

2  was available, we derived an estimate of prevalence from World Health 
Organization data49 (Supplementary Note).

LDSC. Originally designed as a way to quantify confounding in a GWAS, LDSC10 
also provides a method for estimating hSNP

2 , which requires only summary sta-
tistics from single-SNP analysis (rather than raw genotype and phenotype data).  

(3)(3)

(4)(4)
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LDSC is based on the principle that, in a single-SNP analysis, the χ2(1) test statis-
tic for SNP j has expected value E X nh n r naj k j k jj[ ( )] ,

2 2 21 1= + + +≠Σ , where  
rj k,

2  denotes the squared correlation between SNPs j and k, while aj represents  
bias due to confounding factors (for example, population structure and famil-
ial relatedness)10. Under a polygenic model where every SNP is expected to 
contribute equally ( [ ] / )E h h mj

2 2= SNP  and the (widely used) assumption that 
bias is constant across SNPs (aj = a), we have E X nl h m naj[ ( )] /2 21 1= + +SNP ,  
where l rj k j j k= + ≠1 2Σ ,  is referred to as the LD score of SNP j (as it is not 
feasible to compute pairwise correlations across all SNPs, in practice these 
are approximated using a sliding window of, say, 1 cM). Therefore, LDSC 
estimates hSNP

2  and a by regressing test statistics on LD scores. In the absence 
of confounding (a = 0), LDSC can be viewed as estimating hSNP

2  under the 
GCTA model with α = −1 (as this satisfies the assumption that every SNP is 
expected to contribute equal heritability). As the authors of LDSC point out10, 
it is straightforward to accommodate alternative relationships between E hj[ ]2  
and MAF (α ≠ −1) by changing how genotypes are scaled when comput-
ing LD scores, and genotype certainty could potentially be accommodated. 
However, the similarity with the GCTA model appears intrinsic to LDSC; 
while the assumption that heritability is independent of LD can be relaxed via 
SNP partitioning39, we cannot envisage how the method could be modified 
to accommodate the LDAK SNP weights. For LDSC analyses, we used LDSC 
v.1.0.0 both for calculating LD scores and estimating hSNP

2 .

Accommodating loci with very large effects. Equation (2) assumes that all 
SNP effect sizes can be modeled by a single Gaussian distribution. Estimates 
are generally robust to violations of this assumption9, but problems can occur 
when individual SNPs have very large effect sizes because a single Gaussian 
distribution cannot accommodate both these SNPs and the very many with 
small effect sizes. This is a common concern when analyzing autoimmune 
traits, for which the MHC can contribute substantial heritability. In response 
to this problem, some authors exclude MHC SNPs from analyses7,28,50,51. 
Another approach is to model effect sizes as a mixture of Gaussians52,53, but 
this is not computationally feasible for millions of SNPs and many thousands 
of individuals. Therefore, our proposed strategy is to first identify SNPs with  
P < 1 × 10−20 from single-SNP analysis, to prune these using a correlation-
squared threshold of 0.5 and then to include those that remain as fixed-effect 
covariates. Thus, in place of equation (3), we assume Y K I~ ,N Zθ Φ+ +( )T s sg e

2 2 ,  
where columns of the matrix T contain allele counts of the highly associated 
SNPs (that is, T is a submatrix of S) and the vector Φ represents their effect 
sizes. In contrast to standard (non-SNP) covariates, the variance explained by 
T counts toward SNP heritability: h T TSNP g g e

2 2 2 2 2 2= + + +( )/( )s s s s s , where 
sT

T2 =( ) ( )T TΦ Φ . Supplementary Figures 21 and 22 provide further details. 
In particular, we appreciate that our definition of highly associated is some-
what arbitrary, so we confirm that estimates of hSNP

2  are almost unchanged if 
instead we use P < 5 × 10−8.

Data sets. When searching for GWAS data sets, we preferred those with sample  
size at least 4,000 to ensure reasonable precision of hSNP

2  (ref. 54). In total, 
our data sets were constructed from 40 independent cohorts, all of which 
have been previously described (see Supplementary Tables 11 and 12 for 
references and details of how cohorts were merged to form data sets). For 
the UCLEB data, there were in total 28 quantitative traits with measurements 
recorded for 7,000 individuals. For each of these, we quantile normalized, then 
applied a test for inflation due to genotyping errors (Supplementary Fig. 13).  
Specifically, our test, inspired by Bhatia et al.55 and valid for quantitative phe-
notypes where individuals are recruited from multiple cohorts, first estimates 
hSNP

2  using only pairs of individuals in different cohorts and then using only 
pairs of individuals in the same cohort; a significant difference between the two 
estimates indicates possible inflation due to genotyping errors. We excluded 
five traits that showed evidence of inflation (P < 0.05/28), leaving us with 23: 
height, weight, BMI, waist circumference, forced vital capacity, 1-s forced vital 
capacity, systolic blood pressure (adjusted), diastolic blood pressure (adjusted), 
PR interval, QT interval, corrected QT interval, QRS voltage product, Sokolow 
Lyon, glucose, insulin, total cholesterol (adjusted), LDL cholesterol (adjusted), 
triglycerides (adjusted), viscosity, fibrinogen, IL-6, C-reactive protein and 
hemoglobin. Approximately 40% of individuals were receiving medication 
to reduce blood pressure and 25% to reduce lipid levels, so, where indicated, 

phenotypes had been adjusted for this: for individuals on medication, their 
raw measurements had been increased either by adding on (blood pressure) 
or scaling by (lipid levels) a constant56,57. We note that some pairs of traits are 
highly correlated. However, as the overall correlation is not that extreme (we 
estimate the effective number of independent traits to be about 15) and most 
of our UCLEB analyses serve to support conclusions drawn from the GWAS 
traits, we decided to retain all 23 traits (rather than, say, consider only a sub-
set). See the Supplementary Note for further details on phenotyping.

Quality control. We processed each of the 40 cohorts in identical fashion; 
see the Supplementary Note for full details. In summary, after excluding 
apparent population outliers, samples with extreme missingness or hetero-
zygosity and SNPs with MAF < 0.01, call rate < 0.95 or P < 1 × 10−6 from a 
test for Hardy–Weinberg equilibrium, we phased using SHAPEIT58 and then 
imputed using IMPUTE2 (ref. 42) and the 1000 Genomes Project Phase 3  
(2014) reference panel59. When merging cohorts to construct the GWAS 
data sets, we retained only autosomal SNPs that in all cohorts had MAF ≥ 
0.01 and rj ≥ 0.99 (using IMPUTE2 r2_type2 in place of rj for directly geno-
typed SNPs). For the eight UCLEB cohorts, we applied these filters only after 
merging. We only relaxed quality control for the analyses of the UCLEB data 
where we explicitly examined the consequences of including lower-quality 
and rare SNPs. When possible, the matrix S contained expected allele counts 
(dosages); that is, Si,j = pi,j,1 + 2pi,j,2, where pi,j,1 and pi,j,2 denote the probabili-
ties of allele counts 1 and 2, respectively. If hard genotypes were required, 
for example, when using LDSC to compute LD scores10, we rounded Si,j 
to the nearest integer. As this was only necessary when considering high-
quality SNPs (rj ≥ 0.99), we expect this rounding to have negligible impact 
on results. For each trait, Table 1 reports m, the total number of SNPs after 
imputation, and Σ j=

m
jw1 , the sum of SNP weights; the aim of these weights 

is to remove duplication of signal due to LD, and their sum can loosely be 
interpreted as an effective number of independent SNPs. For the GWAS data 
sets, Σjwj ranged from 79,000 to 125,000. By contrast, when restricted to only 
high-quality SNPs, the UCLEB data had Σjwj = 39,000, reflecting that the 
Metabochip directly captures a much smaller amount of genetic variation 
than standard genome-wide SNP arrays.

When analyzing quantitative traits, genotyping errors will tend only to be 
a concern when there are systematic differences between phenotypes across 
cohorts, and this is something we are able to explicitly test (Supplementary 
Fig. 13). However, for disease traits, when cases and controls have been geno-
typed separately (as was the design of most of our GWAS data sets), any errors 
will almost certainly correlate with phenotype and therefore cause inflation of 
hSNP

2 9,27. To test the effectiveness of our quality control for the GWAS traits, 
we constructed a pseudo case–control study using two control cohorts; we 
confirmed that the resulting estimate of hSNP

2  was not significantly greater 
than zero, suggesting that the quality control steps we used for the GWAS data 
sets were sufficiently strict (Supplementary Note).

Accurate estimation of hSNP
2  requires samples of unrelated individuals 

with similar ancestry. Prior to imputation, we removed ancestry outliers 
identified through principal-component analyses (Supplementary Fig. 23). 
After imputation, we computed (unweighted) allelic correlations using a 
pruned set of SNPs and then filtered individuals so that no pair remained 
with correlation greater than c, where −c is the smallest observed pairwise 
correlation (c ranged from 0.029 to 0.038, depending on the data set). For 
our data sets, this filtering excluded relatively few individuals (on average 
3.8%, with maximum 11.6%). For all analyses, we included a minimum of 
30 covariates: the top 20 eigenvectors from the allelic correlation matrix 
just described and projections onto the top 10 principal components com-
puted from 1000 Genomes Project samples59. For the 19 GWAS traits, we 
also included sex as a covariate, while for intraocular pressure and wide-
range achievement test scores we additionally included age. Supplementary 
Figure 24 reports the proportion of phenotypic variance explained by each 
covariate. To check our filtering and covariate choices, we estimated the 
inflation of hSNP

2  due to population structure and residual relatednesss3 
(Supplementary Fig. 19). For the GWAS traits, we estimated that on average 
hSNP

2  estimates were inflated by at most 3.1%, with the highest observed for 
ischemic stroke (7.1%). For the 23 UCLEB traits, the average inflation was 
0.3% (highest 2.3%).
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Single-SNP analysis. Supplementary Figure 25 provides Manhattan plots 
from logistic (case–control traits) and linear regression (quantitative traits), 
performed using PLINK v.1.9. These analyses provide the summary statis-
tics required by LDSC. For the GWAS traits, we identified highly associated 
SNPs (P < 1 × 10−20) within the MHC for six of the GWAS traits (rheumatoid 
arthritis, type 1 diabetes, psoriasis, ulcerative colitis, celiac disease and multi-
ple sclerosis), while rs2476601, a SNP within PTPN22, was highly associated 
with both rheumatoid arthritis and type 1 diabetes60,61. For the UCLEB traits, 
we found highly associated SNPs within SCN10A (PR interval), APOE (total 
cholesterol, LDL cholesterol and C-reactive protein) and ZPR1 (triglyceride 
levels). For heritability analysis, these SNPs were pruned and then included 
as additional fixed-effect covariates as described above.

Computational requirements. The most time-consuming aspect of analysis 
was genotype imputation; for a typically sized cohort (~3,000 individuals), 
this took approximately 1 CPU-year (a few days on a 100-node cluster). Next 
is computation of SNP weights, which for the GWAS traits (~4 million SNPs) 
took approximately 1 CPU-day (again, this can be nearly perfectly paral-
lelized). Finally, solving the mixed model via REML would take between a 
few minutes for the smaller traits (~5,000 individuals) and a few hours for the 
largest (~14,000 individuals). Memory-wise, the most onerous task is solving 
the mixed model, for which memory demands scale with n2; however, even 
for the largest data set, this was less than 5 GB (when using multiple kinship 
matrices, LDAK allows for these to be read on the fly, so that the memory 
demands are no higher than when using only one).

Code availability.Step-by-step instructions for estimating hSNP
2  starting from 

raw genotype data, as well as for performing our other analyses, are provided 
in the Supplementary Note.

Data availability. In total, we analyze data from 40 cohorts; 25 of these were 
downloaded (after completing a data access request) from the European 
Genome-phenome Archive or dbGaP, while the remaining 15 (which include 
the 8 UCLEB cohorts) were obtained directly from the relevant custodians. 
Full details of the cohorts (with accession codes where applicable) are provided 
in the Supplementary Note.
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