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Reevaluation of SNP heritability in complex human traits

Doug Speed!®, Na Cai??

, the UCLEB Consortium*, Michael R Johnson’, Sergey Nejentsev® & David ] Balding!>”

SNP heritability, the proportion of phenotypic variance explained by SNPs, has been reported for many hundreds of traits. Its
estimation requires strong prior assumptions about the distribution of heritability across the genome, but current assumptions
have not been thoroughly tested. By analyzing imputed data for a large number of human traits, we empirically derive a model
that more accurately describes how heritability varies with minor allele frequency (MAF), linkage disequilibrium (LD) and
genotype certainty. Across 19 traits, our improved model leads to estimates of common SNP heritability on average 43% (s.d.
3%) higher than those obtained from the widely used software GCTA and 25% (s.d. 2%) higher than those from the recently
proposed extension GCTA-LDMS. Previously, DNase I hypersensitivity sites were reported to explain 79% of SNP heritability;
using our improved heritability model, their estimated contribution is only 24%.

The SNP heritability (h%Np) of a trait is the fraction of phenotypic var-
iance explamed by additive contributions from SNPs!. Accurate esti-
mates of hSNP are central to resolving the missing heritability debate,
indicate the potential utility of SNP-based prediction and help design
future genome-wide association studies (GWAS)?3. Whereas tech-
niques for estimating (total) heritability have existed for decades*>,
the first method! for estimating h§yp was proposed only in 2010 but
has since been applied to many hundreds of traits. Extensions of this
method are now being used to partition heritability across chromo-
somes, according to biological pathways and by SNP function and to
calculate the genetic correlation between pairs of traits®-8.

As the number of SNPs in a GWAS is usually much larger than
the number of individuals, estimation of hSNP requires steps to avoid
overfitting. Most reported estimates of hdyp are based on assigning
the same Gaussian prior distribution to each SNP effect size, in
a way that implies that all SNPs are expected to contribute equal
heritability!°. By examining a large collection of real data sets, we
derive approximate relationships between the expected heritability
of a SNP and MAF, levels of LD with other SNPs and genotype
certainty. This provides us with an improved model for heritability
estimation and a better understanding of the genetic architecture
of complex traits.

RESULTS
When estimating thP’ the LDAK model’ assumes

ElRF1~1 ;0= I xw;xr; (1)

where E[h?] is the expected heritability contribution of SNP jand f;
is its (observed) MAE The parameter o determines the assumed rela-
tionship between heritability and MAF. In human genetics, it is

commonly assumed that heritability does not depend on MAF, which
is achieved by setting o = —1; however, we consider alternative rela-
tionships. The SNP weights wy, ..., w,, are computed on the basis of
local levels of LD% w; tends to be higher for SNPs in regions of low
LD, and thus the LDAK model assumes that these SNPs contribute
more than those in high-LD regions. Finally, r; € [0,1] is an informa-
tion score measuring genotype certainty; the LDAK model expects
that higher-quality SNPs contribute more than lower-quality ones.
] is defined in the Online Methods, where we also explain how model
(1) arises by assuming a genome-wide random regression in which
SNP effect sizes are assigned Gaussian distributions.

The ‘GCTA model is obtained from model (1) by setting w;=1
and rj = 1, and thus assumes that expected heritability does not vary
with elther LD or genotype certainty. Thus far, most reported esti-
mates of hSNP have used the GCTA model with & = -1, which corre-
sponds to the assumption that E [h ] is constant, and so the expected
contribution of a SNP set depends only on the number of SNPs it
contains!. To appreciate the major difference between the GCTA
and LDAK models, consider a region containing two SNPs: under
the GCTA model, the expected heritability of these two SNPs is the
same irrespective of the LD between them, whereas under the LDAK
model two SNPs in perfect LD are expected to contribute only half
the heritability of two SNPs showing no LD. See Figure 1 for a more
detailed example.

An alternative method for estimating hSNp is LDSC (LD score
regression)!0. The LDSC model expects that each SNP contributes
equal heritability!®!! and therefore closely resembles the GCTA
model with = —1. When applied to the same data set, estimates from
LDSC will typically have standard errors 25-100% higher than those
from GCTALL; this is partly because the LDSC model includes an
extra parameter, designed to capture confounding biases, and partly
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Figure 1 Comparison of the GCTA and LDAK models. Region 1 contains
five SNPs in low LD (lighter shadings indicate weaker pairwise correlations).
Each SNP contributes unique genetic variation, reflected by SNP weights
close to one. Region 2 contains five SNPs in high LD (strong correlations).
The total genetic variation tagged by the region is effectively captured by
two of the SNPs, and so the others receive zero weight. Under the GCTA
model, the regions are expected to contribute heritability proportional to
their numbers of SNPs, which are equal here. Under the LDAK model,
they are expected to contribute heritability proportional to their sums of
SNP weights, which here have the ratio 4.6:1.9. Note that the expected
heritability can also depend on the allele frequencies and genotype
certainties of the SNPs, but for simplicity these factors are ignored here.

because LDSC estimates are moment based, whereas GCTA (like
LDAK) uses restricted maximum likelihood (REML)!%13, However,
as LDSC requires only summary statistics (P values from single-SNP
analysis), it can be used on much larger data sets than GCTA and
LDAK, which need raw genotype data, and it can be applied to results
from large-scale meta-analyses!?.

SNP partitioning

Model (1) can be generalized by dividing SNPs into tranches across
which the constant of proportionality is allowed to vary (so E[h}] =
Ck X [fj(l —]})]1 FEX WX T for SNPs in tranche k). This is known
as SNP partitioning®. Two examples are GCTA-MS!* and GCTA-
LDMS!%; when applied to common SNPs (MAF > 0.01), GCTA-MS
divides the genome into five tranches on the basis of MAF, using the
boundaries 0.1, 0.2, 0.3 and 0.4, while GCTA-LDMS first divides SNPs
into four tranches on the basis of local average LD score!? and then
divides each of these into five on the basis of MAF, resulting in a total
of 20 tranches. In general, we prefer to avoid SNP partitioning when
estimating thp because it introduces (often arbitrary) discontinui-
ties in the model assumptions and can cause convergence problems.
However, we show below that partitioning based on MAF enables reli-
able estimation of thp when rare SNPs (MAF < 0.01) are included.
Additionally, SNP partitioning provides a way to visually assess the
fit of different heritability models; it allows us to estimate average h?
for different SNP tranches, which can then be compared to the values
predicted under different assumptions.

Data sets

In total, we analyzed data for 42 traits. Table 1 and Supplementary
Table 1 describe the 19 ‘GWAS traits’ (17 case-control and 2 quantita-
tive traits). For these traits, individuals were genotyped using either
genome-wide Illumina or Affymetrix arrays (typically with 500,000 to
1.2 million SNPs). We additionally examined data from eight cohorts
of the UCLEB consortium?4, which comprise about 14,000 individuals
genotyped using the Metabochip?® (a relatively sparse array of 200,000
SNPs selected on the basis of previous GWAS) and recorded for a wide
range of clinical phenotypes. From these, we considered 23 quantitative
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phenotypes (average sample size 8,200), which can loosely be divided
into anthropomorphic (height, weight, body mass index (BMI) and
waist circumference), physiological (lung capacity and blood pres-
sure), cardiac (for example, PR and QT intervals), metabolic (glucose,
insulin and lipid levels) and blood chemistry (for example, fibrinogen,
IL-6 and hemoglobin levels) traits. In general, our quality control was
extremely strict; after imputation, we retained only autosomal SNPs
with MAF 2 0.01 and information score ; 2 0.99. We only relaxed
quality control when, using the UCLEB data, we explicitly examined
the consequences of including lower-quality and rare SNPs.

Further details of our methods and data sets are provided in_the
Online Methods. In particular, we explain how when estimating ASxp
we give special consideration to highly associated SNPs, which we
define as those with P < 1 x 1072° from single-SNP analysis, and how
for the UCLEB data we confirm that genotyping errors do not cor-
relate with phenotype (which is important for the analyses where we
include lower-quality SNPs).

Relationship between heritability and MAF

Varying the value of o in model (1) changes the assumed relationship
between heritability and MAF; three example relationships are shown
in Figure 2a. To determine suitable o values, we analyzed each of
the 42 traits using seven values (-1.25, -1, -0.75, -0.5, —0.25, 0 and
0.25), seeing which led to the best model fit (highest likelihood). Full
results are provided in Supplementary Figure 1 and Supplementary
Table 2. First, to remove any confounding due to LD, we used only
a pruned subset of SNPs (with w; = 1); next, we repeated without
LD pruning (the results for the GWAS traits are shown in Fig. 2b);
and, finally, for the UCLEB traits, we repeated including lower-
quality and rare SNPs. We found that model fit was typically best for
-0.5< <0, whereas the most widely used value, ot = -1, resulted in
suboptimal fit. On the basis that it performs consistently well across
different traits and SNP filtering criteria, we recommend that o =
—0.25 become the default. This value implies that expected heritability
declines with increasing MAF; this is seen in Figure 2a, which reports,
averaged across the 19 GWAS traits, the (weight-adjusted) per-SNP
heritability for low- and high-MAF SNPs (see Supplementary Fig. 2
for further details).

While o = —0.25 provided the best fit overall, for individual traits,
optimal o may differ, and we therefore investigated the sensitivity of
hf%NP estimates to the value of & (Supplementary Figs. 3-5). When
analyzing only common SNPs, we found that changes in o had little
impact on thp. For example, across the 23 UCLEB traits, estimates
from high-quality, common SNPs using o = —0.25 were on average
only 5% (s.d. 4%) lower than those using o = -1 and 4% (s.d. 4%)
higher than those using o = 0. However, this was no longer the case
when rare SNPs were included in the analysis: for example, when the
MATF threshold was reduced to 0.0005, estimates using o= —0.25 were
on average 18% (s.d. 4%) lower than those using o:= —1 and 30% (s.d.
6%) higher than those from ¢ = 0. Therefore, when including rare
SNPs, we guarded against misspecification of o by partitioning on
the basis of MAF (with boundaries at 0.001, 0.0025, 0.01 and 0.1);
we found that this provided stable estimates of thp and also allows
estimation of the relative contributions of rare and common variants
(Supplementary Fig. 6).

Relationship between heritability and LD

The LDAK model assumes that heritability varies according to local
levels of LD, whereas the GCTA model assumes that heritability is
independent of LD. First, we demonstrated that choice of model
matters when estimating thP' For the GWAS traits, Figure 3a
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Table 1 Properties of data sets and estimates of hgm,

Previous LDAK
Collection Trait (disease prevalence, %) n m ZT:IW/ h(Z;WAS thP s.d. Ref. thP s.d.
WTCCC 1 Bipolar disorder (0.5) 1,840 + 2,913 2,729,000 79,000 0.02 0.24 0.04 7 0.35 0.03
Coronary artery disease (6) 1,907 + 2,918 2,739,000 80,000 0.03 0.25 0.06 7 0.40 0.06
Crohn's disease (0.5) 1,691 + 2,905 2,724,000 79,000 0.21 0.26 0.01 21 0.32 0.03
Hypertension (5) 1,918 + 2,916 2,740,000 80,000 <0.01 0.33 0.06 7 0.46 0.06
Rheumatoid arthritis (0.5) 1,846 + 2,918 2,736,000 80,000 0.19 0.09 0.03 7 0.21 0.03
Type 1 diabetes (0.5) 1,941 + 2,907 2,732,000 80,000 0.27 0.13 0.03 7 0.31 0.02
Type 2 diabetes (8) 1,896 + 2,917 2,736,000 80,000 0.08 0.42 0.07 7 0.54 0.07
WTCCC 2 Barrett’s esophagus (1.6) 1,861 + 5,138 3,831,000 116,000 <0.01 0.25 0.05 16 0.32 0.04
Ischemic stroke (2) 3,769 + 5,139 3,797,000 115,000 <0.01 0.25 0.03 17 0.34 0.03
Parkinson’s disease (0.2) 1,687 + 5,136 3,820,000 116,000 0.03 0.27 0.05 18 0.20 0.03
Psoriasis (0.5) 2,267 + 5,143 3,815,000 116,000 0.21 0.35 0.06 19 0.34 0.02
Schizophrenia (1) 2,068 + 2,615 3,481,000 111,000 0.07 0.23 0.01 20 0.30 0.04
Ulcerative colitis (0.2) 2,614 + 5,327 4,062,000 115,000 0.12 0.19 0.01 21 0.28 0.02
WTCCC 2+ Celiac disease (1) 2,492 + 7,376 2,682,000 88,000 0.29 0.33 0.04 22 0.35 0.02
Multiple sclerosis (0.1) 8,653 + 5,667 3,702,000 113,000 0.17 0.17 0.01 7 0.24 0.01
Partial epilepsy (0.3) 1,217 + 5,152 3,399,000 108,000 <0.01 0.33 0.05 3 0.27 0.04
RPTB Pulmonary tuberculosis (4) 5,142 + 5,283 2,987,000 102,000 <0.01 None None  None 0.26 0.03
Blue Mountains Intraocular pressure 2,235 4,149,000 125,000 0.02 None None None 0.38 0.17
CHOP Wide-range achievement test 3,747 2,593,000 88,000 <0.01 0.43 0.10 23 0.21 0.09
UCLEB? 23 quantitative traits 6,458 to 11,005 353,000 39,000

m
n is the sample size (cases + controls), m is the number of SNPs and zj:1 W is the sum of SNP weights, which can be interpreted as an effective number of independent SNPs. All

m
values are from after quality control. For UCLEB, m and 21 1W; refer to our main analysis, which considered only high-quality, common SNPs. The final two columns provide our
best estimates of hSNP from common SNPs, computed using LDAK with = —0.25 (see main text for explanation of ). For comparison, we include previously published estimates
of hSNP (note that the previous analyses for rheumatoid arthritis, type 1 diabetes and multiple sclerosis excluded major histocompatibility complex (MHC) SNPs, which we estimate

contribute 0.07, O. 20 and 0.05, respectively), as well as hGWAS the proportion of phenotypic variance explained by SNPs reported as GWAS significant (P < 5 x 10-8). For disease

traits, estimates of hSNP and hGWAS

aResults appear in Supplementary Table 1.

reports the relative estimates of thp from GCTA, GCTA-MS, GCTA-
LDMS and LDAK (all using o = —0.25); see Supplementary Figure 7
for an extended version. We found that estimates based on the LDAK
model were on average 48% (s.d. 3%) higher than estimates based on
the GCTA model. For the UCLEB traits, estimates from LDAK were on
average 88% (s.d. 7%) higher than those from GCTA (Supplementary
Fig. 8). Figure 3a also includes results from LDSC, run as described
in the original publication!? (see Supplementary Table 3 for numeri-
cal values). Estimates from LDSC were not significantly different to
those from GCTA, which is to be expected considering that GCTA
and LDSC assume the same relationship between heritability and LD.
In Supplementary Figure 9, we consider alternative versions of
LDSC (for example, varying how LD scores are computed, forcing
the intercept term to be zero and excluding highly associated SNPs).
While changing settlngs can have a large impact, in all cases, the aver-
age estimate of hSNP from LDSC remained substantially below that
from LDAK.

A recent article that asserted that GCTA estimates thp more accu-
rately than LDAK based this claim on a simulation study in which
causal SNPs were assigned effect sizes from the same Gaussian dis-
tribution, irrespective of LD®. This resembles the GCTA model but
not the LDAK model, and so it does not seem surprising that GCTA
performed better. Figure 3b shows that, if effect size variances had
instead been scaled by SNP weights and so varied with LD similar to
the LDAK model, then the study would have found LDAK to be supe-
rior to GCTA. Thus, using simulations to compare different heritabil-
ity models is problematic because the conclusions will depend on the
assumptions used when generating phenotypes. See Supplementary

have been converted to the liability scale assuming the stated prevalence.

Figure 10 for a full reanalysis of the reported simulation study and
Supplementary Figure 11 for further simulations.

Rather than using simulations, we compared LDAK and GCTA empir-
ically. Supplementary Table 4 shows that when o= —0.25, assuming the
LDAK model led to higher likelihood than assuming the GCTA model
for all 19 GWAS traits and for 17 of the 23 UCLEB traits (if we instead
used o = -1, likelihood was higher under the LDAK model for 31 of the
42 traits). To visually demonstrate the superior fit of the LDAK model,
we partitioned SNPs into low- and high-LD tranches (for this, we ranked
SNPs according to the average LD score!? of non-overlapping 100-kb
segments, the metric used by GCTA-LDMS'). First, we partitioned so
that the two tranches contained an equal number of SNPs. The left half
of Figure 4 reports, for each of the GWAS traits, the contribution of the
low-LD tranche, estimated using the GCTA model (with o = —0.25).
Under the GCTA model, the low-LD tranche is expected to contribute

0% of hSNp, under the LDAK model, it is expected to contribute 72%
of hSNP' We saw that the estimated contribution of the low-LD tranche
was consistent with the GCTA model (the 95% confidence interval
included 50%) for only 5 of the 19 traits, whereas it was consistent with
the LDAK model (the confidence interval included 72%) for 18 traits.
Next, we partitioned so that the low-LD tranche contained one-quarter
of the SNPs; then, the low-LD tranche is predlcted to contribute 26%
of h p under the GCTA model but 47% of hSNP under the LDAK
model The right half of Figure 4 shows that its estimated contribution
was consistent with the GCTA model for only 7 of the 19 traits, but
again was consistent with the LDAK model for 18 traits. Additional
results are provided in Supplementary Figure 12; these show that,
regardless of whether we estimated heritabilities using LDAK (rather
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Figure 2 Relationship between heritability and MAF. (a) The parameter o
specifies the assumed relationship between heritability and MAF:

in human genetics, a = —1 is typically used (solid blue line), while in
animal and plant genetics oo = O is more common (orange); we instead
found that o= —0.25 (red) provides a better fit to real data. The gray
bars report (relative) estimates of the per-SNP heritability for SNPs with
MAF < 0.1 and MAF > 0.1, averaged across the 19 GWAS traits (vertical
lines provide 95% confidence intervals); the dashed lines indicate the
per-SNP heritability predicted by each o value. (b) For each tranche,
we compare « on the basis of likelihood; higher likelihood indicates
better-fitting a. Lines report log likelihoods from LDAK for seven values
of «, relative to the highest observed likelihood. Line colors indicate

the seven trait categories, while the black line reports averages.

M. sclerosis, multiple sclerosis; IOP, intraocular pressure; WRAT,
wide-range achievement test.

than GCTA), whether we used or= —1 (instead of oc= —0.25) or whether
we analyzed the UCLEB traits, it remained the case that the LDAK model
better predicted the heritability contribution of each tranche than the
GCTA model.

Relationship between heritability and genotype certainty

The LDAK model assumes that SNP heritability contributions vary
with genotype certainty (measured by the information score, ;). Thus
far, our analyses have used only very high-quality SNPs (r; > 0.99),
so this assumption has been redundant. We now also include lower-
quality, common SNPs; we focus on the UCLEB traits, as for these we
were earlier able to test for correlation between genotyping errors and
phenotype (Supplementary Fig. 13). Supplementary Table 5 com-
pares model fit with and without allowance for genotype certainty;
it shows that including ; in the heritability model tends to provide
a modest improvement in model fit, resulting in a higher likelihood
for 18 of the 31 traits.

Estimates of hSNP for the GWAS tralts

Table 1 presents our final estimates of hSNP for the 19 GWAS traits,
obtained using the LDAK model (with or= —0.25). For comparison, we
include previously reported estimates of hSNp, as well as the proportion
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Figure 3 Comparison of methods for estlmatlng hsz for real and
simulated data. (a) Relative estimates of hSNP for the GWAS traits. hSNP
estimates from LDSC, GCTA-MS (SNPs partitioned by MAF), GCTA-LDMS
(SNPs partitioned by LD and MAF) and LDAK are reported relative to
those from GCTA. For versions of GCTA and LDAK, we use oo = -0.25

(see main text for explanation of o). Line colors indicate the seven trait
categories; the black line reports the (inverse-variance-weighted) averages,
with gray boxes providing 95% confidence intervals for these averages.
Numerical values are provided in Supplementary Table 3. (b) Phenotypes
were simulated with 1,000 causal SNPs and thp = 0.8 (black horizontal
line) and then analyzed using GCTA, GCTA-MS, GCTA-LDMS, LDAK and
LDAK-MS (LDAK with SNPs partitioned by MAF). Bars report average thp
across 200 simulated phenotypes (vertical lines provide 95% confidence
intervals). Left, copying the study of Yang et al.15, causal SNP effect sizes
are sampled from N(O,1), similar to the GCTA model. Right, causal SNP
effect sizes are sampled from N(O,w)), similar to the LDAK model.

of phenotypic variance explained by SNPs reported as genome-wide
significant (Supplementary Table 6). For the disease traits, estimates
are on the liability scale, obtained by scaling according to the observed
case/control ratio and (assumed) trait prevalence?®27. We were unable
to find previous estimates of hSNp for tuberculosis or intraocular pres-
sure, indicating that, for these two traits, we are the first to establish
that common SNPs contribute sizable heritability. Extended results
are provided in Supplementary Table 7. These show that our final
estimates of h%Np were on average 43% (s.d. 3%) and 25% (s.d. 2%)
higher, respectively, than those obtained using the original versions
(with ct=-1) of GCTA?® and GCTA-LDMS!>. Results for the UCLEB
traits are provided in Supplementary Table 1.

Role of DNase I hypersensitivity sites

Gusev et al.” used SNP partitioning to assess the contributions of
SNP classes defined by functional annotatlons Across 11 diseases,
they concluded that the majority of hSNp was explained by DNase
I hypersensitivity sites (DHSs), despite these containing fewer than
20% of all SNPs. For Figure 5, we performed a similar analysis using
the ten traits we had in common with their study (for nine of these,
we used the same data). When we copied Gusev et al. and assumed
the GCTA model with o = -1, we estimated that on average DHSs
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Figure 4 Comparing the GCTA and LDAK models for the GWAS traits. We
partition SNPs into those with low or high LD, with the low-LD tranche
containing either 50% (left) or 25% (right) of SNPs. For each partition,
the horizontal red and black lines indicate the predicted contribution

of the low-LD tranche to thP under the GCTA and LDAK models,
respectively. Vertical lines provide point estimates and 95% confidence
intervals for the contribution of the low-LD tranche to thp, estimated
assuming the GCTA model. Line colors indicate the seven trait categories,
while the black lines provide the (inverse-variance-weighted) averages.

contributed 86% (s.d. 4%) of thp, close to the value they reported
(79%). When instead we assumed the LDAK model (with or = —0.25),
the estimated contribution of DHSs was reduced to 25% (s.d. 2%).
Under the LDAK model, DHSs were predicted to contribute 18% of
thp, s0 25% represents a 1.4-fold enrichment. To add context, we
also considered ‘genic’ SNPs, which we define as SNPs inside or within
2 kb of an exon (using RefSeq annotations?’), and ‘intergenic’ SNPs
further than 125 kb from an exon; these definitions ensure that these
two SNP classes are also predicted to contribute 18% of h%Np under
the LDAK model. We estimated that genic SNPs contributed 29% (s.d.
2%), while intergenic SNPs contributed 10% (s.d. 2%), representing
1.6-fold and 0.6-fold enrichment, respectively. When we extended this
analy51s to all 42 traits, DHSs on average contributed 24% (s.d. 2%) of
hSNp, and, in contrast to Gusev et al., enrichment remained constant
when we reduced SNP density (Supplementary Figs. 14 and 15, and
Supplementary Table 8).

Finucane ef al.3% performed a similar analysis but considered 52
SNP classes and estimated enrichment using LDSC; across nine traits,
they identified five classes with >4-fold enrichment, the highest of
which, ‘conserved SNPs, had 13-fold enrichment. When we used
LDAK to estimate enrichment for our 19 GWAS traits, the results were
more modest; the highest enrichment was 2.5-fold, with only 1.3-fold
enrichment for conserved SNPs (Supplementary Fig. 16).

Relaxing quality control

For the UCLEB data, we considered nine alternative SNP flltermg set-
tings. Supplementary Figure 17 reports estimates of hSNP for each
trait-filtering combination, while Figure 6a provides a summary.
First, we varied the information score (rj) threshold to greater than
0.99, 0.95, 0.9, 0.6, 0.3 and 0 (each time continuing to require MAF
>0.01). Simulations suggested that, by including all 8.8 million com-
mon SNPs (r; > 0) instead of using just the 353,000 high-quality ones
(r; 2 0.99), we can expect estimates of thp to increase by 50-60%
(Supplementary Fig. 18). This is 51m11ar to what we observed in prac-
tice, as across the 23 traits estimates of hSNp (using or=—0.25) were on
average 45% (s.d. 8%) higher. The simulations further predicted that,
even though the Metabochip provides relatively low coverage of the
genome (after quality control, it contains only ~60, 000 SNPs, predom-
inantly within genes), we can expect estimates of hSNP to be approxi-
mately 80% as high as those obtained starting from genome-wide
genotyping arrays. While we were unable to test this claim directly,
it is consistent with our results for height, BMI and QT Interval, the

Bipolar disorder —— Type 2 diabetes

150 — Coronary artery disease Schizophrenia
= —— Crohn's disease —— Ulcerative colitis
i\; —— Hypertension —— Multiple sclerosis
~ & 100 —— Rheumatoid arthritis —— Average

} Type 1 diabetes - - - Expected

Contribution of

SNP class to h
o
o

DHS (LDAK)

s '}'*'ﬁ';tﬁ}' P

Genic (LDAK)

] .

DHS (GCTA) Intergenic (LDAK)

Figure 5 Enrichment of SNP classes. Block 1 reports the contributions
to hZyp of DHSs, estimated under the GCTA model with o = 1 (see the
main text for explanation of o). The vertical lines provide point estimates
and 95% confidence intervals for each trait and for the (inverse-variance-
weighted) average; for three of the traits, the point estimate is above
100%, as was also the case for Gusev et al.’. Block 2 repeats this
analysis but now assuming the LDAK model with oo = =0.25. Blocks 3 and
4 estimate the contribution of genic SNPs (those inside or within

2 kb of an exon) and intergenic SNPs (further than 125 kb from an exon),
again assuming the LDAK model with oo = —0.25. To assess enrichment,
estimated contributions are compared to those expected under the GCTA
or LDAK model, as appropriate (horizontal lines).

three traits for which reasonably precise estimates of common SNP
hsz are available® (Fig. 6b). For the final three SNP filtering set-
tings, we varied the MAF threshold to be greater than 0.0025, 0.001
and 0.0005 (all with r; > 0). Across the 23 traits, we found that rare
SNPs contributed substantially to thp: for example, when we used
the 17.3 million SNPs with MAF > 0.0005, estimates ofthp (using
o = —0.25 and MAF partitioning) were on average 29% (s.d. 12%)
higher than those based on the 8.8 million common SNPs (median
1ncrease 22%), with rare SNPs contributing on average 33% (s.d. 5%)
othNp (Fig. 6a).

DISCUSSION

With estimates of thp so widely reported, it is easy to forget that
calculating the variance explained by large numbers of SNPs is a chal-
lenging problem. To avoid overfitting, it is necessary to make strong
prior assumptions about SNP effect sizes, but dlfferent assump-
tions can lead to substantially different estimates of hSNP Previous
attempts to assess the validity of assumptions have used simulation
studies'®1>, but this approach will tend to favor assumptions similar
to those used to generate the phenotypes. Instead, we have compared
different heritability models empirically, by examining how well they
fit real data sets.

We began by investigating the relationship between heritability
and MAF. Across 42 traits, we found that the best fit was achieved
by setting o = —0.25 in model (1), which implies that average herit-
ability varies with (MAF(1 - MAF))%7>. As explained in the Online
Methods, the value of o corresponds to the scaling of genotypes.
Therefore, our result indicates that the performance (detection power
and/or prediction accuracy) of many penalized and Bayesian regres-
sion methods, for example, Lasso, ridge regression and BayesA31:32,
could be improved simply by changing how genotypes are scaled.
Although we recommend o = —0.25 as the default value, with suf-
ficient data available, it should be possible to estimate o on a trait-
by-trait basis or to investigate more complex relationships between
heritability and MAE. In particular, with a better understanding of
the relationship between heritability and MAF for low frequencies,
it may no longer be necessary to partition by MAF when rare SNPs
are included.

We also examined the relatlonshlp between heritability and LD.
Thus far, most estimates of hSNP have been based on the GCTA model;

990

VOLUME 49 | NUMBER 7 | JULY 2017 NATURE GENETICS



© 2017 Nature America, Inc., part of Springer Nature. All rights reserved.

Q

o
IS
)

Scaling parameter o
m-1.25

W-0.75

M -0.25 (advised)
@o

-1

O-0.5

El 0.25

Rare variation

2
SNP

o
w
1

Average estimate of h

All SNPs

High-quality ~ All common All SNPs

common SNPs SNPs no partitioning 5 tranches
b o8- - -
: 'm High-quality common SNPs
0.6 H + M All common SNPs
. -l—. | H AllSNPs
NG :
= H
: o] I
B |
1]
£
g T

Height BMI QT interval

Figure 6 Varying quality control for the UCLEB traits. We consider three
SNP filtering settings: 353,000 high-quality common SNPs (information
score > 0.99, MAF > 0.01), 8.8 million common SNPs (MAF > 0.01) and
all 17.3 million SNPs (MAF > 0.0005). (a) Blocks indicate SNP filtering;
bars report (inverse-variance-weighted) average estimates of héNp

using LDAK (vertical lines provide 95% confidence intervals). Bar color
indicates the value of o used. For blocks 1-3, thP is estimated using
the non-partitioned model. For block 4, SNPs are partitioned by MAF;

we find this is necessary when rare SNPs are included and it also allows
estimation of the contribution of SNPs with MAF < 0.01 (hatched

areas). (b) Bars report our final estimates of thP for height, BMI and

QT interval—the three traits for which common SNP heritability has
previously been estimated with reasonable precision® (orange lines mark
the 95% confidence intervals from these previous studies). Bar colors now
indicate SNP filtering; all estimates are based on o= —0.25, using either
a non-partitioned model (red and blue bars) or with SNPs partitioned

by MAF (purple bars).

this model can be motivated by a belief that each SNP is expected to
have the same effect on the phenotype, from which it follows that the
expected heritability of a region should depend on the number of SNPs
it contains. By contrast, the LDAK model views highly correlated SNPs
as tagging the same underlying variant and therefore believes that the
expected heritability of a region should vary according to the total
amount of distinct genetic variation it contains. Across our traits, we
found that the relationship between heritability and LD specified by the
LDAK model consistently provided a better description of reality.
This finding has important consequences for complex trait genet-
ics. First, it implies that, for many traits, common SNPs explain con-
siderably more phenotypic variance than previously reported, which
represents a major advance in the search for missing heritability?.
It also affects a large number of closely related methods. For exam-
ple, LDSCI?, like GCTA, assumes that heritability contrlbutlons are
independent of LD, and it therefore also tends to underestimate hSNp
Similarly, we have shown that estimates of the relative importance of
SNP classes via SNP partitioning can be misleading when the GCTA
model is assumed”-3%. Further afield, most software for mixed-model
association analyses (for example, FAST-LMM, GEMMA, MLM-LOCO
and BOLT) use an extension of the GCTA model?3-3%, which is also
the case for most bivariate analyses, including those performed by

ARTICLES

LDSC?37:38 It remains to be seen how much these methods would be
affected if they employed more realistic heritability models.

Attempts have been made to improve the accuracy of heritabil-
ity models via SNP partitioning!41>3%. We find that partitioning by
MAF can be advantageous, as it guards against misspecification of
the relationship between heritability and MAF when rare variants are
included. Figure 3a and Supplementary Figure 7 indicate that the
realism of the GCTA model can be improved by partitioning based
on LD; for example, across the GWAS traits, estimates from GCTA-
LDMS are on average 16% (s.d. 2%) higher than those from GCTA and
only 23% (s.d. 2%) lower than those from LDAK. The improvement
arises because model misspecification is reduced by allowing SNPs
in lower-LD tranches to have higher average heritability. However,
Supplementary Table 9 illustrates why we consider such an approach
suboptimal; in particular, SNP partitioning can be computationally
expensive and, even with LD partitioning, model fit tends to be worse
than that from LDAK.

While we have investigated the role of MAE, LD and genotype cer-
tainty, there remain other factors on which heritability could depend,
in particular the available functional annotations of genomes*’. For
example, our comparison of genic and intergenic SNPs indicates
that the effect size prior distribution could be improved by taking
into account proximity to coding regions. By way of demonstration,
Supglementary Table 10 shows that model fit is improved by assuming
E[hf] = X[ fj(1- f))] 1+ xwxrjxexp(—(Dj+50)/500) where D;
is the distance (in kb) between SNP jand the nearest exon (under th1s
model, genic SNPs are expected to have about twice the heritability of
intergenic SNPs). In general, we believe that modifications of this type
will have a relatively small impact; we note that, across the 19 GWAS
traits, this modification increases model log likelihood by on average
only 1.5, much less than the average increase obtained by using o= -0.25
instead of ot=—1 (8.9) or by choosing the LD model specified by LDAK
1nstead of GCTA (17.7), and does not significantly change estimates
of hSNp However, with sufficient data, it may be possible to obtain
more substantial improvement by tailoring model assumptions to
individual traits.

When estimating h%Np, care should be taken to avoid possible
sources of confounding. Previously, we advocated a test for infla-
tion of hSNp due to population structure and famlhal relatedness?.
The conclusions of a recent paper claiming that hSNp estimates are
unreliable*! would have changed substantially had this test been
applied (Supplementary Fig. 19). We also recommend testing for
inflation due to genotyping errors, particularly before including
lower-quality and/or rare SNPs. For the 23 UCLEB traits, we showed
that including foorly imputed SNPs resulted in significantly higher
estimates of h§yp and made it possible to capture the majority of
genome-wide heritability, despite the very sparse genotyping pro-
vided by the Metabochip. We found that including rare SNPs also
led to significantly higher hSNP Although sample size prevented us
from obtaining precise estimates of hSNP for individual traits, our
analyses indicate that, for larger data sets, including rare SNPs will
be both practical and fruitful in the search for the remaining miss-
ing heritability?.

URLs. LDAK, http://www.ldak.org/; PLINK, http://www.cog-genomics.
org/plink2; SHAPEIT, http://www.shapeit.fr/; IMPUTE2, http://
mathgen.stats.ox.ac.uk/impute/impute_v2.html; DHS annotations,
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/
wgEncodeRegDnaseClustered/wgEncodeRegDnaseClusteredV3.bed.
gz; RefSeq annotations, http://hgdownload.cse.ucsc.edu/goldenPath/
hg19/database/refGene.txt.gz.
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Methods, including statements of data availability and any associated
accession codes and references, are available in the online version of
the paper.

Note: Any Supplementary Information and Source Data files are available in the
online version of the paper.
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ONLINE METHODS

The Supplementary Note summarizes the different analyses we performed
and the conclusions we drew from each. In general, we assume there are n
individuals, recorded for p covariates and genotyped (either directly or via
imputation) for m SNPs: the length-n vector Y contains phenotypic values the
n x p matrix Z contains covariates, and the n x m matrix S contains (expected)
allele counts.

Information score r;. Let the vector §; = (S, ..., Sﬂ,j)T € [0,2]" denote the
allele counts for SNP j (S; is column j of §). Our information score r; estimates
the squared correlation between S; and G;= (Gl,j, ooy G,,J-)T € {0,1,2}", the true
genotypes for SNP j. When using imputed data, G; is typically not known;
instead, for each individual, we have a triplet of state probabilities p;; ¢, ;1
pi,j,Z’ where Pi,j,g = P(Gl,] = g) and Pi,j,() +Pijait ‘D,')]')z = 1. Therefore, we define
7; by taking expectations over the 3" possible realizations of G;

= E[Z(Si,j _gj)(Gi,j _éj)}z
| (Z(Si’j_gj)sz[z(Gi,j—Gj)z]

where
and

—\2
S;is known, so computing 2 (S,-, =S j) is straightforward. The two expecta-
tions can also be calculated explicitly

E[Z(s -5i)(Gij 7)} (8-S E[Gij =]
=X (85=5))(pija 2052 1)
£l (o~ 2}

_2[1’1,],

E[Z(Gj—éj)z}

pija(l= M)Z +pij2(2- M)z}

where
n=£[G;]=" 3 (s

For our analyses, we use expected allele counts (dosages), so S;; = p;;; +
2pjj- In this case,

_ — —\2
E[ 3 (51-5)(6-G)) =25, -5))
and so the score reduces to
—\2 —\2
=2 (8 -5;) 1 X(Gi;-G;)
For a directly genotyped SNP, each triplet of state probabilities will be
(1,0,0), (0,1,0) or (0,0,1), which will result in Sij = Gij for all i and r=1
so for these SNPs, in place of rj, we use the metric r2_type2 reported by

IMPUTE2 (ref. 42). Additional details on our information score are provided
in Supplementary Figure 20.

2pij2 )

Estimating héNP- We first construct the n x m genotype matrix X, by centering
and scaling the allele counts for each SNP according to Xj; = (S;; - 2f) x [2f;
(1 —]j-)]"‘/z, where fj = ¥; S;i/2n. If wj and r; denote the LD weight® and infor-
mation score for SNP j, then the LDAK model for estimating SNP heritability

hinp = g /(og +0¢2) is

Y=Y 0cZik + 2,0 j +e;

W1th,6’]~N( rjwjo g/W) eINN(an)andW 2 j[ij(l—fj)}H(a)
2

O denotes the fixed-effect coefficient for the kth covariate and f3; and ¢; are
random effects 1nd1cat1ng the effect size of SNP j and the noise component
for individual i, while Gg and 0'e are interpreted as genetic and environmental
variances, respectively. Note that the introduction of r; is an addition to the
model we proposed in 2012 (ref. 9). Model (2) is equivalent to assuming*4%

) ) (3)
N(Ze,Kc;g +I0y),
with
_xox!
w

where I is an n x n identity matrix and Q denotes a diagonal matrix with
diagonal entries (rywy, ..., r,,W,,). The kinship matrix K, also referred to as a
genetic relationship matrix (GRM)! or genomic similarity matrix (GSM)*>,
consists of average allelic correlations across the SNPs (adjusted for LD and
genotype certainty). Model (3)is typlcally solved using REML!2, which returns
estimates of 6y, ..., 0, 0'g and 0'e (ref. 12).

The hentab111ty of SNP j can be estimated by h2 ﬂ] Var(X ) /var(Y),
which under model (2) and assuming Hardy—Wemberg equlhbrlum46 47 has
expectation

2 E[ﬂ]z } x Var (Xj) erjG'é /W x [zfj (1 - )i|1+(1 .
W New - Var(Y)

If P, and P, index two sets of SNPs of size |P;| and |P,|, then under
the LDAK model they are expected to contribute heritability in the ratio
W1:W,, where

W=y 260 1)

The GCTA model corresponds to setting w; = r; = 1, in which case

wi=3[2; (l‘fjﬂlm

Most applications of GCTA have further assumed o= -1, so that W) = |Py|,
which corresponds to the assumption that SNP sets are expected to contribute
heritability proportional to the number of SNPs they contain.

Model (2) assumes that all effect sizes can be described by a single prior
distribution. This assumption is relaxed by SNP partitioning. Suppose that
the SNPs are divided into tranches Py ..., Py of sizes |P||, ., |Pr[; typically, these
will partition the genome so that each SNP appears in exactly one tranche and
% |P| = m, but this is not required. This corresponds to generalizing model (2 ( ), s0
that SNPs in tranche 1 have effect size prior distribution /3 ~N (0 w;i0] /Wl)
Letting X = 0'1 . ,O'L then hSNP E/(Z + 0'3) and 0'1 Iz represents the
contribution to hSNP of SNPs in tranche I. This model can equivalently be
expressed as Y ~ Ng‘ze, Ko-l 4o+ KLO'L + Io-e) where K| represents allele
correlations across the SNPs in tranche 1.

For analyses under the LDAK model, we used LDAK v.5; for analyses under
the GCTA model, we used GCTA v.1.26. For about one-third of GCTA-LDMS
analyses, the GCTA REML solver failed with the error “information matrix
is not invertible,” in which case we reran the analysis using LDAK (while the
GCTA and LDAK solvers are both based on average information REML?848,
subtle differences mean that, when using a large number of tranches, one might
complete while the other fails). For the few occasions when both solvers failed,
we instead used GCTA-LD (SNPs divided only by LD, rather than by LD and
MAF), which we found gave very similar results to GCTA-LDMS for traits
where both completed (Supplementary Fig. 7). For diseases, we converted
estimates othNp to the liability scale on the basis of the observed case/control
ratio and assumed prevalence?®?”. In general, we copied the prevalences used
by previous studies; however, for tuberculosis, where no previous estimate of
h3NP was available, we derived an estimate of prevalence from World Health
Organization data?® (Supplementary Note).

LDSC. Originally designed as a way to quantify confounding ina GWAS, LDSC!?
also provides a method for estimating thP’ which requires only summary sta-
tistics from single-SNP analysis (rather than raw genotype and phenotype data).

doi:10.1038/ng.3865
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LDSC is based on the principle that, in a single-SNP analysis, the x 2(1) test statis-
t1c for SNP j has expected value E [Xz(l)]—1+nh +n2k¢] k+”“1’ where
r] « denotes the squared correlation between SNPs j and k, whlle aj represents
bias due to confounding factors (for example, population structure and famil-
ial relatedness)'?. Under a polygenic model where every SNP is expected to
contribute equally (E[h 1= hSNP /m) and the (w1dely used) assumptlon that
bias is constant across SNPS (aJ = a), we have E[X M)]=1+nl; hsNP /m+na,
where [; =1+ X, r] « is referred to as the LD score of SNP] (as it is not
fea51ble to compute pairwise correlations across all SNPs, in practice these
are approximated using a sliding window of, say, 1 cM). Therefore, LDSC
estimates thp and a by regressing test statistics on LD scores. In the absence
of confounding (a = 0), LDSC can be viewed as estimating thP under the
GCTA model with o = —1 (as this satisfies the assumption that every SNP is
expected to contribute equal heritability). As the authors of LDSC point out!?,
it is straightforward to accommodate alternative relationships between E [hjz»]
and MAF (o # —1) by changing how genotypes are scaled when comput-
ing LD scores, and genotype certainty could potentially be accommodated.
However, the similarity with the GCTA model appears intrinsic to LDSC;
while the assumption that heritability is independent of LD can be relaxed via
SNP partitioning®’, we cannot envisage how the method could be modified
to accommodate the LDAK SNP weights. For LDSC analyses, we used LDSC
v.1.0.0 both for calculating LD scores and estimating hsz

Accommodating loci with very large effects. Equation (2) assumes that all
SNP effect sizes can be modeled by a single Gaussian distribution. Estimates
are generally robust to violations of this assumption?, but problems can occur
when individual SNPs have very large effect sizes because a single Gaussian
distribution cannot accommodate both these SNPs and the very many with
small effect sizes. This is a common concern when analyzing autoimmune
traits, for which the MHC can contribute substantial heritability. In response
to this problem, some authors exclude MHC SNPs from analyses”-280:51,
Another approach is to model effect sizes as a mixture of Gaussians®>>3, but
this is not computationally feasible for millions of SNPs and many thousands
of individuals. Therefore, our proposed strategy is to first identify SNPs with
P <1 x1072% from single-SNP analysis, to prune these using a correlation-
squared threshold of 0.5 and then to include those that remain as fixed-effect
covariates. Thus, in place of equation (3), we assume Y ~ N (Z 0+Td, Ko?2 + Io‘& ),
where columns of the matrix T contain allele counts of the highly associated
SNPs (that is, T is a submatrix of S) and the vector @ represents their effect
sizes. In contrast to standard (non- SNP) covariates, the varlance explained by
T counts toward SNP heritability: hsNP = (o é + GT)/(O' + 0'% +0'§ ), where
O'T (T<I>) (T®). Supplementary Figures 21 and 22 prov1de further details.

In particular, we appreciate that our definition of highly associated is some-
what arbitrary, so we confirm that estimates of hSNp are almost unchanged if
instead we use P < 5 x 1078,

Data sets. When searching for GWAS data sets, we preferred those with sample
size at least 4,000 to ensure reasonable precision of hsNP (ref. 54). In total,

our data sets were constructed from 40 independent cohorts, all of which
have been previously described (see Supplementary Tables 11 and 12 for
references and details of how cohorts were merged to form data sets). For
the UCLEB data, there were in total 28 quantitative traits with measurements
recorded for 7,000 individuals. For each of these, we quantile normalized, then
applied a test for inflation due to genotyping errors (Supplementary Fig. 13).
Specifically, our test, inspired by Bhatia et al.>® and valid for quantitative phe-
notypes where individuals are recruited from multiple cohorts, first estimates
h%Np using only pairs of individuals in different cohorts and then using only
pairs of individuals in the same cohort; a significant difference between the two
estimates indicates possible inflation due to genotyping errors. We excluded
five traits that showed evidence of inflation (P < 0.05/28), leaving us with 23:
height, weight, BMI, waist circumference, forced vital capacity, 1-s forced vital
capacity, systolic blood pressure (adjusted), diastolic blood pressure (adjusted),
PR interval, QT interval, corrected QT interval, QRS voltage product, Sokolow
Lyon, glucose, insulin, total cholesterol (adjusted), LDL cholesterol (adjusted),
triglycerides (adjusted), viscosity, fibrinogen, IL-6, C-reactive protein and
hemoglobin. Approximately 40% of individuals were receiving medication
to reduce blood pressure and 25% to reduce lipid levels, so, where indicated,

phenotypes had been adjusted for this: for individuals on medication, their
raw measurements had been increased either by adding on (blood pressure)
or scaling by (lipid levels) a constant®®>7. We note that some pairs of traits are
highly correlated. However, as the overall correlation is not that extreme (we
estimate the effective number of independent traits to be about 15) and most
of our UCLEB analyses serve to support conclusions drawn from the GWAS
traits, we decided to retain all 23 traits (rather than, say, consider only a sub-
set). See the Supplementary Note for further details on phenotyping.

Quality control. We processed each of the 40 cohorts in identical fashion;
see the Supplementary Note for full details. In summary, after excluding
apparent population outliers, samples with extreme missingness or hetero-
zygosity and SNPs with MAF < 0.01, call rate < 0.95 or P < 1 x 1076 from a
test for Hardy-Weinberg equilibrium, we phased using SHAPEIT>® and then
imputed using IMPUTE2 (ref. 42) and the 1000 Genomes Project Phase 3
(2014) reference panel®®. When merging cohorts to construct the GWAS
data sets, we retained only autosomal SNPs that in all cohorts had MAF >
0.01 and r;> 0.99 (using IMPUTE2 r2_type2 in place of r; for directly geno-
typed SNPs). For the eight UCLEB cohorts, we applied these filters only after
merging. We only relaxed quality control for the analyses of the UCLEB data
where we explicitly examined the consequences of including lower-quality
and rare SNPs. When possible, the matrix S contained expected allele counts
(dosages); that is, S;; = p; ;1 + 2p; 2, where p;; ; and p; ; » denote the probabili-
ties of allele counts 1 and 2, respectively. If hard genotypes were required,
for example, when using LDSC to compute LD scores!?, we rounded S; ;
to the nearest integer. As this was only necessary when considering high-
quality SNPs (r; 2 0.99), we expect this rounding to have negligible impact
on results. For each trait, Table 1 reports m, the total number of SNPs after
imputation, and Z;”IIWj, the sum of SNP weights; the aim of these weights
is to remove duplication of signal due to LD, and their sum can loosely be
interpreted as an effective number of independent SNPs. For the GWAS data
sets, Z;w; ranged from 79,000 to 125,000. By contrast, when restricted to only
high-quality SNPs, the UCLEB data had Z;w; = 39,000, reflecting that the
Metabochip directly captures a much smaller amount of genetic variation
than standard genome-wide SNP arrays.

When analyzing quantitative traits, genotyping errors will tend only to be
a concern when there are systematic differences between phenotypes across
cohorts, and this is something we are able to explicitly test (Supplementary
Fig. 13). However, for disease traits, when cases and controls have been geno-
typed separately (as was the design of most of our GWAS data sets), any errors
will almost certainly correlate with phenotype and therefore cause inflation of
thPQ’”. To test the effectiveness of our quality control for the GWAS traits,
we constructed a pseudo case-control study using two control cohorts; we
confirmed that the resulting estimate of ASNp was not significantly greater
than zero, suggesting that the quality control steps we used for the GWAS data
sets were sufficiently strict (Supplementary Note).

Accurate estimation of thP requires samples of unrelated individuals
with similar ancestry. Prior to imputation, we removed ancestry outliers
identified through principal-component analyses (Supplementary Fig. 23).
After imputation, we computed (unweighted) allelic correlations using a
pruned set of SNPs and then filtered individuals so that no pair remained
with correlation greater than ¢, where —c is the smallest observed pairwise
correlation (¢ ranged from 0.029 to 0.038, depending on the data set). For
our data sets, this filtering excluded relatively few individuals (on average
3.8%, with maximum 11.6%). For all analyses, we included a minimum of
30 covariates: the top 20 eigenvectors from the allelic correlation matrix
just described and projections onto the top 10 principal components com-
puted from 1000 Genomes Project samples®®. For the 19 GWAS traits, we
also included sex as a covariate, while for intraocular pressure and wide-
range achievement test scores we additionally included age. Supplementary
Figure 24 reports the proportion of phenotypic variance explained by each
covariate. To check our filtering and covariate choices, we estimated the
inflation of thp due to population structure and residual relatednesss?
(Supplementary Fig. 19). For the GWAS traits, we estimated that on average
hSNp estimates were inflated by at most 3.1%, with the highest observed for
ischemic stroke (7.1%). For the 23 UCLEB traits, the average inflation was
0.3% (highest 2.3%).
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Single-SNP analysis. Supplementary Figure 25 provides Manhattan plots
from logistic (case—control traits) and linear regression (quantitative traits),
performed using PLINK v.1.9. These analyses provide the summary statis-
tics required by LDSC. For the GWAS traits, we identified highly associated
SNPs (P < 1 x 10720) within the MHC for six of the GWAS traits (rheumatoid
arthritis, type 1 diabetes, psoriasis, ulcerative colitis, celiac disease and multi-
ple sclerosis), while rs2476601, a SNP within PTPN22, was highly associated
with both rheumatoid arthritis and type 1 diabetes®®¢!. For the UCLEB traits,
we found highly associated SNPs within SCNI10A (PR interval), APOE (total
cholesterol, LDL cholesterol and C-reactive protein) and ZPR1 (triglyceride
levels). For heritability analysis, these SNPs were pruned and then included
as additional fixed-effect covariates as described above.

Computational requirements. The most time-consuming aspect of analysis
was genotype imputation; for a typically sized cohort (~3,000 individuals),
this took approximately 1 CPU-year (a few days on a 100-node cluster). Next
is computation of SNP weights, which for the GWAS traits (~4 million SNPs)
took approximately 1 CPU-day (again, this can be nearly perfectly paral-
lelized). Finally, solving the mixed model via REML would take between a
few minutes for the smaller traits (~5,000 individuals) and a few hours for the
largest (~14,000 individuals). Memory-wise, the most onerous task is solving
the mixed model, for which memory demands scale with n?%; however, even
for the largest data set, this was less than 5 GB (when using multiple kinship
matrices, LDAK allows for these to be read on the fly, so that the memory
demands are no higher than when using only one).

Code availability.Step-by-step instructions for estimating h%NP starting from
raw genotype data, as well as for performing our other analyses, are provided
in the Supplementary Note.

Data availability. In total, we analyze data from 40 cohorts; 25 of these were
downloaded (after completing a data access request) from the European
Genome-phenome Archive or dbGaP, while the remaining 15 (which include
the 8 UCLEB cohorts) were obtained directly from the relevant custodians.
Full details of the cohorts (with accession codes where applicable) are provided
in the Supplementary Note.
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