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SUMMARY

Reliable detection of disseminated tumor cells and of
the biodistribution of tumor-targeting therapeutic
antibodies within the entire body has long been
needed to better understand and treat cancermetas-
tasis. Here, we developed an integrated pipeline for
automated quantification of cancer metastases and
therapeutic antibody targeting, named DeepMACT.
First, we enhanced the fluorescent signal of cancer
cells more than 100-fold by applying the vDISCO
method to image metastasis in transparent mice.
Second, we developed deep learning algorithms for
automated quantification of metastases with an ac-
curacy matching human expert manual annotation.
Deep learning-based quantification in 5 different
metastatic cancer models including breast, lung,
C

and pancreatic cancer with distinct organotropisms
allowed us to systematically analyze features such
as size, shape, spatial distribution, and the degree
to which metastases are targeted by a therapeutic
monoclonal antibody in entire mice. DeepMACT
can thus considerably improve the discovery of
effective antibody-based therapeutics at the pre-
clinical stage.

INTRODUCTION

The metastatic process is complex and affects diverse organs

(Hanahan and Weinberg, 2011; Lambert et al., 2017; Massagué

and Obenauf, 2016). As most cancer patients die of metastases

at distant sites developing from disseminated tumor cells with

primary or acquired resistance to therapy, a comprehensive

and unbiased detection of disseminated tumor cells and tumor
ell 179, 1661–1676, December 12, 2019 ª 2019 Elsevier Inc. 1661

mailto:erturk@helmholtz-muenchen.de
https://doi.org/10.1016/j.cell.2019.11.013
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cell.2019.11.013&domain=pdf


targeting drugs within the entire body is crucial (de Jong et al.,

2014). Such technology would help to explore mechanisms

affecting tumor metastasis and drug targeting in preclinical

mouse models much more reliably, hence substantially contrib-

uting to the development of improved therapeutics. So far, such

efforts have been hampered by the lack of (1) imaging technolo-

gies to reliably detect all individual metastases and dissemi-

nating tumor cells in mouse bodies, and (2) algorithms to quickly

and accurately quantify large-scale imaging data. Here, we

developed an analysis pipeline that allows us to efficiently over-

come these limitations.

First, we built upon recently developed tissue clearing

methods for entire fixed mice (Cai et al., 2019; Pan et al., 2016;

Tainaka et al., 2014; Yang et al., 2014) to address the imaging

problem. Typically, fluorescent labeling of cancer cells in vitro

or in vivo is achieved by endogenous expression of fluorescent

proteins such as GFP, YFP, and mCherry, which emit light in

the visible spectrum. However, many tissues in the mouse

body show high autofluorescence in this range (Tuchin, 2016;

Zipfel et al., 2003), which hinders reliable detection of single can-

cer cells or small cell clusters in mouse bodies based on their

endogenous fluorescent signal. To circumvent this problem,

we chose to implement the vDISCO technology (Cai et al.,

2019), which enhances the signal of fluorescent proteins of can-

cer cells more than 100-fold in cleared tissues, enabling reliable

imaging not only of large metastases but also micrometastases

throughout the entire body.

Second, systematic analysis of metastasis in adult mouse

bodies requires quantitative information such as location, size,

and shape of all individual metastases. Manual detection and

segmentation of numerous metastases in highly resolved full

body scans is an extremely laborious task that may take several

months per mouse for an expert annotator. In addition, automa-

tion by filter-based 3D object detectors is not reliable, as

different body tissues have different levels of contrast (Pan

et al., 2016), causing a high rate of false-positive and false-nega-

tive metastasis detections. Recent studies have demonstrated

the high efficacy of deep learning-based analysis of biomedical

images, compared to filter-based or manual segmentation

methods (Camacho et al., 2018; Christiansen et al., 2018; Esteva

et al., 2017; Kermany et al., 2018; Sullivan et al., 2018; Topol,

2019; Wang et al., 2019). To enable automated, robust, and

fast mapping of all metastases in transparent mice, we devel-

oped an efficient deep learning approach based on convolu-

tional neural networks (CNNs) and optimized it for vDISCO

imaging data and metastasis distribution patterns.

Resolving these two bottlenecks allowed us to build an inte-

grated, highly automated pipeline for analysis of metastasis

and tumor-targeting therapeutics, which we named DeepMACT

(deep learning-enabled metastasis analysis in cleared tissue).

Using DeepMACT, we detected cancer metastases and even in-

dividual disseminated tumor cells in mouse bodies, including

many metastases previously overlooked by human annotators.

Furthermore, this enabled analyzing the targeting efficiency of

a therapeutic antibody against carbonic anhydrase XII on the

level of individual metastases. As a scalable, easily accessible,

fast, and cost-efficient method, DeepMACT enables a wide

range of studies on cancer metastasis and therapeutic strate-
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gies. To facilitate adoption of DeepMACT, a step-by-step

handbook (Methods S1), the protocols for clearing and imaging,

the deep learning algorithm, the training data, and the trained

model are available online to address diverse questions in can-

cer research.

RESULTS

Focusing on a clinically relevant tumor model, we transplanted

human MDA-MB-231 mammary carcinoma cells, expressing

mCherry and firefly luciferase, into the mammary fat pad of

NOD scid gamma (NSG) mice and allowed the tumors to grow

and metastasize for 6–10 weeks (Figure 1A; Iorns et al., 2012;

von Neubeck et al., 2018). Furthermore, we injected the fluores-

cently tagged 6A10 therapeutic antibody that has been shown to

reduce tumor burden in this model (Gondi et al., 2013; von Neu-

beck et al., 2018). To comprehensively assess cancer cell

dissemination and therapeutic antibody targeting in mouse

bodies at the level of individual micrometastases, we developed

DeepMACT. In short, we transcardially perfused the animals us-

ing standard PFA fixation and applied the vDISCO method to

enhance the fluorescent signal of tumor cells. After light-sheet

microscopy, the 3D image stacks of entire transparent mouse

bodies were analyzed using deep learning algorithms. The

DeepMACT pipeline consists of (1) vDISCO panoptic imaging

of cancer metastases in transparent mice, and (2) deep

learning-based analysis of cancer metastasis and antibody

drug targeting (Figure 1B).

DeepMACT Step 1: vDISCO Imaging of Cancer
Metastases in Optically Cleared Mice
We previously developed the vDISCO technology to image sin-

gle fluorescent cells in mouse bodies through intact bones and

skin (Cai et al., 2019). The vDISCOmethod utilizes bright fluores-

cent dyes conjugated with nanobodies to enhance the fluores-

cent signal of the cells that is weakened during the fixation and

clearing process. Here, we first applied vDISCO to increase

the fluorescence signal of mCherry-expressing cancer cells. By

enhancing the tumor cell fluorescence with anti-mCherry or

anti-GFP nanobodies conjugated to Atto-594 or Atto-647N

dyes, we found that nanobodies can increase the signal strength

of cancer cells over 100 times compared to imaging the endog-

enous mCherry signal after clearing (Figure S1). Owing to this

significant enhancement in signal contrast, we could readily

detect micrometastases buried in centimeters-thick mouse

bodies (Figures S1F–S1L) e.g., in deep brain and spinal cord re-

gions through the intact skull and vertebrae (Figures S1F and

S1I, yellow arrowheads). To confirm the specificity of vDISCO

enhancement of the signal from mCherry expressing cancer

cells, we performed the following experiments: (1) we stained

control mice without a tumor transplant, thereby lacking

mCherry expression, and found no labeling in any of the analyzed

organs (Figure S2A); and (2) we analyzed the primary tumors and

lungmetastases from themouse bodies by staining them using a

specific anti-luciferase antibody, which confirmed that endoge-

nous mCherry fluorescence co-localized with both the signals

from nanobodies and from the anti-luciferase antibody (Figures

S2B and S2C).



Figure 1. Experimental Design and Sche-

matic of the DeepMACT Pipeline for Anal-

ysis of Cancer Metastases and Antibody

Drug Targeting

(A) Illustration of the experimental workflow for

tumor transplantation and antibody application.

(B) Steps of the DeepMACT pipeline on full-body

mouse scans. First, the mice are fixed and pro-

cessed with the vDISCO protocol to enhance the

fluorescent signal of cancer cells. Transparent

mice are subsequently imaged from head to toe

using light-sheet microscopy, revealing all me-

tastases. Light-sheet images are assembled into a

complete 3D image of the mouse. Next, convolu-

tional neural networks are trained to identify and

segment all micrometastases in the fluorescence

signal. The trained algorithms are then applied

to 3D images to detect cancer metastases

and an antibody-based drug targeting in full-body

mouse scans.
Because the detection of smaller-sized tumor cell clusters,

which may represent dormant cancer cells or incipient metasta-

tic nodules, is critical, we next tested if vDISCO allows imaging

cancer micrometastases in mouse bodies. In order to compare

our approach to conventional methods, we also acquired biolu-

minescence images of mice before applying DeepMACT. In line

with previous findings (Iorns et al., 2012), we detected the

earliest large metastasis of transplanted MDA-MB-231 cells at

the axillary lymph node of mice by bioluminescence (Figures

2A and S3). However, bioluminescence imaging did not reveal

any detailed information such as size or shape and failed to

show the presence of micrometastases.

After bioluminescence assessment, we applied vDISCO using

anti-mCherry signal enhancing nanobodies conjugated to Atto-

647N and imaged the mouse bodies first using epifluorescence

in 2D (Figures 2B–2G), then using light-sheet microscopy in 3D

(Figures 2H–2L). In epifluorescence, we could readily see both

the primary tumor (Figure 2F) and the major metastases at the

axillary lymph node (Figure 2D), which were also detected by

bioluminescence imaging (Figure 2A), albeit as a bulk signal,

lacking information on real size and shape. Importantly, our

approach allowed the visualization of several micrometastases

in the lungs with conventional epifluorescence imaging, which

were not visible in bioluminescence (compare the magenta
Cell
marked regions in Figures 2A with 2B,

and red arrowheads in 2E; more exam-

ples shown in Figure S3). Thus, vDISCO

followed by epifluorescence imaging,

which can be completed within minutes,

already provided greater details and

sensitivity compared to bioluminescence

imaging. Next, we imaged entire fixed

transparent mice using a light-sheet mi-

croscope (Cai et al., 2019) in 3D to detect

individual micrometastases throughout

the body (Figure 2H). In the chest area,

we could see various metastases not
only in the lungs (yellow segmented region in Figure 2I) and

lymph nodes, but also at the base of the neck and surrounding

tissues (Figures 2J–2L; Video S1). Importantly, light-sheet micro-

scopy scanning allowed us to image even single disseminated

tumor cells in the mouse body. Examples of single disseminated

tumor cells resolved in full body scans are shown in Figure 2M

(see also Video S2), which were further verified by high-magnifi-

cation light-sheet microscopy imaging showing the colocaliza-

tion of each single tumor cells with a single nucleus stained by

PI (Figure 2N). Thus, our approach allows for the first time to

detect micrometastases in full body scans of mice in 3D down

to the size of individual cells.

DeepMACT Step 2: Deep Learning for Detection and
Quantification of Metastases
We developed an optimized deep learning-based approach to

detect and segment all cancer metastases in full-body scans

of mice. This framework solves the 3D task of detecting and seg-

menting metastases in volumetric scans with CNNs that process

2D projections of small sub-volumes (Figure 3A). In brief, we first

derived three 2Dmaximum intensity projections (aligned with the

x, y, and z axes) for each sub-volume in order to increase the

signal-to-noise ratios (SNRs). We fed the resulting projections

to the CNN and obtained 2D probability maps, in which each
179, 1661–1676, December 12, 2019 1663
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pixel value represents the estimated probability that this pixel

identifies a metastasis under the given projection. We then re-

constructed a 3D segmentation from the three projections

observing increased reliability in detecting true positive metasta-

ses while safely ignoring non-metastatic tissue that would pro-

duce false positives in the individual projections. For example,

in Figure 3B, the green arrows show successful detection of a

real metastasis and the red arrows show successful ignoring of

a structure that could be mistaken for a metastasis from a single

2D projection. This approach was highly effective in detecting

and segmenting metastases in the imaging data, yielding a bi-

nary mask for all metastases in the body.

The core of our architecture makes use of CNNs (Figure 3C),

structurally similar to the established U-net (Ronneberger et al.,

2015), which learn to distinguish metastases from the back-

ground signal. This is achieved by using a deep stack of encod-

ing units, which detect characteristic cancer features, and a

corresponding stack of decoding units, which segment each

metastasis at pixel-level. Each encoding unit performs two con-

volutions, extracting information about the environment for each

pixel and representing that information in a third dimension—the

feature channels. Before being passed on to the next encoding

unit, the image is spatially down-sampled. Together, this means

that the neural network is steadily increasing the feature chan-

nels and steadily decreasing the spatial resolution, enforcing

the network to learn even more abstract representations of the

data (i.e., features) in the deeper layers, before mapping the in-

formation relevant to cancer cells back to the original resolution

in the decoding upward path. This happens by up-sampling the

abstract, low-resolution information from lower layers and

concatenating it with the less abstract, but higher-resolution in-

formation from the encoding path via skip connections (some

exemplary visualizations of the computational stages are pre-

sented in Figures S4A–S4C).

To assess the reliability of our automated deep learning archi-

tecture, we applied it to a fresh test set of a full-body scan, which

was neither used for training the CNNs nor to optimize hyper-

parameters. The datasets were manually annotated by human

experts and any disagreements between experts were jointly re-

viewed and discussed in order to derive a refined, commonly

agreed reference annotation (see STAR Methods for details).
Figure 2. DeepMACT Step 1: vDISCO Visualization of Metastases in a

(A) Bioluminescence image of a NSG female mouse before vDISCO which was t

fat pad.

(B–G) Epifluorescence images of the samemouse after vDISCO showmetastases

mouse, (C-G) shows magnifications of the areas marked with white dashed lines i

(E, red arrowhead) and in the leg (G), in addition to the primary tumor (F) andmajor

(H) 3D visualization of the transparent mouse body imaged by light-sheet micros

(I) Lateral views of the 3D segmentation obtained from the light-sheet imaging dat

simplicity, only a few organs are segmented: the heart (cyan) and the lungs (yel

magenta.

(J–L) Original light-sheet microscopy data (500 mmprojections) showing metastas

letters.

(M and N) Single cell metastases identified in the brain and in the lungs by full-

resolution (tumor cells in magenta and nucleus labeled with propidium iodide [PI]

sheet microscopy with a 123 objective. Single plane images showed the colocali

Panels in (M) show images acquired with a 1.1x objective, panels in (N) show im

See also Figures S1, S2, and S3 and Videos S1 and S2.
We then systematically compared the performance of our

deep learning approach to that of established detectionmethods

as well as the performance of a single human annotator, calcu-

lating F1-score (also known as Dice score), a common perfor-

mance measure based on both the metastasis detection rate

(recall) and false positive rate (precision).

As shown in Figure 3D, we found that DeepMACT reached an

F1-score of 80%, outperforming existing filter-based detectors

such as the ImageJ Object Detector (18%) or a custom-made

filter-based detector (36%) by a large margin. The similar perfor-

mance of 3D CNNs such as a customized 3D U-net (38%) high-

lights the benefit of the specialized DeepMACT approach for the

tumor models we tested. Indeed, the detection performance of

DeepMACT comes very close to the level of a single human

expert annotator with an F1-score of 83%. The slightly higher

F1-score of the human annotator ismainly driven by the high pre-

cision. However, the human annotator missed around 29% of all

micrometastases (examples are shown in Figures S4D–S4F) and

detecting those false negatives would require a repetitive and

very laborious re-analysis of the entire animal scans, requiring

up to several months of human work time. On the other hand,

the F1-score of DeepMACT is a result of a balance between pre-

cision and recall, which can be freely adjusted via the model’s

threshold. For DeepMACT, we can increase detection rate

(recall) over 95%. While this also increases the false-positive

rate, correcting the false positive data requires only a review of

detected signals by a human annotator, which we completed

within 1 h per mouse in this study (a typical example for a false

positive detection is shown in Figures S4G–S4I). Combining

the DeepMACT prediction with this quick review yielded an F1-

score of 89%, exceeding the performance of a single human

annotator. A more detailed analysis on the trade-off between

precision and recall is shown in Figure S4J. Notably, DeepMACT

could detect micrometastases�30 times faster than filter-based

detectors and over 300 times faster than a human annotator (Fig-

ure 3E). Even taking the time for a manual review of the Deep-

MACT prediction into account, the total processing speed was

still 8 times faster than filter-based detectors and over 60 times

faster than a human annotator, who was already supported by

a dedicated and interactive software, custom-built for this task

and these data; without annotation software, the human manual
Full-Body Scan of a Mouse

aken 2 months after MDA-MB-231 cancer cell implantation into the mammary

(magenta) in greater detail compared to bioluminescence. (B) shows the entire

n (B), including small micrometastases that can be readily detected in the lungs

metastases (C and D) that are also visible in bioluminescence as bulk signal (A).

copy.

a corresponding to the magenta-boxed region indicated in (A), (B), and (H). For

low); the mouse body is shown in transparent gray and the metastases are in

es from the three different sagittal planes indicated in (I) with the corresponding

body light-sheet microscopy scans using a 1.13 objective with 6 mm lateral

in cyan) (red arrowheads in M). The same metastases were re-imaged by light-

zation of each micrometastasis with a single nucleus (yellow arrowheads in N).

ages acquired with a 12x objective.
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Figure 3. DeepMACT Step 2: Schematic and Performance of the Deep Learning Algorithm

(A) Representation of the deep learning inference workflow to efficiently derive 3D detection and segmentation exploiting three 2D computational operations.

(B) Visualization of the computational stages; the green arrow shows successful detection of a metastasis, the red arrow shows elimination of a false positive

detection in the 3D reconstruction stage.

(C) High-level representation of the network architecture with an encoding and a decoding path.

(D and E) Comparison of our deep learning pipeline, DeepMACT, to alternative automated methods and manual segmentation by a human expert in terms of

detection performance (D; error bars show SEM) and processing time (E).

See also Figure S4.
annotation would be estimated to take several months for a sin-

gle mouse. Thus, DeepMACT can complete months to years of

human labor within hours without compromising on segmenta-

tion quality.
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DeepMACT Reliably Detects Micrometastases in
Different Tumor Models
After establishing the DeepMACT pipeline, we used it to analyze

full mouse bodies. Apart from the primary tumor and the



(legend on next page)
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macrometastasis in the axillary lymph node, we could detect

hundreds of micrometastases of varying sizes throughout the

body, especially in the lungs (Figures 4A and 4B). Overall, Deep-

MACT identified 520 micrometastases throughout the entire

body in this particular mouse, of which there were 306 in the

lungs and 214 throughout other organs of the body (Figure 4C).

We found that micrometastases are mostly located in the inner

tissue layers (�1 cm depth from the surface), as shown by co-

lor-coding in Figure 4D, making them particularly difficult to

detect by other methods. To analyze the spatial distribution

with regard to the lung anatomy, we registered all 306 lung mi-

crometastases to themouse lung lobes.We found thatmicrome-

tastases were evenly distributed in all lobes (Figure 4E). Interest-

ingly, the micrometastases were randomly distributed

throughout the lungs regardless of their size, suggesting inde-

pendent colonization at multiple sites. Furthermore, we quanti-

fied the size and relative location of all micrometastases in the

entire body (Figures 4F–4L). While 79% of micrometastases

were within 1 mm to the nearest neighboring micrometastasis,

we also found highly isolated micrometastases as distant as

9.3 mm apart from their nearest neighbor (Figure 4G). Impor-

tantly, we found a large number of micrometastases with esti-

mated cell counts of a few hundred cells or less (Figures 4F

and 4H) and diameters less than 50–100 mm (Figure 4I), which

would be very difficult to detect in mice by other methods.

Comparing the micrometastases in the lungs with those in the

torso, we found that the tumor burden in the lungs was more

than a hundred times higher in this tumor model (Figure 4J).

Also, micrometastases in the lungswere, on average, 30% larger

in diameter (Figure 4K), with a more than 2-fold higher estimated

cell number per metastasis, compared to micrometastases in

the rest of the torso (Figure 4L).

To verify the robustness and applicability of the DeepMACT

pipeline for a wider range of experimental settings, we conduct-

ed additional studies. First, we implanted a solid tumor (MDA-

MB-231 breast cancer grown in another mouse for 10 weeks)

into a healthy mouse and analyzed it right away, leaving no

time for metastases to form. As expected, no metastases could

be found in this control, indicating that tumor cells do not detach

from a solid tumor during the tissue clearing procedure and

that no artifacts (such as potential unspecific nanobody accumu-
Figure 4. Deep Learning-Based Detection and Segmentation Enables
(A and B) 3D rendering of a mouse transplanted with MDA-MB-231 cells in the mam

respectively. Metastases in the mouse body are shown in magenta. The white

metastases in the axillary lymph node (A.L.N.). (A) and (B) show the same mouse

(C and D) Deep learning reconstructions of all detected metastases (A.L.N. and pr

along the z axis (D), cropped to the white box in (B) to show higher level of detai

(E) Detailed view of metastases in the lung region (corresponding to the black bo

registered to individual lung lobes (shown in different colors).

(F) Validation of cell count estimates by comparing to manual count. 73% of the e

35% margin (red region) of the manual count (n = 26 randomly selected sample

(G–I) Deep learning-based distributions; blue bars show individual metastases, t

(G) 3D distance to nearest neighboring metastasis.

(H) Estimates of cell counts per metastasis.

(I) Metastasis diameter averaged in 3D space.

(J–L) Quantitative comparison between metastases in the lungs and the rest of t

(J) Tumor density as share of metastatic tissue of the entire volume is two orders

(K) Metastasis diameter (averaged in 3D space) is significantly higher in lungs (p

(L) Cell count estimate per metastasis is significantly higher in lungs (p < 0.001; t
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lations during the staining procedure) would be mistaken for me-

tastases (Figure 5A).

Second, we applied the pipeline to 3 different tumor models

with distinct metastatic propensity and organotropism. A nude

mouse intracardially injected with human MCF-7 estrogen re-

ceptor (ER)-positive breast cancer cells developed metastases

throughout the body, with a substantial burden in the lungs (49

metastases), liver (18), and kidneys (11), but also in the bones

(2; indicated by yellow arrows) and the brain (1) (Figure 5B). A

C57BL/6 mouse transplanted with murine syngeneic R254

pancreatic cancer cells, however, did not develop any metasta-

ses in the brain, kidneys or bones, but rather in the lungs (8), the

liver (6), and also in distinct tissues such as the peritoneum (Fig-

ure 5C; metastasis in peritoneum indicated with a magenta

arrow). A further model using the human brain metastatic lung

cancer cell line H2030-BrM3 transplanted in nude mice only

showed few metastases in the liver (2) or kidneys (1) but many

in the brain (31) (Figure 5D). These experiments demonstrate

that the DeepMACT pipeline can reliably detect micrometasta-

ses in a variety of tumor models with distinct organotropisms,

including different immunodeficient or immunocompetent

mouse strains, syngeneic tumors and xenotransplants. Further-

more, metastases can be quantified and assessed by Deep-

MACT in organs in which this is difficult to achieve by other

methods, such as bones and the brain.

In a third experiment, we tested the potential of DeepMACT to

study the progression of the metastatic process over time. We

injected MDA-MB-231 cancer cells intracardially and analyzed

the distribution of metastases 2 days, 6 days, and 14 days after

injection (Figures 5E–5G). We found metastases in the brain,

lungs, liver, kidneys, bones, and other organs at all time points.

Moreover, our results showed a substantial increase in the total

metastatic burden in the mouse bodies as well as in the lungs as

the primary metastatic organ (Figure 5H).

Importantly, neither the increase in overall tumor burden for

the time course study nor the differential distribution of metasta-

ses across organs for any of the cancer models tested were

clearly revealed by bioluminescence images (Figure S5). Thus,

our pipeline is the first to enable quantitative analyses of micro-

metastases in full-body scans, greatly enhancing our ability to

assess the metastatic process in a comprehensive manner.
Quantitative Analysis at the Level of Individual Metastases
mary fat pad after light-sheet microscopy imaging in lateral and ventral views,

arrowhead indicates the primary tumor and the yellow arrowhead indicates

at different perspectives.

imary tumor indicated with dashed circles) color-coded by organ (C) and depth

l.

x in C) in a projection of 3D deep learning-based detection, with metastases

stimates are within a 20% margin (green region), and all estimates are within a

regions).

he black line shows the Gaussian kernel density estimation.

he torso; bars indicate 95% confidence intervals.

of magnitude higher in lungs versus the rest of the torso.

< 0.001; two-sided t test). Error bars show standard deviations.

wo-sided t test). Error bars show standard deviations.
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DeepMACT Reveals Therapeutic Antibody Targeting at
the Level of Single Metastases
A number of tumor-targeting monoclonal antibodies have

become part of the standard treatment for various solid and he-

matological malignancies and many more are in early or late

stages of clinical development (Barker and Clevers, 2006; Pan-

dey and Mahadevan, 2014). However, so far there has been no

methodology to determine the distribution of therapeutic

antibodies across the entire body, down to the level of single

micrometastases. Here, we used DeepMACT to assess the

biodistribution of the therapeutic monoclonal antibody 6A10

directed against human carbonic anhydrase XII (CA12) (Battke

et al., 2011; Gondi et al., 2013; von Neubeck et al., 2018).

CA12 is overexpressed in various types of cancers, and blocking

its activity with the antibody 6A10 reduces tumor growth (Gondi

et al., 2013) and increases the sensitivity of tumors to chemo-

therapy (von Neubeck et al., 2018). We intravenously injected

20 mg of 6A10 conjugated to Alexa-568 9 weeks after transplan-

tation ofMDA-MB-231 cells and perfused themouse 2 days after

the antibody injection for full-body-scale analysis, enhancing the

tumor signal with Atto-647N. Because Alexa-568 excitation/

emission spectra overlap with the endogenous mCherry signal

of the transplanted cancer cells, we confirmed that the vDISCO

pipeline completely eliminates the signal from endogenously ex-

pressed mCherry (Cai et al., 2019; Figure S6).

We first acquired 2D images with epifluorescence microscopy

and observed an accumulation of the 6A10 antibody at the pri-

mary tumor (Figures 6A and 6E; tumor shown in magenta, thera-

peutic antibody in cyan) and the metastases at the axillary lymph

node (Figures 6A and 6B). Focusing on the lungs, we detected

micrometastases that were targeted by the 6A10 antibody (Fig-

ure 6C, white arrow) and others that were not (Figure 6D, yellow

arrow). Acquiring 3D scans with light-sheet microscopy, we as-

sessed the complete biodistribution of the therapeutic antibody

and micrometastases throughout the mouse body (Figures 6F–

6H; Video S3). The axillary lymph node metastases and the mi-

crometastases in the lungs are shown in Figure 6F. Analyzing

the signal of individual micrometastases and the 6A10 antibody

by light-sheetmicroscopy in 3D, we could evaluate the efficiency

of antibody drug targeting for all themicrometastases (Figure 6G,

white arrows). We also verified the targeting of micrometastases

by the 6A10 antibody in different organs such as lungs and kid-

ney, using confocal microscopy (Figure S7).

Next, we used DeepMACT to systematically assess and quan-

tify the efficiency of antibody drug targeting in full body scans at

the level of single micrometastases (Figure 6I). While overall 77%

of metastases were targeted by the antibody, we found that
Figure 5. DeepMACT Reliably Detects Metastases in All Organs for a V

Metastasis detections in full-body 3D light-sheet microscopy scans; each dot re

outlines are not inside that organ but rather above or below it.

(A) A control mouse was perfused immediately after implantation of a solid tumo

(B) MCF-7 breast cancer cells were intracardially injected in a nude mouse.

(C) Pancreatic cancer cells (R254) were transplanted into the pancreas (dashed

(D) H2030-BrM3 lung cancer cells were intracardially injected in a nude mouse.

(E–G) Three NSG mice were intracardially injected of MDA-MB-231 breast cance

(H) DeepMACT analysis shows increase in tumor burden over the three time poin

Yellow arrows indicate metastases in bones; the magenta arrow indicates a met

See also Figure S5.
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significantly more micrometastases were targeted in the lungs

(85%) as compared to the rest of the body (66%) (Figure 6J;

Videos S3 and S4). To further assess the efficiency of drug tar-

geting for micrometastases in the lung versus the rest of the

body, we evaluated the antibody concentration by quantifying

the antibody signal contrast (relative signal strength versus local

surrounding; see STARMethods for details; Figure 6K). Metasta-

ses in the lungs generally tended to have a higher antibody signal

ratio, in line with the higher share of targeted metastases. In

addition, the antibody signal ratio was much more narrowly

distributed compared with micrometastases outside the lungs.

The lower average and wider distribution of antibody signal ratio

in the micrometastases in the rest of the body indicate that there

is a substantially higher variance in the antibody targeting to the

cells of those micrometastases. While some are very strongly

targeted, many others are not targeted at all. The largest quartile

of micrometastases was significantly more likely targeted (88%)

than the smallest quartile (67%) (Figure 6L). We also identified

various off-target binding sites throughout the body (i.e., binding

of the therapeutic antibody to mouse tissues), which is presum-

ably due to unspecific interactions because 6A10 does not bind

to murine CA12 (cyan inset in Figure 6H). Overall, these data

demonstrate that DeepMACT provides a powerful platform to

track the biodistribution of therapeutic antibodies along with mi-

crometastases in mouse bodies. Thus, it represents the first

method that allows quantitative analysis of the efficiency of anti-

body-based drug targeting at the full body scale, with a resolu-

tion down to the level of individual micrometastases.

Exploring Potential Mechanisms of Antibody Drug
Targeting
The above results demonstrated that antibody-based drugs,

which are the basis of many targeted/personalized treatments,

may miss as many as 23% of the micrometastases. Next, we

aimed to explore potential mechanisms that might explain this

failure. We first hypothesized that the efficiency of targeting of

micrometastases might depend on the availability of nearby

blood supply transporting the therapeutic antibody. To explore

if the vascularization of defined tissue regions can have an effect

on antibody drug targeting, we performed lectin labeling of ves-

sels in the lungs, where most of the micrometastases are

located. Analyzing diverse micrometastases of different sizes,

we found that each of them had blood vessels within a distance

of 1–6 mm (Figures 7A and 7B). This distance is smaller than even

a single cell diameter (�10 mm) suggesting that absence of

nearby blood vessels could not be the major reason for the

lack of antibody drug targeting (Tabrizi et al., 2010).
ariety of Tumor Models

presents a metastasis, color-coded by organ; black metastasis within organ

r (MDA-MB-231; dashed circle), leaving no time for metastases to form.

circle) of a C57BL/6 mouse.

r cells and sacrificed after 2 days (E), 6 days (F), and 14 days (G).

ts.

astasis in the peritoneum.



Figure 6. The DeepMACT Pipeline Enables Quantitative Analysis of Drug Delivery Efficacy at the Level of Single Metastases

A mouse transplanted in the mammary fat pad with MDA-MB-231 cells was intravenously injected with 6A10 anti-CA12 antibody 9 weeks later.

(A) Epifluorescence image of a processed mouse.

(B-E) Magnifications of the different areasmarked with white dashed lines in (A), showing details of both tumormetastases (enhanced with Alexa647N nanobody,

shown in magenta) and 6A10 antibody (conjugated with Alexa568, shown in cyan) distributions and their overlay. While most of themicrometastases are targeted

by the antibody (C, white arrowhead), there are some that are not (D, yellow arrowhead).

(F) Full-body 3D light-sheet scan, cropped to the chest region, shows the distributions of metastases (magenta) and antibody (cyan).

(G) Detailed view of the boxed region in (F) showing very small micrometastases targeted by the therapeutic antibody (white arrowheads).

(H) 3D rendering of a mouse body light-sheet scan showing the tumor signal in magenta and the 6A10 antibody signal in cyan (co-localization of the signals is

shown in white). The cyan inset shows an example of off-target accumulation of the 6A10 antibody.

(I) Deep learning-based reconstruction of the animal in (H) showing targeted metastases in green and untargeted metastases in red; the dashed circles represent

the primary tumor and A.L.N metastases.

(J) A significantly higher share of metastases are targeted in the lungs versus the rest of torso (p < 0.001, two-sided t test). Error bars show standard deviations.

(K) Comparison of the distributions of 6A10 antibody signal ratio (signal strength in metastasis versus local surrounding; see the STARMethods for further details)

per metastasis in the lungs versus the rest of torso. The dashed line indicates a ratio of 1 (equal signal strengths).

(L) Share of targeted metastases as a function of their size (split into quartiles of average metastasis diameter; p < 0.001, two-sided t test). Error bars show

standard deviations.

See also Figures S6 and S7 and Videos S3 and S4.
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Figure 7. Potential Mechanisms of Metastasis Targeting by Therapeutic Antibody

(A) Confocal images of a large and a small metastasis (<5 cancer cells) in the lungs of a mouse transplanted with MDA-MB-231 cells and intravenously injected

with 6A10 anti-CA12 antibody, labeled with lectin (green) and Hoechst (blue).

(B) Distribution of metastasis size and distance to the nearest vessel, showing that most of the metastases are close to vessels (distance <6 mm; n = 50).

(C) Deep learning-based reconstruction of lung metastases with and without 6A10 antibody targeting.

(D) Deep learning-based quantification of distance between metastases and their nearest neighbor. The average distance from an untargeted to the nearest

targetedmetastasis is significantly (p < 0.001; two-sided t test) larger than from a targeted one; this shows local clustering of targeted and untargetedmetastases

(see the STAR Methods for further details). Error bars show 95% confidence intervalls for the estimation of the mean.
Next, we hypothesized that the tumormicroenvironment at the

sites ofmetastases could be related to the efficiency of targeting.

If so, we would expect a non-random spatial distribution of tar-

geted and untargeted metastasis on a local scale. To address

this, we turned to DeepMACT and assessed the local clustering

of micrometastases targeted by the antibody. We quantified the

distances between micrometastases and their nearest neighbor

for all micrometastases in the entire body, differentiating be-

tween targeted and untargeted nearest neighbors. The distance

between two neighboring metastases is smaller for two targeted

metastases (�0.8 mm) than for two untargeted or a mixed pair of

an untargeted and a targeted metastasis (consistently at �1.7–

2.0 mm) (Figures 7C and 7D). Importantly, the average distance

from an untargeted to the nearest targeted metastasis is signifi-

cantly larger than from a targeted one. This would not be ex-

pected in a random distribution and indicates a clustering on a

local scale. Thus, these analyses suggest the existence of fac-

tors in tumor microenvironments influencing the efficiency of

antibody drug targeting.
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DISCUSSION

Unbiased, comprehensive detection of cancer metastases and

the biodistribution of tumor-targeting therapeutics at the level

of single micrometastases would substantially accelerate pre-

clinical cancer research. Toward this goal, we capitalized on

a powerful tissue clearing and imaging method combined

with deep learning-based analysis, enabling us to visualize

and analyze cancer metastasis in transparent mouse bodies.

The resulting DeepMACT workflow is a straightforward method

for systemic analysis of micrometastases and therapeutic anti-

body drug distribution at the full body scale and with a resolu-

tion down to individual micrometastases within days, a task

that would otherwise take several months to years of human la-

bor. Thus, DeepMACT-based evaluation of entire transparent

mouse bodies instead of selected tissues/organs can foster

the development and translation of new therapies from pre-

clinical research much more efficiently than traditional

methods.



To further facilitate easy adoption of our technology by diverse

labs, we provide (1) a handbook (Methods S1) with detailed step-

by-step instructions for carrying out the DeepMACT pipeline; (2)

various resource videos and troubleshooting tips; (3) a package

including the trained DeepMACT algorithm and annotated data;

and (4) an online version of the DeepMACT algorithm that can be

executed via any web browser (hosted by the Code Ocean initia-

tive) without downloading any code or installing any software

(links to these resources are provided in STAR Methods).

DeepMACT Technology
Here, we set out to make use of recent technologies that can pro-

vide scalable and unbiased histological assessment of entire bio-

logical specimens. Most full body scale clearing and imaging

studies have so far relied on visualization of endogenous fluores-

cent signal, which is not sufficiently strong to allow imaging and

quantification of metastases in transparent mice (Kubota et al.,

2017; Pan et al., 2016). To overcome this, we adopted the vDISCO

mouse clearing and staining technology, as it can enhance the

fluorescent signal in fixed and cleared tissues by more than 100

times (Cai et al., 2019), ensuring reliable detection of micrometa-

stases. Because vDISCOemploys nanobody enhancement of the

endogenous fluorescent signal, currently up to 21 types of fluo-

rescent proteins can be labeled with available nanobodies. In

addition, conjugation of existing nanobodies with fluorescent

dyes at diverse spectra, including those in the near infrared range

would help to generate more options for multiplex experiments

including imaging of more than one type of fluorescently labeled

cell along with conjugated therapeutic antibodies.

Second, we developed a highly efficient deep learning archi-

tecture based on U-net like CNNs exploiting 2Dmaximum-inten-

sity projections with high SNR to reliably detect metastases in

3D. Deep learning-based detection not only serves the purpose

of automation but also provides a very effective tool in finding

metastases that would be easily overlooked by humans. In our

data, an expert human annotator missed around 29% of all me-

tastases. This is in line with previous studies where human ex-

perts missed 1 in 4 breast cancer metastases in histopathology

(Vestjens et al., 2012), a problem that is further exacerbated if hu-

mans work under time pressure (Ehteshami Bejnordi et al.,

2017). Motivated by this, deep-learning-based approaches for

cancer and metastasis detection have recently started gaining

substantial momentum for various imaging modalities, also

beyond microscopy (Litjens et al., 2016; Liu et al., 2019; Steiner

et al., 2018; Wang et al., 2017).

Here, we used an MDA-MB-231 cancer cell-based tumor

model to train the algorithms. While training deep networks in

generalmay require large training datasets to diversify their appli-

cations, the U-net-like architecture at the core of DeepMACT can

be easily adopted to other cancer models (Bhatia et al., 2019;

Falk et al., 2019; Wang et al., 2018). Indeed, after learning to

detect the characteristic shape and appearance of micrometa-

stases against the background signal, DeepMACT successfully

analyzed 3 additional tumor models we used here without further

training: MCF-7 estrogen receptor positive breast cancer model,

H2030-BrM3 lung cancermodel, and R254 syngeneic pancreatic

cancer model. Therefore, it would require little effort to apply our

algorithms to different types of tumor models. Also, adapting the
algorithm to applications in which, for instance, shape and size

differ substantially from MDA-MB-231 metastases, would not

require training from scratch. Adjusting design parameters such

as the size of subvolumes (see the STAR Methods and the

detailed handbook [Methods S1] for DeepMACT that we provide)

allows the straightforward adaptation of the algorithm to new

data with different SNR, metastasis sizes, or spatial resolution

of the scan. Furthermore, building upon our pre-trained algo-

rithms, which are freely available online, allows retraining the al-

gorithm with substantially less training data.

To ensure high computational efficiency, our approach sol-

ves the three-dimensional task of detecting and segmenting

the metastases by exploiting two-dimensional representations

of the data. This is important because 2D maximum-intensity-

projections increase SNR when there is little background noise

owing to the high specificity of the labels in vDISCO clearing.

3D convolutions are exponentially more expensive in terms of

model complexity (number of parameters) as well as computa-

tional load than 2D convolutions, thus requiring more powerful

computing resources and more data annotated in 3D to train

the algorithm. Importantly, the increased number of parameters

is detrimental to model performance, unless the amount of

training data is further increased. In this study, the 3D CNNs

we tested failed to reach a high level of detection performance

due to limited availability of training data, a common constraint

in practice given the cost associated with annotating data

(especially in 3D). In addition, the more efficient nature of our

approach allows training the entire algorithm on a standard

workstation with an ordinary GPU within a few hours; applying

the trained algorithm to a new dataset takes in the order of

15 min, highlighting the scalability and cost-efficiency of our

pipeline. Thus, the DeepMACT architecture is designed to

enable widespread adoption of our approach by minimizing

data annotation and computing requirements while allowing

for easy adaptation to other experimental setups (such as

different tumor models).

DeepMACT Detection of Micrometastases and Tumor-
Targeting Drugs
Methods such as magnetic resonance imaging (MRI), computed

tomography (CT), and bioluminescence imaging have been

widely used to visualize cancer growth at the primary site and

distant body regions (Condeelis andWeissleder, 2010; Massoud

and Gambhir, 2003, 2007; Ntziachristos, 2010; Pichler et al.,

2008; Timpson et al., 2011). While thesemethods provide crucial

longitudinal information on the size of the primary tumor and

large metastases, they typically can only resolve structures

larger than 75 mm, hence they do not have the resolution to

detect smaller micrometastases consisting of fewer cells.

Unbiased high-throughput mapping of tumor micrometasta-

ses in full body scans of rodents can be a valuable tool to un-

cover the biology behind the dissemination of tumor cells. We

show here that DeepMACT is a powerful pipeline for detecting

and mapping cancer metastases in mouse bodies, allowing

identification of the precise locations of even the smallest

disseminated tumors. Complex analysis, e.g., of the size, loca-

tion, and density of micrometastases could be performed in a

short time throughout the body, without dissecting any
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pre-defined region. In addition to detecting themicrometastases

in the selected organs such as the lungs and liver, we also iden-

tified numerous micrometastases throughout the torso. For the

MDA-MB-231 breast cancer line, we could show that metasta-

ses are present in deep tissues such as the brain or distant

locations such as hindlimb bones as early as 2 days after cardiac

injection. DeepMACT also allowed us to assess important differ-

ences between distinct cancer models in terms of overall meta-

static propensity and organotropism. For example, as expected

from previous reports (Nguyen et al., 2009) the H2030-BrM3 lung

cancer line developed the highest fraction of brain metastases

among all cancermodels tested and alsometastasized to bones.

However, DeepMACT allowed us to comprehensively charac-

terize the distribution of metastases throughout the body,

revealing for instance that this model has a high propensity to

metastasize to lungs, but produces much fewer liver metastases

than any other model tested. The pancreatic tumor, on the other

hand, metastasized neither to the brain nor to the kidneys but

disseminated for instance into the peritoneum—a pattern

observed commonly in human patients as well as in several

different mouse models of the disease (Hingorani et al., 2003;

Lenk et al., 2017; Ryan et al., 2014; Schönhuber et al., 2014).

Overall, we find that our results agree with the existing literature,

but while previous studies were structurally limited to selective

analysis of micrometastases in small tissue samples, the results

shown here represent the first systematic, unbiased, and

comprehensive full-body scale screening for micrometastases

for these cancer models.

While precise assessment of therapeutic antibody bio-

distribution is critical for evaluating its specificity and utility for tu-

mor treatment, there has been nomethod so far that can provide

such information down to the level of individual micrometastases

on full body scale scans. Here, we applied DeepMACT to study

not only the distribution of single metastases but also of a ther-

apeutic monoclonal antibody. We demonstrated that the on-

target and off-target binding of antibody drugs throughout the

body can readily be assessed by DeepMACT. For example, we

observed that not all micrometastases in the lungs were targeted

by the anti-CA12 therapeutic antibody 6A10. Understanding why

antibody-based therapeutics do not target all metastases would

be important for developing more effective treatments. Toward

this goal, we studied the potential mechanisms that could

contribute to the lack of targeting. Vascular staining demon-

strated that blood vessels were present in the immediate vicinity

of all examined metastases in the lungs, suggesting that insuffi-

cient vascularization is unlikely to be a common cause for the

failure of antibody drug targeting in this model. Interestingly,

DeepMACT analysis found that micrometastases located in

close proximity are more likely to be targeted. This suggests

that the local microenvironment within metastatic niches plays

an important role in determining the efficiency of antibody target-

ing, e.g., by altering antibody penetration, binding affinity and

clearance. Furthermore, heterogeneity of antigen expression

on the surface of tumor cells and internalization and degradation

of antigen/antibody complexes might also affect therapeutic

antibody targeting efficiency. While our findings are based on

one therapeutic antibody, they nevertheless highlight a potential

use case for applying the DeepMACT pipeline in pre-clinical
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studies aimed at understanding and improving the specificity

and efficacy of tumor treatments.

In conclusion, DeepMACT is a powerful technology combining

unbiased full body scale imaging with automated analysis. It

enables visualization, quantification, and analysis of tumor mi-

crometastases and antibody-based therapies in mice with high

resolution and an accuracy equivalent to that of human experts

but speeding up the workflow by orders of magnitude compared

to traditional methods. Because this technology is time- and

cost-efficient, scalable, and easily adoptable, it can be used to

study metastasis and optimize antibody-based drug targeting

in diverse tumor models.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Human carbonic anhydrase (CA) XII-specific

antibody (6A10)

Battke et al., 2011 https://doi.org/10.1007/s00262-011-0980-z

Anti-Firefly Luciferase antibody Abcam ab21176; RRID:AB_446076

AlexaFluor 488 goat anti-rabbit IgG antibody Life Technologies A11034; RRID:AB_2576217

Chemicals, Peptides, and Recombinant Proteins

Phosphate Buffer Saline containing Heparin Ratiopharm GmbH N68542.03

4% paraformaldehyde (PFA) Morphisto 11762.01000

CUBIC reagent – urea Carl Roth 3941.3

CUBIC reagent – Ethylenediamine Sigma-Aldrich 122262

CUBIC reagent – Triton X-1000 AppliChem A4975,1000

EDTA Carl Roth 1702922685

Sodium hydroxide Sigma-Aldrich 71687

Goat serum GIBCO 16210072

Bovine Serum Albumin Sigma-Aldrich A7906

Methyl-beta-Cyclodextrin Sigma-Aldrich 332615

trans-1-Acetyl-4-hydroxy-L-proline Sigma-Aldrich 441562

Sodium azide Sigma-Aldrich 71290

DISCO solution – tert-butanol Carl Roth AE16.3

DISCO solution – Tetrahydrofuran Sigma-Aldrich 186562

DISCO solution – Dichloromethane Sigma-Aldrich 270997

DISCO solution – Benzyl alcohol Sigma-Aldrich 24122

DISCO solution – Benzyl benzoate Sigma-Aldrich W213802

Diphenyl ether Alfa Aesar A15791

Vitamin E (DL-alpha-tocopherol) Alfa Aesar A17039

Atto647N conjugated anti-RFP/mCherry nanobody Chromotek rba647n-100; RRID:AB_2631440

Atto594 conjugated anti-RFP/mCherry nanobody Chromotek rba594-100; RRID:AB_2631390

Atto647N conjugated anti-GFP nanobody Chromotek gba647n-100; RRID:AB_2629215

Hoechst 33342 Thermo Fisher Scientific 21492H

Propidium iodide Sigma-Aldrich P4864

Gelatin Sigma-Aldrich G2500

Alexa 488 conjugated Lectin Invitrogen W11261

Fluorescent mounting medium Dako 10097416

RPMI 1640 medium GIBCO 11875093

Deposited Data

Raw data and data labels for DeepMACT This paper http://discotechnologies.org/DeepMACT/

Experimental Models: Cell Lines

Human: MDA-MB-231 breast cancer cells von Neubeck et al., 2018 https://doi.org/10.1002/ijc.31607

Human: MCF-7 ATCC ATCC HTB-22

Human: H2030-BrM3 Nguyen et al., 2009 https://doi.org/10.1016/j.cell.2009.04.030

Murine: R254 von Burstin et al., 2008 https://doi.org/10.1002/ijc.23780

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Organisms/Strains

NOD/SCID/IL2 receptor gamma chain (NSG) knockout

mouse line: NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ

Jackson Laboratory 005557

NMRI nude mouse line: Rj:NMRI-Foxn1nu/nu Janvier Labs NMRI-nu

C57BL/6J mouse line Jackson Laboratory 000664

Software and Algorithms

ImageJ Schneider et al., 2012 https://imagej.nih.gov/ij/

AxioZoom EMS3 software Carl Zeiss AG https://www.zeiss.com/microscopy/int/products/stereo-

zoom-microscopes/axio-zoom-v16.html#downloads

Living Image software 4.2 Caliper Life Sciences https://www.perkinelmer.com/lab-products-and-services/

resources/in-vivo-imaging-software-downloads.html

Photoshop CS6 Adobe https://www.adobe.com/products/photoshop.html

ImSpector Aberrior/LaVision https://www.lavisionbiotec.com/

Amira FEI Visualization

Sciences Group

http://www.vsg3d.com/

Imaris Bitplane AG https://imaris.oxinst.com/

Vision4D Arivis https://www.arivis.com/de/imaging-science/arivis-vision4d

Python Anaconda distribution Anaconda https://www.anaconda.com/distribution/

Scipy package for Python Jones et al., 2001 https://www.scipy.org

Seaborn package for Python Waskom, 2012 https://seaborn.pydata.org/

PyTorch deep learning framework for Python Paszke, 2016 https://pytorch.org/

Cuda NVIDIA https://developer.nvidia.com/cuda-downloads

CuDNN NVIDIA https://developer.nvidia.com/cudnn

DeepMACT algorithm This paper http://discotechnologies.org/DeepMACT/

Other

Online demonstration (‘‘compute capsule’’ on

CodeOcean.com) of DeepMACT

This paper https://codeocean.com/capsule/

8c13691f-7f9a-4af4-8522-c26f581c9e83/tree?

ID=a8ba18d2bf5046b08fafe2d6a42bfd7a

Resource website for DeepMACT This paper http://discotechnologies.org/DeepMACT/

Resource website for DISCO clearing Cai et al., 2019 http://discotechnologies.org/vDISCO/
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Ali Ertürk (erturk@

helmholtz-muenchen.de). The lab protocol as well as the algorithms and data for the DeepMACT pipeline are freely available and

have been deposited to http://discotechnologies.org/DeepMACT/.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Spontaneous breast cancer metastasis model
Female NSG (NOD/SCID/IL2 receptor gamma chain knockout) mice were obtained from Jackson Laboratory and housed at the an-

imal facility of the Helmholtz Center Munich and the Institute of Stroke and Dementia research Munich. All animal experiments were

conducted according to institutional guidelines of the Ludwig Maximilian University of Munich and Helmholtz Center Munich after

approval of the Ethical Review Board of the Government of Upper Bavaria (Regierung von Oberbayern, Munich, Germany). MDA-

MB-231 breast cancer cells transduced with a lentivirus expressing mCherry and enhanced firefly luciferase (Vick et al., 2015)

were counted, filtered through a 100 mm filter and resuspended in RPMI 1640 medium (GIBCO, 11875093). 2x106 cells per mouse

were injected transdermally in a volume of 50 ml into the 4th left mammary fat pad of 3-4 months old female NSG mice. For the intra-

cardial injection model used for the time-course study, 1x105 cells per mouse were injected in a volume of 100 ml PBS into the left

ventricle of female NSG mice as described before (Campbell et al., 2012). In brief, the mice were anesthetized using an isoflurane

vaporizer and placed ventral side up on a heating pad to keep the body temperature around 37�C. Then the chest area was shaved

and cleaned by 70% ethanol. The midway point between top of xiphoid process and the sternal notch was marked and the injection
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point slightly on the left (anatomical) side of sternum was defined. Finally, the injection was conducted by a 0.5 mL insulin syringe

(B.Braun, Omnican 50, U100 Insulin 0.5 mL / 50 I.U, 30G x ½’’, 9151125) with a bright red blood pulse back in the syringe as a suc-

cessful sign. After injection, gentle pressure around the injection site was applied to prevent inner bleeding and the mice were kept in

a recovery chamber (Mediheat, 34-0516) at 30�C until they fully recovered from the anesthesia.

Tumor growth was monitored by bioluminescence measurement (photons/second) of the full body using an IVIS Lumina II Imaging

System (Caliper Life Sciences) as described (Vick et al., 2015). Briefly, mice were anesthetized with isoflurane, fixed in the imaging

chamber and imaged 15 minutes after Luciferin injection (150 mg/kg; i.p.). Bioluminescence signal was quantified using the Living

Image software 4.2 (Caliper Life Sciences).

Estrogen positive breast cancer model and brain metastatic lung cancer model
Animal experiments were approved by the veterinary department of the regional council in Darmstadt, Hesse, Germany. Xenograft

transplantations were performed in athymic 5-6 week old female NMRI nu/nu mice (Janvier Labs) that were kept in a specific path-

ogen-free animal facility according to the institutional guidelines of the University of Giessen and University of Frankfurt. Intracardial

injections were performed as described before (Sevenich et al., 2014). In brief, prior to the tumor cell injection, subconfluent cells,

lentivirally transduced with a construct expressing mCherry and enhanced firefly luciferase, were harvested and kept on ice in sterile

PBS until the inoculation. Mice were anesthetized with 100 mg/kg ketamine and 10 mg/kg xylazine and the depth of anesthesia was

confirmed by the absence of toe reflexes. The chest was sterilized using 70% ethanol and 1x105 MCF-7 cells, or 5x104 H2030-BrM3

in a total volume of 100 ml PBSwere injected stepwise into the left cardiac ventricle using a 26G needle. Success of the injections was

monitored by pulsating reflux of arterial blood into the syringe. Metastatic growth wasmonitored by in vivo bioluminescence using an

IVIS Lumina II Imaging System 5 minutes after an intraperitoneal injection of 150 mg/kg luciferin.

Pancreatic cancer model
Immunocompetent (wild-type C57BL/6) mice were housed at the animal facility of the Klinikum rechts der Isar of TUM. All animal

studies were conducted in compliance with European guidelines for the care and use of laboratory animals and were approved

by the Institutional Animal Care and Use Committees (IACUC) of Technische Universität München, Regierung von Oberbayern

and UK Home Office. The low passaged primary pancreatic cancer cell line R254, derived from a genetically engineered KPCmouse

(LSL-KrasG12D/+;LSL-Trp53R172H/+;Ptf1aCre/+) on a C57BL/6 background as described previously (Eser et al., 2013; von Burstin

et al., 2009; von Burstin et al., 2008), was transducedwith lentiviral particles expressing EGFP and Firefly Luciferase. 2.5x103 cells per

mouse in 20 ml Dulbecco’s modified Eagle medium were implanted orthotopically into the pancreas of 2-3 months old male mice.

Tumor growth was monitored by bioluminescence measurement of the entire body. In brief, mice were anesthetized with midazo-

lam/medetomidine/fentanyl, injected with D-luciferin (Synchem, Kassel, Germany) at 150 mg/kg intraperitoneally (IP) and imaged

after 10minutes using a cooled back-thinned, charge-coupled device camera (OrcaII ER, Hamamatsu, Herrsching, Germany) equip-

ped with an image intensifier for 10-120 s; bin size, 2; gain, 700. A photographic grayscale image was taken, and the bioluminescent

signals were displayed in pseudocolors and projected on the grayscale image using SimplePCI software (Hamamatsu).

Injection of therapeutic antibody
9 weeks after tumor cell injections, one mouse was randomly chosen for different experimental procedures including injection of a

human carbonic anhydrase (CA) XII-specific antibody (6A10) (Battke et al., 2011). In brief, 20 mg of 6A10 antibody conjugated with

Alexa-568 was injected into the tail vein of the mouse. 48 hours later, the mouse was perfused for vDISCO pipeline including

enhancing endogenous mCherry fluorescence and clearing as described in the Method Details section.

METHOD DETAILS

Perfusion and tissue preparation
The mice were deeply anesthetized using a combination of midazolam, medetomidine and fentanyl (MMF) (1ml/100 g of body mass

for mice; i.p.). Then, the chest cavity of the animals were opened for the standard intracardial perfusion with heparinized 0.01 M PBS

(10-25U/ml of Heparin as final concentration, Ratiopharm, N68542.03; 100-125mmHg pressure using a Leica PerfusionOne system)

for 5-10 minutes at room temperature until the blood was washed out, followed by 4% paraformaldehyde (PFA) in 0.01 M PBS

(pH 7.4) (Morphisto, 11762.01000) for 10-20 minutes. The skin was carefully removed and the mouse bodies were postfixed in

4% PFA for 1 day at 4�C and transferred to 0.01 M PBS.

Tissue clearing and staining
uDISCO mouse body clearing

The uDISCO protocol to clear bodies of mice was described previously (Pan et al., 2016). In brief, a transcardial-circulatory system

was established involving a peristaltic pump (ISMATEC, REGLO Digital MS-4/8 ISM 834; reference tubing, SC0266). Two channels

from the pump were set for the circulation through the heart into the vasculature: the first channel pumped the clearing solution into

themouse body and the second channel collected the solution exiting themouse body and recirculated the solution back to the orig-

inal bottle. For the outflow tubing of the first channel, which injected the solution into the heart, the tip of a syringe (cut from a 1 mL
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syringe-Braun, 9166017V) was used to connect the perfusion needle (Leica, 39471024) to the tubing. Meanwhile, the inflow tubing of

the second channel, which recirculated the clearing solutions, was fixed to the glass chamber containing the mouse body. The

amount of solutions for circulation depended on the capacity of the clearing glass chamber. For example, if the maximum volume

of glass chamber is 400 ml, 300 mL of volume of solution was used for circulation.

All clearing steps were performed in a fume hood. First, the mouse body was put in a glass chamber and the perfusion needle was

inserted into the heart through the same hole that was used for PFA perfusion. Then, after covering the chamber with aluminum foil

the transcardial circulation was started with a pressure of 230 mmHg (60 rpm on the ISMATEC pump). The mouse bodies were

perfused for 6 hours with the following gradient of tert-butanol (Carl Roth, AE16.3): 30 Vol%, 50 Vol%, 70 Vol%, 90 Vol% (in distilled

water),100 Vol% twice, and finally with the refractive index matching solution BABB-D4 containing 4 parts BABB (benzyl alcohol +

benzyl benzoate 1:2, Sigma, 24122 and W213802), 1 part diphenyl ether (DPE) (Alfa Aesar, A15791) and 0.4% Vol vitamin E (DL-

alpha-tocopherol, Alfa Aesar, A17039), for at least 6 hours until achieving transparency of the bodies. As the melting point of tert-

butanol is between 23 to 26�C, a heating mat set at 35-40�Cwas used for the two rounds of 100% tert-butanol circulation to prevent

the solution from solidifying.

vDISCO mouse body immunostaining and clearing

The detailed protocol of vDISCOwas described previously (Cai et al., 2019). The following nanobodies and dyeswere used formouse

body immunostaining: Atto647N conjugated anti-RFP/mCherry signal-enhancing nanobodies (Chromotek, rba647n-100), Atto594

conjugated anti-RFP/mCherry signal-enhancing nanobodies (Chromotek, rba594-100), Atto647N conjugated anti-GFP signal-

enhancing nanobodies (Chromotek, gba647n-100), Hoechst 33342 (Thermo Fisher Scientific, 21492H), Propidium iodide (PI, Sigma,

P4864). Please note that different batch of nanoboosters coming from different companies can have different penetration and sta-

bility performances. Please check http://www.discotechnologies.org/vDISCO/ for updates on which nanoboosters to use.

To perform the mouse body immunolabeling, a simplified transcardial-circulatory system using the same type of peristaltic pump

was established (ISMATEC, REGLO Digital MS-4/8 ISM 834; reference tubing, SC0266). In short, one reference tubing was con-

nected by two connectors (Omnilab, 5434482) from both ends and extended by additional PVC tubing (Omnilab, 5437920). The

head part from a 1 mL syringe (Braun, 9166017V) was cut and inserted into the outflow PVC tubing as a connector for the perfusion

needle (Leica, 39471024). Next, a PBS perfused and PFA fixed mouse body was placed into a 250 mL glass chamber (Omnilab,

5163279) and 200 mL of 0.01 M PBS was filled immediately into the chamber. Note that the sample will be kept in the same chamber

through the entire immunolabeling and clearing process, it should be always embedded in the respective solutions till the moment of

imaging. Then, the inflow tubing of the transcardial-circulatory systemwas fixed underneath the surface of PBS in the glass chamber

using adhesive tape and the pumping circulation was started until the air bubbles were completely removed from the tubing system.

The mouse body decolorization, decalcification and immunolabeling steps were conducted subsequently after inserting and fixing

the perfusion needle into the heart of the sample through the same pinhole made during sample preparation.

In general, the animals were first perfusedwith decolorization solution for 2-3 days at room temperature to remove remaining heme

and blood before immunostaining. The decolorization solutionwhich is a 1:4 dilution of CUBIC reagent 1 (Susaki et al., 2014) in 0.01M

PBS was refreshed twice during the decolorization step. CUBIC reagent 1 was prepared as a mixture of 25 wt% N,N,N,N’-tetrakis

(2-hydroxypropyl) ethylenediamine (Sigma-Aldrich, 122262), 25wt%urea (Carl Roth, 3941.3) and15wt%Triton X-100 in 0.01MPBS,

as described in the original publication. Next, after washing with 0.01 M PBS for 3 hours 3 times, the samples were perfused with the

decalcification solution (10 wt/vol% EDTA in 0.01 M PBS, pH to 8–9, Carl Roth, 1702922685) for 2 days and for 1 more day with per-

meabilization solution containing 0.5% Triton X-100, 1.5% goat serum (GIBCO, 16210072), 0.5 mM of Methyl-beta-cyclodextrin

(Sigma, 332615), 0.2% trans-1-Acetyl-4-hydroxy-L-proline (Sigma, 441562), 0.05% sodium azide (Sigma, 71290) in 0.01 M PBS.

Before the immunostaining step, additional 0,22 mm syringe filters (Sartorius 16532) were attached to the inflow tubing to prevent

the potential accumulation of nanobody aggregates and high pressure pumping at 160–230 mmHg (45–60 rpm) was maintained

through the entire labeling process. Then the immunostaining solution was prepared as a mixture of permeabilization solution and

35 ml of nanobody (stock concentration 0.5 – 1 mg/ml), 10 mg/ml Hoechst or 300 ml of propidium iodide (stock concentration

1mg/ml) and filtered by the same 0,22 mm syringe filter before use. Subsequently the animals were perfused for 5-6 days with

200 mL of immunostaining solution at room temperature and further passively labeled in the same staining solution with extra

5 mL of signal-enhancing nanobody with gentle shaking for 2 days at 37�C or at room temperature. Then the mice were connected

back to the circulation system and perfused with washing solution (1.5% goat serum, 0.5% Triton X-100, 0.05% of sodium azide in

0.01 M PBS) for 12 hours twice at room temperature and at the end with 0.01 M PBS for 3 hours 3 times at room temperature.

After completing the mouse body immunolabeling step, the mouse bodies were passively cleared using 3DISCO (Ertürk et al.,

2012) at room temperature with gentle shaking (IKA, 2D digital) under a fume hood. For dehydration, the mouse bodies were incu-

bated in 200 mL of the gradient tetrahydrofuran (THF, Sigma, 186562) in distilled water (6-12 hours for each step): 50 Vol% THF, 70

Vol% THF, 80 Vol% THF, 100 Vol% THF and again 100 Vol% THF; then the mouse bodies were incubated for 3 hours in dichloro-

methane (Sigma, 270997), and finally in BABB until the tissue were rendered completely transparent. During all clearing steps, the

glass chamber was sealed with parafilm and covered by aluminum foil to prevent extra solution evaporation and fluorescence

quenching. For details, see also the step-by-step handbook (Methods S1).

Rehydration and immunostaining of cleared tissue

Anti-Firefly Luciferase (dilution 1:2000, Abcam, ab21176) and AlexaFluor 488 goat anti-rabbit IgG (H+L) (dilution 1:400, Life Technol-

ogies, A11034) were used to verify the specificity of anti-RFP/mCherry signal-enhancing nanobody labeling. After identification of
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metastases in the lungs of vDISCO-processed mice, lung tissue was dissected and rehydrated by applying the reverse gradient of

tert-butanol used for uDISCO clearing, as follows (6 hours each at 37�C with gentle shaking): 100 Vol% twice, 90 Vol%, 70 Vol%, 50

Vol%, 30 Vol% and 0.01 M PBS twice at room temperature. Rehydrated samples were cut into 1 mm sections using a vibratome

(Leica, VT1200S) and were incubated in 0.01 M PBS containing 0.2% gelatin (Sigma, G2500), 0.5% Triton X-100, 0.05% sodium

azide and 5% normal goat serum for 1 day at 37�C. The sections were then incubated with the primary antibodies diluted in the

same solution overnight at 37�C, washed twice in PBS at room temperature, incubated with secondary antibodies diluted in the

same solution for 4 hours at 37�C and at the end washed in PBS three times at room temperature (related to Figure S2B).

Lectin vasculature labeling in lung tissue

The bodies of mice were perfused and collected as described above. After checking with epifluorescence stereomicroscopy (Zeiss

AxioZoom EMS3/SyCoP3), the lung lobes with multiple metastases were dissected and sliced into 20 mm thick tissue sections by

using a cryostat (Leica, CM3050S). The lung sections were washes 2 times with 0.01 M PBS and then incubated in Alexa 488 con-

jugated Lectin (4 mg/ml, Invitrogen, W11261) at 4�C overnight. The sections were then stained with Hoechst 33342 (10 mg/ml, Thermo

Fisher Scientific, 21492H) for 5 minutes at room temperature to visualize the nucleus. After washing 2 times with PBS, the slides were

mounted with fluorescent mounting medium (Dako, 10097416) and were ready for confocal microscopy (related to Figure 7A).

mCherry signal enhancement in lung tissue

20 mm thick lung tissue sections were washed with 0.01 M PBS 2 times before starting the enhancement process. One-hour incu-

bation in blocking solution containing 1% Bovine Serum Albumin (Sigma, A7906), 2% goat serum (GIBCO, 16210-072), 0.1% Triton

X-100 and 0.05% Tween 20 (Bio-Rad, 161-0781) in PBS, was performed at room temperature. Then the staining solution was pre-

pared in 1%Bovine Serum Albumin and 0.5% Triton X-100 in PBS. Atto647N conjugated anti-RFP/mCherry signal-enhancing nano-

bodies was diluted 1:500 in the staining solution and the lungs sections were incubated overnight at 4�C. After the treatment with

nanobodies, the lungs sections were washed 3 times with PBS for 5 minutes with gentle shaking. After nuclear staining by Hoechst

33342 (10 mg/ml) and post wash with PBS as described before, the slides were mounted with fluorescence mounting medium and

were ready for confocal microscopy (related to Figure S2C).

Image acquisition
Epifluorescence stereomicroscopy imaging

Cleared mouse bodies were fixed in the original clearing chamber and were imaged with Zeiss AxioZoom EMS3/SyCoP3

fluorescence stereomicroscope using a 1x long working distance air objective lens (Plan Z 1x, 0.25 NA, Working distance

(WD) = 56 mm). The magnification was set as 7x and imaging areas were selected manually to cover the entire mouse bodies.

The images were taken with GFP, RFP and Cy5 filters and files were exported as RGB images in JPEG format. For high resolution

imaging of individual metastasis, higher zoom factor can be applied up to 112x.

Light-sheet microscopy imaging

Single plane illumination (light-sheet) image stacks were acquired using an Ultramicroscope II (LaVision BioTec), allowing an axial

resolution of 4 mm. For low magnification full-body screening of tumor and antibody signals we used a 1x Olympus air objective

(Olympus MV PLAPO 1x/0.25 NA [WD = 65 mm]) coupled to an Olympus MVX10 zoom body, which provides zoom-out and -in

ranging from 0.63x up to 6.3x. Using 1x objective, we imaged a field of view of 2 3 2.5 cm, covering the entire width of the mouse

body. Tile scans with 60% overlap along the longitudinal y axis of the mouse body were obtained from ventral and dorsal surfaces up

to 13mm in depth, covering the entire volume of the body using a z-step of 10 mm. Exposure timewas 150ms, laser power was 3 to 4

mW (70% to 95% of the power level) and the light-sheet width was kept at maximum. Alternatively, the mouse bodies were scanned

with a dipping 1.1x objective (LaVision BioTec MI PLAN 1.1x/0.1 NA [WD = 17 mm]) coupled with an Olympus revolving zoom body

unit (U-TVCAC). In brief, 3x8 tile scanswith 25%overlap were obtained fromboth sides to 11mm in depth, covering the entire volume

of the body using a z-step of 6 mm. Light-sheet width was set at 80% and exposure time was 80 ms. The laser power was adjusted

depending on the intensity of the fluorescent signal to avoid reaching saturation. For themouse displayed in Figure 6H, the lower part

of the jaw was removed to fit the mouse head into imaging chamber; this was not the case for any other mouse presented in

this study.

After low magnification imaging of the full scale mouse body, organs (including lungs, liver, kidneys, brain, spleen, intestines and

bones) were imaged individually using high magnification objectives (Olympus XLFLUOR 4x corrected/0.28 NA [WD = 10 mm],

LaVision BioTec MI PLAN 12x/0.53 NA [WD = 10 mm] and Zeiss 20x Clr Plan-Neofluar/0.1 NA [WD = 4 mm]) coupled to an Olympus

revolving zoom body unit (U-TVCAC) kept at 1x. High magnification tile scans were acquired using 20% overlap and the light-sheet

width was reduced to obtain maximum illumination in the field of view. For the data used for the comparison of signal profile plots of

lungmetastases taken in red and far-red channels and for the analysis of endogenous fluorescence signal depletion after the uDISCO

protocol, we used the sameMVX10 zoom body, coupled this time with a 2x objective (Olympus MVPLAPO2XC/0.5 NA [WD = 6mm])

at zoom body magnification 6.3x and 2.5x respectively.

Confocal microscopy imaging

For imaging the thick cleared specimens such as dissected tissues, pieces of organs or whole organs were placed on 35 mm glass

bottom Petri dishes (MatTek, P35G-0-14-C), then the samples were covered with one or two drops of the refractive index matching

solution such as BABB or BABB-D4. Sealing of this mounting chamber was not necessary. The samples were imaged with an in-

verted laser-scanning confocal microscopy system (Zeiss, LSM 880) using a 40x oil immersion lens (Zeiss, EC Plan-Neofluar
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40x/1.30 Oil DIC M27) and a 25x water immersion long-working distance objective lens (Leica, NA 0.95, WD = 2.5 mm), the latter one

was mounted on a custom mounting thread. The z-step size was 1-2.5 mm. For imaging the lung tissue sections with Lectin staining,

with nanobodies or with Anti-Firefly Luciferase staining, the slides were imaged with the same inverted laser-scanning confocal mi-

croscopy system with a z-step size of 2 mm.

Reconstructions of full-body scans

For epifluorescence microscopy reconstructions (2D montage of entire mouse), the collected images were stitched semi-automat-

ically using Adobe Photoshop photomerge function. After saving the stitched images as TIFF or JPEG files, the signal from individual

imaging channels can be extracted by using Split Channels function in ImageJ.

For light-sheet microscopy reconstructions (3D montage of entire mouse), the image stacks were acquired and saved by

ImSpector (LaVision BioTec GmbH) as 16-bit grayscale TIFF images for each channel separately. The stacks were first stitched

with Fiji (ImageJ2) and fused together with Vision4D (Arivis AG). For details, see also the step-by-step handbook (Methods S1).

Further image processing was done mostly in Fiji: first, the autofluorescence channel (imaged in 488 excitation) was equalized for

a general outline of the mouse body. The organs were segmented manually by defining the regions of interests (ROIs). Data visual-

ization was done with Amira (FEI Visualization Sciences Group), Imaris (Bitplane AG), Vision4D in both volumetric and maximum in-

tensity projection color mapping.

QUANTIFICATION AND STATISTICAL ANALYSIS

General data processing
All data processing after image volume reconstruction was performed in Python using custom scripts based on publicly available

standard packages comprising SciPy (Jones et al., 2001), Seaborn (Waskom, 2012), and Pandas (McKinney, 2008). Deep Learning

models were built using the PyTorch framework (Paszke, 2016). Since a single full body scan is in the order of several terabytes due to

its high resolution (the data used for training had a voxel size of (10mm)3), the volumewas divided into 1176 subvolumes of (350px)3 (or

(3.5mm)3) to enable efficient processing. Subvolumeswere overlapping by 50px to ensure any givenmetastasis is fully captured by at

least one subvolume to avoid artifacts of divided metastases at subvolume interfaces. Please note that the size and overlap of

subvolumes are design choices that allow easy adaptation to different datasets, e.g., with different SNR, metastasis sizes, or spatial

resolution of the scan. Final analyses were conducted on the re-assembled full volume whereby reconcatenation ruled out any dou-

ble-counting at previously overlapping subvolumes.

Data annotation by human experts
To provide ground truth in the form of a commonly agreed upon reference annotation for training, as well as for evaluation of the al-

gorithms developed, full body scans of twomice (withMDA-MB-231 tumor cells transplanted in themammary fat pad) weremanually

annotated by a group of human experts. This manual process was augmented with a set of tools to reduce the total workload from an

estimated total duration of several months down to 150 person-hours net annotation time.

Automatic annotation with fixed filter kernel
To avoid starting from scratch to annotate two volumes of several thousand z-slices, an automatic detection and segmentation

method was applied to provide a basis for manual correction. Due to the insufficient performance of established methods (in this

case: the 3D Object Detector for ImageJ; Bolte and Cordelières, 2006), we developed a custom-made filter based detector tailored

to the specifics of this dataset. In brief, we handcrafted a spatial filter kernel optimized to detect the most common metastases and

applied it with 3D convolutions to the dataset; subsequent binarization and connected-component analysis yielded seed points collo-

cated with metastases. This allowed for further analyses of the immediate local neighborhood of these candidate regions; a local 3D

segmentation was derived by selective region growing around these seed points based on the local signal intensity distribution up to

a mean foreground signal limited to 4 standard deviations above the mean signal in the local surrounding. Finally, obvious false pos-

itives were filtered out. Together, this approach generated a first proposal for the data annotation that at least captured the most

obviousmetastases while producing an acceptable rate of false positives. As shown in the results section, the quality of this proposal

was about twice as good as compared to the 3D Object Detector in ImageJ (35% instead of 18% in F1-score). Importantly, further

fine-tuning of filters and parameters and any additional automated pre- or post-processing did not improve the results, indicating that

a F1-score of 35%may be close to the performance limit of such approaches with fixed filter kernels and fixed decision rules for such

kind of data.

Manual annotation correction by human experts
This first proposal served as a basis for human annotation. In general, three kinds of manual correction were needed to derive a good

annotation: removal of false positives, addition of false negatives (previously missed metastases) and adjustment of the 3D segmen-

tation of eachmetastasis. To avoid the need to perform this task individually for each of the 350 layers of a (350px)3 data subvolume, a

custom tool with an interactive graphical user interface was developed. Based on maximum intensity projections along each dimen-

sion, the tool allowed to review, adjust, add, and remove each potential metastasis in the subvolume with a few mouse clicks,
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drastically speeding up the annotation process from hours to minutes per subvolume. Different perspectives (X, Y, Z) and viewing

modes (e.g., projections, orthogonal slices, adjusted contrasts, 3D renderings) for each individual metastasis allowed the annotator

to take maximally informed decisions even in less obvious cases.

Refinement of annotation to ground truth
A small fraction (3%) of the entire dataset was labeled several times by the annotators without their awareness to assess human la-

beling consistency. Since the difference in annotation for a given subvolume between two trials of a single annotator was about as big

as between two independent annotators and quite substantial (the agreement between two trials of the same annotator or between

annotators only reached an F1-score of 80%–85%) we decided to invest additional time to refine the entire dataset. First, all experts

(3 graduate students with extensive experience in the field of imaging and tumor biology) jointly discussed examples of annotation

differences to build a common understanding. Annotations of subvolumes with the biggest discrepancies were again reviewed and

refined. Furthermore, this analysis revealed that themost prevalent source of annotation error was overlookedmetastases (false neg-

atives). Here, around 29% of metastases were missed in the human annotation, in line with previous studies (Ehteshami Bejnordi

et al., 2017; Vestjens et al., 2012). To effectively identify all missed metastases in the entire dataset, our deep learning algorithm

(see next section) was trained on the status quo of the annotations and applied to the dataset with high sensitivity. This yielded a

long list of potential candidates. With the help of another custom-built, interactive graphical user interface, all potential candidates

were manually reviewed by the annotators and either discarded or manually adjusted and added to the segmentation (this is the

manual refinement step referred to in Figures 3D and 3E). A small set of potential metastases, for which human annotators could

not take a conclusive decision even after joint discussion, was recorded separately, but not added to the segmentation. These labo-

rious steps ensured the generation of a high-quality ground truth for training the algorithm and, importantly, for evaluating its perfor-

mance in comparison to a single human annotator. Here, this selectively iterative approach of refining annotations based on the input

of several human experts was chosen due to the substantial amount of manual work involved with reviewing our high-resolution

scans. Since a full review of one person takes about a month of full-time work, repeating this process several times would be desir-

able but too costly. In applications where several, independent full annotations are available, advancedmathematical frameworks for

refining decisions from different experts to a single decision can be applied in order to avoid a bias toward individual decisions (Ma-

vandadi et al., 2012a, 2012b).

Deep learning for metastasis detection
Implementation of DeepMACT model architecture

Inspired by the established U-net architecture (Ronneberger et al., 2015), we designed a deep learning approach that is depicted in

Figure 3A and briefly described in the results section. The architecture of the CNN at its core (Figure 3C) is characterized by an en-

coding downward path and a decoding upward path comprising a total of 7 levels, in which each level also has a lateral skip-connec-

tion that bypasses the deeper levels and feeds the output of the encoding unit directly to the corresponding decoding unit. Each

encoding unit increases the number of feature channels per pixel with the help of two kernel-based convolutions (kernel size: 3;

padding: 1; dilation: 1; stride: 1) followed by batch normalization and a rectifying linear unit (ReLU). While the first convolutional

step increases the number of feature channels, this number stays constant for the second convolutional step. Before being passed

on to the next encoding stage, the spatial resolution is halved using max-pooling (kernel size: 2, stride: 2). Decoding units take two

inputs: the output from the previous layer is spatially upsampled by a factor of two (bilinearly) and concatenated along the feature

dimension with the output of the corresponding encoding unit, bypassing the deeper levels. A first convolutional step (same param-

eters as before) decreases the number of feature channels, which is again kept constant in the two subsequent convolutions. The

24-feature channel output of the last decoder is mapped to logits in the 2D space with a convolutional step without padding, batch

normalization, or a rectifying linear unit.

Implementations of customized 3D U-net

To compare the DeepMACT approach with CNNs that operate on volumetric data with 3D convolutions, we implemented several

customized versions of 3D U-nets (Çiçek et al., 2016). In this alternative approach, the volumetric data is directly fed to the network

(instead of projections) to predict a 3D probability volume (without reconstruction from 2D predictions). While following the overall

architectural approach of the DeepMACT implementation, we replaced 2D with 3D convolutional operators. We implemented a va-

riety of derivations by changing the total number of levels of en- and decoding units and thus, the maximum number of feature chan-

nels, which both drivemodel complexity in terms of number of parameters. The best-performing implementation consisted of 3 levels

of en- and decoding units with a maximum number of feature channels of 48; the corresponding performance values are reported in

Figures 3D and 3E (leaner or more complex models yielded comparable or lower performance). All other parameters and procedures

(e.g., for training and testing) are identical to the DeepMACT implementation.

Training, validation, and test sets

Following established standards, model training and evaluation was based on k-fold cross-validation (k = 5). Thus, the annotated

dataset was split into mutually exclusive sets for training and validation (80%) and for testing (20%). This process was repeated

k times, yielding a total of 5 mutually exclusive test sets that are collectively exhaustive. The network weights and all design choices

and hyperparameters (such as batch size, learning rate, etc) were optimized solely with the training and validation set to avoid
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overfitting on the specifics of the test set. The dataset was confined to subvolumeswithin the torso of themouse body as subvolumes

containing near-zero values outside the body contain no useful information to train or test on. In contrast to all metastases in the entire

body, the tumor tissues of the primary tumor and the auxiliary lymph node are several orders of magnitude larger (i.e., they follow very

different statistics than all micrometastases) and were thus excluded. The signal from one subvolumewas corrupted by a dirt particle

and thus also excluded. In total, these exclusionsmade up less than 1%of the total scan volume. The split between the three subsets

(training, validation, testing) of the data was done on a subvolume level (from which the three projections are created afterward) to

avoid information leak between different projections from the same subvolume.

Training procedure

The model training was conducted in two steps. First, a large number of models spanning a broad set of different hyperparameters

were trained for 10 epochs using another (nested) k-fold cross-validation (k = 5) within the training and validation set. Second, the

model with the best-performing set of hyperparameters (presented here) was trained for the remaining epochs. Thus, any hyperpara-

meter choice wasmade without looking at the performance on the test set. Themodel was trained for 40 epochs of the entire training

dataset, using random vertical and horizontal flips of the data to augment its variance (further training epochs did not improve the

predictive power). We used a batch size B of 4 but found that other batch sizes work similarly well. Each input was normalized by

its local subvolume peak value, which was found to work better than normalization to the global volume peak value or non-linear nor-

malizations. To calculate the gradients for network weight optimization (i.e., to train the model), we used weighted binary cross en-

tropy as a loss function for a given prediction bY compared to the ground truth Y, giving more weight w for foreground (FG) pixels p

versus background pixels (BG) to account for the class imbalance (i.e., that metastases are very sparsely distributed in space):
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A small numerical offset ε = 10�4was applied for numerical stabilit
y. We found equal weights or a slightly stronger bias to foreground

to work almost equally well (here, we used wFG = 2 and wBG = 0.5), larger biases had negative effects. Additionally, we allowed the

network to optimize the share of training data that contains at least some foreground by ignoring parts of training data in which no

foreground is present. A share of 90% training data with at least some foreground optimized the performance on the validation set

and was thus chosen. The network was trained using the Adam optimizer (Kingma and Ba, 2014); the initial learning rate was set to

10�4 andwas gradually decreased by a factor of 10 to aminimumof 10�7 every time the loss function reached a plateau formore than

2 epochs. A single training run over 40 epochs takes only around 20-30 minutes on a normal workstation equipped with a NVIDIA

Titan XP GPU.

Testing procedure and inference mode

As mentioned before, we applied k-fold cross-validation. Thus, in each of the k = 5 folds the model was tested on fresh data that was

not seen by the model during training and validation. Together, all 5 sets span the entire annotated dataset. As depicted in Figure 3A,

the trained algorithm in inference mode was used to generate probability masks for each of the three projection perspectives (PXY,

PYZ, PZX), in which the pixel value indicates the network’s confidence that this pixel is part of a metastasis in the given sub-volume s.

Building the outer product of the three probability masks allows to recombine the three judgements of the network in 3D space:

PV ;s ˛ ½0; 1�3 =
�
PXY ;s ˛½0; 1�25PYZ;s ˛½0;1�25PZX;s ˛½0;1�2

�1 =

3

This 3D recombination PV of the 2D probability maps yields a fin
al predicted segmentation mask after binarization. By default, the

confidence threshold was set to 50%; however, changing this parameter allows to manually adjust the trade-off between sensitivity

and specificity, if desired (also see Figure S4). Please note that the F1-score for evaluation is not affected by this trade-off (i.e., a bet-

ter detection rate at the cost of a higher false positive rate would not artificially increase the F1-score and vice versa). Subsequent

connected-component analysis converts the output to an explicit list and segmentation of predicted metastases in 3D space.

Importantly, DeepMACT did not have to be re-trained to be applied to the full body scans (n = 7) obtained for other tumor models

(intracardially injected MDA-MB-231 breast cancer cells, MCF-7 breast cancer cells, R254 pancreatic cancer cells, H2030 lung can-

cer cells). Thus, the metastasis distribution for these scans could be readily inferred within minutes without further training data

annotation.

Performance evaluation

The same performance evaluation procedure was used for the comparison shown in Figure 3D, including the performance of a single

human annotator. A standard test for detection tasks, the F1 score quantifies the accuracy of a model by combining precision (share

of true positives among all positive predictions, including false positives) and recall (share of predicted positives among the sumof the

true positive and false negative predictions). It is mathematically equivalent to the Sørensen–Dice coefficient (‘‘Dice score’’), which is

the commonly used name for pixel-wise image segmentation. The F1 score is defined as:

F1= 2$
precision$recall

precision+ recall
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For all comparisons of detection and segmentation performance
, the ground truth (refined by several human experts as described

above) is used as a reference. We quantified the performance of the proposed deep learning algorithm based on its prediction of the

test set. For a comparison, the segmentations as provided by established tools like the 3D Object Detector in ImageJ, our custom-

made detector as described above, as well as the annotation as provided by a single human annotator (before joint refinement) were

quantified in the same manner. Overlapping segmentations for metastases were counted as true positive predictions, non-overlap-

ping predictions as false positives and metastases not detected by the prediction as false negatives. Predictions corresponding to

the small set of cases unclear to the group of human experts (see above) were neither counted as true positive predictions nor as false

negatives, i.e., they neither increased nor decreased the performance evaluation. All performance evaluations were conducted on

the entirety of the test set as a whole. To quantify the inherent variance, the distribution of performance results was estimated

with n = 1000 resampled test sets (of same size) using the bootstrapping approach. The correctness of the exact three-dimensional

outline of each metastasis (segmentation) was verified by assessing the volumetric overlap with the three-dimensional outline drawn

by human annotators. This confirmed an overlap accuracy in 3D of 90% for the worst segmentation; importantly, 90% of all detected

metastases were segmented with an accuracy of 97.5% or higher.

Analysis of individual metastases
Organ registration

For the full body scale light-sheet scans (e.g., Figures 4C, 4F, and 5) the outlines of selected organs of interest (all lung lobes, brain,

both kidneys, heart, liver) were manually segmented as multi-point polygons in a stack of slices in 3D using Fiji. For each metastasis

detected by our deep learning architecture we assessed whether its center of mass falls into the 3D segmentation of one of those

organs using a custom Python script. Any metastasis not registered to one of these organs is referred to as located in ‘‘the rest of

the torso’’ in thismanuscript. The 3D segmentation of the lungswas also used to compute the overall lung volume to assess the tumor

density in Figure 4J, which we quantified as the share of the sum of the volume of all metastases registered to an organ of the entire

organ volume.

Metastasis characterization

The output of our deep learning architecture is a binary segmentation volume for all metastases. We applied connected component

analysis to derive an explicit list of metastases fully characterized in 3D. Based on each metastasis 3D shape and voxel-based

volume V, we computed its average diameter as

davg = 2

ffiffiffiffiffiffi
3V

4p

3

r

In order to put the metastasis size into context, we computed a
n estimate of the number of cells per metastasis. To this end, we

measured the diameter of single cells and estimated the number of cells for a given metastasis volume based on volumetric extrap-

olation. We confirmed the accuracy of the estimations by the number of nuclei (PI or Hoechst labeled) in n = 26 samples. On average,

the estimates were off by 3.5 cells (10.3%). For 73% of all samples checked, the estimates were off by less than 20%; the worst es-

timate was 35% off the actual count (39 instead of 60 cells). The estimated numbers may include other cell types present in the me-

tastases apart from tumor cells, e.g., immune cells, vascular cells and fibroblasts. Given that metastasis sizes in full body scans can

vary by orders of magnitude (see Figure 4H) this estimation accuracy was deemed sufficient to derive insightful conclusions from cell

count estimates.

The distance of each metastasis i to its nearest neighboring metastasis was measured in 3D space as the Euclidian distance be-

tween their center of masses CoM:

distNNi = min
j
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Drug targeting analysis

We assessed the 6A10 antibody targeting of a given metastasis by analyzing the distribution of the fluorescent signal strength within

the 3D segmentation of each metastasis (xm) versus the distribution in its local surrounding (250 mm around the metastasis) xs. For

each signal distribution, the number of voxels within the metastasis segmentation nm or in its local surrounding ns can be seen as the

number of observations of the underlying true (but unknown) distributions. The degree of targeting was estimated by quantifying the

ratio of mean signal strength within the segmentation to themean signal strength in its surrounding (e.g., in Figure 6K). We refer to this

as antibody signal ratio. A ratio larger than 1 means that the antibody signal strength within the 3D segmentation of the metastasis is

higher than around it (see dashed line in Figure 6K). Whether or not ametastasis was deemed ‘‘targeted’’ was assessedwith a version

of the t test to determine whethermean of the observed signal distribution in themetastasis xmwas significantly at leastD = 50% (ratio

of 1.5) above themean of the observed signal distribution in the local surrounding xs. Importantly, a t test is valid for the signals despite

their highly non-normal underlying distribution as the number of observations far exceeds the requirements of the central limit the-

orem (i.e., while the signals are not normally distributed, the estimation of their means is normally distributed due the high number of

observations). This was verifiedmanually. However, due to a typically much larger number of observations in the local surrounding xs
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than for the metastasis itself xm, the statistical test was not performed with a Student’s t test but with theWelch’s t test that corrects

the degrees of freedom for an unequal number of observations for both distributions:

t =
meanðxmÞ � ð1+DÞmeanðxsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

stdðxmÞ2
nm

+ stdðxsÞ2
ns

q

DFadjusted =

 
stdðxmÞ2

nm

+
stdðxsÞ2

ns

!2,�
stdðxmÞ2

nm

�2
nm � 1

+

�
stdðxsÞ2

ns

�2
ns � 1

Analysis of fluorescence signal profiles

We considered the fluorescence signal profiles from each channel: excitation 470 nm, 561 nm and 647 nm. These profiles were

plotted in the same z stack and normalized as percentage over the maximum peak. To compare the reduction of the background

and the improvement of the signal over background ratio (SBR) in far-red and near far-red channels, we analyzed lung metastases

expressing mCherry imaged with excitation 545/561 nm after uDISCO clearing, lung metastases labeled with anti-mCherry nano-

body conjugated with Atto594 imaged with excitation 590 nm and lung metastases labeled with anti-mCherry nanobody conjugated

with Atto647N imaged with excitation 640 nm after vDISCO clearing (n = 3 tumors per each experimental group which consisted of 3

animals per each imaging modality). The signal profile was measured from a defined straight line covering the tumors and surround-

ing tissue background and all the values of the plot from a representative animal per each experimental group were shown in a repre-

sentative line chart (Figure S1D). Finally, the normalized plots represented in Figure S1E were calculated by normalizing the plots of

lung metastases obtained as described above over the average signal intensity of the respective surrounding background.

To compare the signal-to-background ratio (SBR) in Figures S6C and S6D, the samples were labeled with anti-mCherry nanobody

conjugated with Atto647N and primary tumors were imaged with excitation 470 nm, 561 nm and 640 nm respectively after vDISCO

clearing. Fluorescence signal intensity profiles and background normalized profiles for each channel were plotted with the same

strategy as described above.

Metastasis diameter and vessel distance

Metastasis diameters were verifiedmanually. For quantifying the distance betweenmetastases and vessels, ten points on the border

of each metastasis were randomly selected and the shortest distance from these points to the closest vessel wall were measured.

The presented distance between each metastasis and nearest vessels was quantified by averaging these ten measurements. In Fig-

ure 7B, 50 metastases were quantified to generate the scatterplot; each scatter point represents one single metastasis.

DATA AND CODE AVAILABILITY

The lab protocol as well as the algorithms and data for the DeepMACT pipeline are freely available and have been deposited to http://

discotechnologies.org/DeepMACT/. For convenience, this includes a fully functional demonstration script (including data).

ADDITIONAL RESOURCES

Fully functional online demo of DeepMACT: https://codeocean.com/capsule/8c13691f-7f9a-4af4-8522-c26f581c9e83/tree?

ID=a8ba18d2bf5046b08fafe2d6a42bfd7a

Further details on the vDISCO protocol: http://discotechnologies.org/vDISCO/

Registration for in-person workshops: http://discotechnologies.org/workshop/

Videos on tissue clearing: https://www.youtube.com/channel/UCAVXKhQ_ZjEdkAdFR5HwjrQ
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Figure S1. vDISCO Nanobody Enhancement of the Fluorescent Signal of Cancer Cells, Related to Figure 2

(A-C) Representative light-sheet images of mCherry expressing tumor metastases in the lungs of cleared mice that were not enhanced with nanobodies (A),

metastases treated with an anti-mCherry nanobody conjugated to Atto594 (B) or an anti-mCherry nanobody conjugated to Atto647N (C).

(D) Plots of signal intensity profiles along the yellow lines in panels A-C: non-enhanced mCherry (orange), mCherry enhanced with Atto594 (magenta) or mCherry

enhanced with Atto647N (cyan) (n = 3 representative metastases).

(E) Intensity profiles of the fluorescence signal in (D) normalized over the background.

(F-I) 3D light-sheet examples of deep-tissue imaging of Atto647N-enhanced tumormetastases in transparentmice after vDISCO. Tumormicrometastases can be

detected (yellow arrowheads) which are located several millimeters deep in the brain (F), liver (G), kidney (H) and spinal cord (I) respectively.

(J-L) Examples of micrometastases detected in bone marrow (J), ovary (K) and muscle (L). Note that all the micrometastases shown in G-L were imaged with a

1.1x objective from the MDA-MB-231 tumor model (intracardial injections), except the bone marrow metastasis in (J), which was from the MCF-7 tumor model.



Figure S2. Confirmation of the Specificity of Nanobody-Enhanced Staining inMice BearingmCherry-Expressing Tumors, Related to Figure 2

(A) Comparison between an animal bearing an mCherry expressing tumor and a C57BL/6N control animal, which were both enhanced with an anti-mCherry

nanobody conjugated to Atto647N (magenta) and imaged by light-sheet microscopy. No signal is detected in organs from the C57BL/6N control. Note that the

background is enhanced to demonstrate the absence of signal in the high-magnification images.

(B) Confocal images of metastatic lung tissue immunolabeled with an anti-firefly luciferase antibody (green) after rehydration of the cleared tissue; Atto647N-

enhanced cancer cells and cell nuclei are shown in magenta and gray, respectively.

(C) Confocal images of a metastasis in the lung of an animal labeled with an anti-mCherry nanobody conjugated to Atto647N. The enhancing nanobody is shown

in magenta, mCherry is shown in green and cell nuclei are shown in blue indicating that nanobody-enhancement specifically detects mCherry.



Figure S3. Examples of Tumor Metastasis Detection in Mice Using Bioluminescence Imaging versus vDISCO and Epifluorescence Micro-

scopy, Related to Figure 2

Mice were transplanted in the mammary fat pad with mCherry and firefly luciferase expressing MDA-MB-231 cells and imaged with bioluminescence followed by

vDISCO clearing and epifluorescence imaging.

(A-D) We found that bioluminescence imaging with normal exposure is not sufficiently sensitive to detect all the metastases in low tumor load mice. For example,

the mice in (A and B) and (C and D) had very similar bioluminescence images with normal exposure. Applying vDISCO to these mice, we found no tumor me-

tastases in one case (A and B) and a large metastasis (red arrowhead) in axillary lymph nodes (A.L.N. metastasis) (C and D) using a fluorescence stereo mi-

croscope. Although the signal from the primary tumor is strong in both normal and high exposure bioluminescence images (A and C, yellow box), metastases in

lungs (A and C, red boxes) are not visible, but are detected by epifluorescence imaging (D, yellow arrowhead). In epifluorescence images, the tumors (A647N-

labeled) are shown in magenta and the background, scanned in 488 nm, is shown in green.

(E-H) In mice with high tumor load, a bulk heatmap of metastatic distribution can be obtained by bioluminescence imaging, without detailed shape and size

information. In contrast, vDISCO resolved single micrometastases in whole mouse bodies even with a fluorescence stereo microscope. Especially in the lungs,

even micrometastases with a diameter smaller than 100 mm could be resolved in intact mice (F, yellow arrowhead).



Figure S4. Performance of DeepMACT, Related to Figure 3

(A-C) Visualization of the computational stages of DeepMACT for three different regions. (A) DeepMACT is capable of identifying very low signal peaks but

correctly disregards them at the 3D reconstruction stage; the inset shows the region in the white box with a 10-fold increased brightness. (B) While most me-

tastases are correctly identified, few small and dim metastases may be obscured by background structures from some perspectives and consequently be

removed at the 3D reconstruction stage (red arrow) (C) In many cases, even a single 2D probability map may already be sufficient for a correct prediction.

(D-F) Examples of metastases that were missed by human annotators but found by DeepMACT (yellow arrows). (E and F) show higher magnifications of the

regions in the green and yellow boxes in (D), respectively (regions cropped in 3D); the brightness of (E and F) was increased by 200% compared to (D).

(legend continued on next page)



(G-I) Example of false positive predictions byDeepMACT. The image in (I) shows the same region as in (H) but in the autofluorescence channel (excitation: 488 nm)

to confirm that the signal peak in (H) is not caused by metastatic tissue. The region in (H and I) was cropped in 3D.

(J) DeepMACT performance as a function of model confidence threshold (default: 50%) compared to a single human annotator. While the DeepMACT F1 score

peaks around a model confidence threshold of 40%–50%, the threshold can be adjusted to increase recall or precision.



Figure S5. Bioluminescence Imaging of Different Cancer Models, Related to Figure 5

(A) Bioluminescence images with normal and long exposure from ventral and dorsal views of a mouse collected 21 days after intracardial (i.c.) injection of MCF-7

ER positive breast cancer cells.

(B) Bioluminescence images of a mouse collected 10 days after intracardial injection of H2030-BrM3 lung cancer cells.

(C) Bioluminescence images of a mouse collected 14 days after pancreatic injection of R254 cancer cells. Note that the C57BL/6 mouse line used in this model

has black fur and therefore a different appearance in overlaid photographic/bioluminescence images compared to the other mouse strains.

(D-F) Bioluminescence images of the time-course experiments shown in Figure 5. Themicewere intracardially injectedwithMDA-MB-231 breast cancer cells and

sacrificed 2 days, 6 days and 14 days post injection, respectively.



Figure S6. Elimination of Endogenously Expressed mCherry Signal from Tumors after vDISCO, Related to Figure 6

(A) Tumor metastases in lungs from a mouse transplanted with MDA-MB-231 cells in the mammary fat pad were imaged with a fluorescence stereomicroscope

before and after vDISCO clearing, showing that the endogenously expressed mCherry signal was eliminated after the THF and BABB incubation steps.

(B) Light-sheet microscopy images of primary tumor with background fluorescence imaged in the green channel (ex: 470 nm, left), mCherry signal in the red

channel (ex: 561 nm, middle), and the enhanced mCherry signal (Atto647N) in the far-red channel (ex: 640, right) after vDISCO clearing.

(C) Signal intensity profiles along the yellow lines in panel B were plotted: Channel 470 (orange), Channel 561 (magenta) and Channel 640 (cyan) (n = 3 mice).

(D) Normalized fluorescence signal profiles of the data in (C), showing that the endogenous mCherry signal was depleted to background levels after vDISCO

clearing.



Figure S7. Verification of Antibody Targeting in Different Organs by Confocal Microscopy, Related to Figure 6

(A-F) Confocal images of metastases in the lung (A-C) and kidney (D-F) of a mouse transplanted with MDA-MB-231 cells (labeled with an anti-mCherry nanobody

conjugated to Atto647N, magenta) and treated with therapeutic antibody 6A10 conjugated to Alexa568 (cyan). Examples of the colocalization of metastatic cells

with the 6A10 antibody are indicated with yellow arrowheads (C and F).
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