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Using animal models or healthy volunteers, injection of lipo- 
polysaccharide (LPS) or  bacteria causes activation of macro- 
phages with excessive  synthesis  and secretion of proin- 
flammatory cytokines. Although these  models mimic the 
effects  of LPS in the host, they may represent more of an 
experimental expression  of  endotoxemia than natural infec- 
tion itself. Therefore,  as an ex vivo model of sepsis, whole 
blood  from 15 patients with severe  sepsis and 20 control 
patients without infection was stimulated with LPS to study 
the kinetics of mRNA expression  and  release  of proinflam- 
matory cytokines, tumor necrosis factor (TNF)-a, interleukin 
(lL)-l& and 11-6. Stimulation of whole  blood with 1 pg/mL 
LPS resulted in a maximum increase  of cytokine secretion 
in the  control group, while a  marked ( P  < .01) depression 
of TNF-a, IL-la, and IL-6  release was observed in the septic 
group, which persisted up to 10 days after study enrollment. 

ROINFLAMMATORY  cytokines  such  as  tumor necro- 
sis  factor-a  (TNF-a),  interleukin-lP  (IL-lP),  and  in- 

terleukin-6  (IL-6)  have  been  implicated  as principal  media- 
tors  during endot~xemia."~ Infusion of high  doses of  these 
mediators  results in severe tissue damage,  organ  failure,  and 
death.4-8 Experimental  studies using  polyclonal/monoclonal 
antibodies  against inflammatory cytokines  further  support 
the pivotal role of these proinflammatory cytokines in  bacter- 
emia  and septicemia?-12 Although  these  experimental  models 
of bacteremia  and  endotoxemia  elucidate  the  kinetics  and 
interactions of cytokine  appearance  in  blood, natural  infec- 
tion that persists over  several  days  or  weeks,  may  be differ- 
ent.  Experimental  models  fail  to precisely  reflect the patho- 
physiologic  alterations  that  occur  during natural infection, 
such  as repeated contact of macrophages  with  endotoxin,  as 
well as  downregulatory  mechanisms of cytokine synthesis. 
Finally,  because of the  short  half-life of TNF-a,I3  IL-lP,'4 
and IL-6I5  with a rapid  disappearance,  measurements of cy- 
tokine  blood  levels  in  septic  patients  do not  allow precise 
studies of cytokine  synthesis  and secretion in vivo. This  may 
explain  the  discrepancies of previous reports describing  the 
incidence  and kinetics of cytokine  blood  levels in patients 
with  severe sepsis.'6'2' 

Little  is  known  about  the  capacity of  peripheral blood 
mononuclear  cells  (PBMCs)  to  release proinflammatory cy- 
tokines under septic  conditions,  though  PBMCs  have a rapid 
and  intense  contact  to bacteria andor  endotoxin.  Therefore, 
it  was  the  objective of  this study  to  investigate  the influence 
of natural  infection  on  the  capacity of PBMCs in whole 
blood to  synthesize  and  secrete proinflammatory  cytokines. 
To reduce the confounding  factors  associated  with isolation 
of monocytes,  such  as  adherence  induced  expression of cell- 
surface  TNF  or TNF-mRNA?' LPS-stimulated  whole  blood 
as  an  ex  vivo  model of sepsis  was used  in  this  study. Al- 
though this ex  vivo  system  cannot accurately depict inflam- 
matory  processes  in  the  whole  body,  it  provides a window 
to  observe  kinetics of cytokine  mRNA  expression, protein 
synthesis,  and  release by PBMCs after  stimulation  with LPS 
and  may  have  considerable  relevance with respect  to local 
compartmentalized  cytokine production. 
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While IL-1p mRNA expression was similar in peripheral 
blood mononuclear  cells (PBMCs) harvested from LPS-stim- 
ulated whole blood in septic  and control patients, the half- 
life and  consequently the expression  of  TNF-a  and IL-6 
mRNA were strongly reduced in the septic  group.  These  data 
indicate a downregulatory mechanism  of cytokine release 
in whole blood  from patients with severe  sepsis that occurs 
on different levels. Although excessive secretion of proin- 
flammatory cytokines has  been  considered  deleterious for 
the host, the reduced  capacity of PBMCs in whole blood from 
septic patients to synthesize  and  secrete proinflammatory 
cytokines to an inflammatory stimulus may result in imrnu- 
nodeficiency,  because  these cytokines in low concentrations 
are involved in the upregulation of  essential  cellular  and 
humoral immune functions. 
0 1995 by The American  Society of Hematoiogy. 

MATERIALS AND METHODS 

Patient  selection. Patients  eligible  for  this  study  were  those with 
sepsis  syndrome  or  septic  Sepsis  syndrome  was  defined by 
fever or hypothermia  (temperature >38.3"C or <35.6"C), tachycar- 
dia (>90 beats per minute in the  absence  of beta-blockade), and 
tachypnea  (respiratory  rate >20 breaths  per  minute or the  require- 
ment  of  mechanical ventilation) and  by clinical  signs of  altered  organ 
perfusion  resulting  in  mental  disorientation,  oliguria,  or  elevated 
lactate levels.  Septic  shock  was  defined by clinical  diagnosis of 
sepsis  syndrome  plus  hypotension  (systolic  blood  pressure  below 90 
mm Hg or a 40 mm Hg decrease  below  baseline  systolic  blood 
pressure) or the  use of vasopressor  drugs to maintain  blood  pressure. 

Fifteen  patients  who  fulfilled  these  criteria  were  enrolled  in  this 
study. Of these, 8 patients  met  the  criteria  for  sepsis  syndrome  and 
7 for  septic  shock.  Seven  patients (47%) died  during  the  observation 
period  of 10 days  because  of sepsis  induced  multiple-organ  failure. 
The  source of infection  included  pneumonia (n = 7), peritonitis (n 
= 5) ,  pleura  empyema (n = 2), and  osteomyelitis (n = 1). The 
isolated  microorganisms  were  gram-negative  bacilli in 6 cases,  gram- 
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positive bacteria in 3 cases, mixed populations in 5 cases, and  fungi 
in 1 case. 

Control patients (n = 20) who were admitted to our hospital for 
hernia repair or cholecystectomy were comparable to the septic 
group with regard to age and sex. 

Collection of blood. Blood from septic patients was collected 
on day of enrollment (D 0) and on day (D) 1, 2, 3, 5 ,  7, and 10 
thereafter. Blood from control patients was obtained once preopera- 
tively to exclude any influence of stress, anesthesia, and surgical 
trauma. 

Blood was drawn into heparinized syringes (20 U  heparinlml; 
heparin was  tested for endotoxin: 4 pg endotoxidml heparin). 
Aliquots of 5 mL  blood  were  placed  in sterile polypropylene tubes 
(Falcon; Becton Dickinson, Lincoln Park, NJ). One sample was 
processed immediately as described below  to serve as the baseline 
value. For each blood sample, total and differential white blood cell 
counts were obtained using a Coulter Counter (Coulter Corp. Hia- 
leah, FL). The other blood samples were innoculated with 1 pg/mL 
or 1 ng/mL lipopolysaccharide (LPS; Escherichia coli 055:B5; Difco 
Labs  Inc, Detroit, MI). The LPS-concentrations of 1 pg/mL induces 
a maximum synthesis and release of proinflammatory cytokines (Er- 
tel  et al. unpublished observations, June 1992), while the LPS-dose 
of 1 n g h L  reflects an LPS concentration detected during clinical 
infe~t ion.~~. '~  The blood containing tubes were placed on a rotator 
in a 5% CO,-atmosphere at  37°C. Control blood samples without 
LPS were handled similarly. At l ,  2, 4, 8, and 24 hours following 
incubation, the samples were removed and immediately processed. 
Each aliquot was centrifuged over a Ficoll-Hypaque density gradient 
(d = 1.077; Seromed, Berlin, Germany) at 6808 for 20 minutes, the 
plasma then removed, and stored immediately at -70°C until as- 
sayed. The interphase containing PBMCs was removed and  PBMCs 
were lysed for Northern blot analysis. 

The viability of PBMCs (>95%) in whole blood assays was evalu- 
ated using trypan blue exclusion and was not found to change sig- 
nificantly over the 24-hour incubation period. In addition, fluores- 
cence-activated cell sorter (FACS) analysis and blood smears did 
not show altered numbers of leukocyte subpopulations over the 24- 
hour incubation period. Oxygen levels increased by 202% without 
LPS  and by 224% in the presence of LPS during the incubation 
period of 24 hours, whereas the pH dropped by 4.9%  and 4.6%, 
respectively. No significant differences concerning viability of leu- 
kocytes, oxygenation of  whole blood, and pH levels were observed 
between the septic and  the control group. 

Cytokine assays. TNF plasma levels were measured as  pre- 
viously  described2' using the WEHI 164 subclone 13 cell line (kindly 
provided by  Dr S. Kunkel, Department of Pathology, University of 
Michigan, Ann Arbor). The detection limit of  the  assay  was 0. I U/ 
mL recombinant TNF-a." Biologic activity of TNF in plasma sam- 
ples could be completely abolished by the addition of a rabbit mono- 
clonal antihuman TNF-(Y antibody (Genzyme, Boston, MA) indicat- 
ing the specificity of the WEHI  164 cytotoxicity assay. Biologically 
active IL-6 in plasma samples was determined using the specific 
7TDI IL-6-dependent hybridoma" (kindly provided by Dr J. Van 
Snick, Ludwig Institute for Cancer Research, Brussels, Belgium) as 
described previously.*' To further confirm  that 7TD1 cells solely 
react to IL-6, a monoclonal antihuman IL-6 antibody (Genzyme) 
was added to plasma samples with peak levels of IL-6. The antibody 
completely inhibited proliferation of 7TD1 cells stimulated by 
plasma samples, thus confirming the specificity of the assay. To 
remove IL-I inhibitory factors present in plasma that interfere with 
IL-lp  measurement^,^" a chloroform extraction was performed as 
described by Cannon et al.?' Levels of IL-10 in plasma were mea- 
sured using a specific enzyme-linked immunosorbent assay (ELISA) 
with a detection limit > 15 pg/mL IL-lp.32 

The numbers of monocytes (M@/mL blood were calculated for 

each blood sample from the total and differential white  blood  cell 
count. The results of the cytokine assays were normalized to  repre- 
sent I X 10' MO/mL. 

Nnrrhern blot ana/ysi.h PBMCs  were isolated from whole blood 
using density gradient centrifugation and  lysed thereafter. Total cel- 
lular RNA  was prepared by the single step acid guanidinium thiocya- 
nate-phenol-chloroform extraction method.?'  RNA (8 to  10 pglsam- 
ple/lane) was electrophoresed through l %  agarose gels containing 
formaldehydeq4 and blotted by vacuum blotting onto nylon  mem- 
branes (Hybond-N: Amersham, Braunschweig, Germany). Hybrid- 
ization, stringency washes, and autoradiography of blots with  x-ray 
film  were performed as previously described.?' The probes  used for 
hybridization reactions were fragments of human TNF-(Y cDNA (0.8 
kb EcoRI fragment; generously provided by Genentech Inc. San 
Francisco, CA), human  IL-6 cDNA (0.44 kb BanII-Taq 1 fragment: 
kindly  provided by Toshio Hirano, Institute for Molecular and Cellu- 
lar Biology, Osaka University, Osaka, Japan), and  human L I P  
cDNA (I .5 kb Pst I fragment; a generous gift from Genetics Institute, 
Cambridge, MA), which  had  been labeled with '?P-dCTP by the 
random priming method (Megaprime DNA labeling system; Amers- 
ham). Transfer efficiency of  RNA was controlled by  an additional 
hybridization to a murine 28s rRNA  probe (obtained from I .  
Grummt, Deutsches Krebsforschungszentrm, Heidelberg, Ger- 
many). 

Transcript stubilig of TNF-(Y and IL-6 mRNA. To determine 
stability of cytokine mRNA, PBMCs from whole blood  were isolated 
after a 2-hour incubation period  with  LPS ( 1  ng/mL) followed by 
inhibition of transcription using actinomycin D ( 5  pg/mL, Sigma 
Chemical CO, St Louis, MO). At different time points (0, 0.5. I, 2. 
4, and 8 hours) thereafter, density gradient centrifugation for separa- 
tion  of PBMCs and plasma was camed out at 4°C to minimize 
degradation of  RNA during the 30-minute isolation procedure of 
PBMCs. The blots were hybridized with '?P-labeled probes as de- 
scribed above, and subjected to quantitive autoradiography by means 
of  the FUJI digital imaging system (exposition on FUJI  imaging 
plates and subsequent evaluation with a Fujix  BAS 1000 Bioimaging 
Analyzer: FUJI, Duesseldorf, Germany). 

Sratisrics. Results are presented as  mean i SEM. Data  were 
analyzed by the unpaired  Wilcoxon  rank  sum  test  with  Bonferroni 
correction for multiple comparisons. Differences were considered 
significant with P values less than .05. 

RESULTS AND DISCUSSION 

The kinetics of proinflammatory cytokine release into 
whole  blood from septic patients were studied over a 24- 
hour incubation period after stimulation with a maximum 
dose of LPS ( 1  pg/mL) and a physiologically relevant LPS 
concentration ( l  ng/mL). Although  in control patients TNF- 
a, IL- I p, and IL-6 were  not detectable at 0 hour of incuba- 
tion, cytokine levels were slightly elevated in whole blood 
from septic patients (TNF-a: 1.3 t 0.7 U/mL; range, 0 to 9 
U/mL; IL-l@: 22 t 16 pg/mL; range, 0 to 250 pg/mL; IL- 
6: I97 2 84 U/mL; range, 0 to 1347 U/mL) at time point 0 
hour (Table 1) .  Control studies without LPS did not show a 
spontaneous release of cytokines into whole  blood in any of 
the two groups during the 24-hour incubation period (data 
not shown). 

The kinetics of LPS-induced cytokine release in whole 
blood from control patients without infection are in line  with 
previous reports by DeForge et aP6 (Table I). However, the 
release of TNF-a, IL-10, and IL-6 into LPS-stimulated 
whole blood obtained from patients with severe sepsis was 
significantly decreased compared with the control group. The 
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Table 1. Kinetics of Proinflammatory Cytokine Release in Septic Patients 

TNF-a (U/rnL) 
Time 

(h)  Control Sepsis 

0 0 2 0  1.3 2 0.7 
1 98.1 2 21.2 35.6 t 11.3 
2  246.5 2 39.6 80.5 2 24.5' 
4  538.4 t 69.0 101.0 5 34.5* 
8 535.9 2 75.0 71.2 t 23.1 t 

24 170.9 2 31.6 1.0 t 0.6t 

IL- lp (ng/rnL) IL-6 ( x  lo3 U/rnL) 

Control Sepsis Control Sepsis 

0 5 0  0.1 2 0.1 
1.2 2 0.3 0.2 t 0.1 
3.4 2 0.5 0.6 2 0.2' 

31.9 2 1.7 3.9 t 0.9t 
45.0 2 2.2 3.9 t 0.8t 
44.9 2 1.3 3.8 t 0.9t 

0 2 0  0.2 2 0.1 
0.1 2 0.1 0.8 t 0.4 
5.7 t 1.7 1.5 2 0.4* 

31.4 2 5.4 4.7 2 1.2' 
90.2 2 23.1 6.2 2 1.7t 

120.0 2 28.4 9.7 2 3.9t 

Kinetics of TNF-a  (U/mL  per 1 X lo6 monocytes), IL-IP (ng/mL  per 1 X lo6 monocytes),  and IL-6 (U/mL  per 1 x lo6 monocytes) release into 
whole  blood  obtained  from septic  patients (n  = 15) on  day  of  study  enrollment  and  control  patients  (n = 20) after  stimulation  with LPS ( 1  p g l  
mL)  for 0, 1 ,  2,  4, 8, and 24 hours. 

* P < .05 sepsis  versus  control. 
t P < .01 sepsis  versus  control. 

kinetics of TNF-a,  IL-lp, and IL-6 release into whole blood 
over the 24-hour incubation period were comparable in both 
groups with a decline of TNF-a levels and a lack of IL-1P 
and IL-6 accumulation between 8 hours  and 24 hours of 
incubation. Previous have shown that proinflam- 
matory cytokine production temporally precedes the release 
of antiinflammatory mediators such as PGE2. Blocking 
cyclooxygenase can increase production of TNF-CI?'.~~ and 
IL-lp,8 suggesting that PGE2 acts as a negative-feedback 
regulator of proinflammatory cytokine release, though other 
antiinflammatory mediators can be involved. It can be specu- 
lated from these results that the mechanisms involved in 
downregulation of TNF-a release and the lack of IL-10 and 
IL-6 accumulation in the whole  blood assay between 8 hours 
and 24 hours are similar to those which  may  be responsible 
for the marked decrease of proinflammatory cytokine release 
in septic patients. 

The marked reduction of cytokine release in the septic 
group persisted during the whole observation period of 10 
days (Table 2). These data indicate that the reduced respon- 
siveness of PBMCs to adequately synthesize and secrete 
proinflammatory cytokines to an endotoxin challenge repre- 

Table 2. Cytokine Release in Septic Patients on Consecutive Days 

Time (d) TNF-a (U/rnL) 

Control  (n = 20) 
Sepsis DO (n  = 15) 

Dl (n = 14) 
D2 (n  = 14) 
D3 (n  = 13) 
D5 (n = 12) 
D7 (n  = 10) 
D10 (n = 8) 

___ 

535.9 2 75.0 
71.2 2 23.1* 
81.4 t 24.3* 
98.1 2 42.4* 

128.5 5 39.0* 
109.4 2 37.2* 
58.6 2 17.6* 

239.3 2 108.9t 

IL-lp (ng/rnL) 

45.0 t 2.2 
3.9 ? 0.8' 
4.4 2 1.0* 
5.6 t 1.7* 
8.8 t 2.4* 

11.2 2 2.6* 
8.1 f 1.5' 

11.4 2 0.7* 

IL-6 
( x  1 O3 U/rnL) 

90.2 2 23.1 
6.2 2 1.7* 
9.4 2 3.2" 
7.5 2 1.3* 
8.1 2 1.4* 

12.9 ? 1.5* 
10.4 2 3.1* 
17.3 2 5.8* 

Release of  TNF-a  (U/mL  per 1 x IO6 monoccytes), IL-14 (ng/mL  per 
1 X lo6 monocytes),  and IL-6 (U/mL  per 1 x lo6 monocytes)  into  whole 
blood  from septic  patients (n  = 15) after  stimulation  with LPS (1  pg/ 
mL)  for 8 hours. Blood  from septic  patients  was  obtained  on  consecu- 
tive  days 0 ,1 ,2 ,3 ,5 ,7 ,  and 10 after  diagnosis  of sepsis, and  compared 
with control  patients  (n = 20). 

* P < .01 sepsis  versus  control. 
t P < .05 sepsis  versus  control. 

sents a long-lasting phenomenon throughout manifest sepsis. 
Moreover, the observed significant inhibition of proinflam- 
matory cytokine release into whole  blood from septic pa- 
tients was consistent, whether cytokine levels were normal- 
ized  to 1 X IO6 leukocytes/mL, 1 X lo6 PBMCs/mL, or 1 
X 106 MO/mL. However, cytokine levels were normalized 
to 1 X lo6 MWmL, because monocytes are the primary 
source of proinflammatory cytokines after stimulation of 
whole  blood  with  LPS,'  and lymphocytes, as well as neutro- 
phils, only produce low amounts of proinflammatory cyto- 
kines. Furthermore, this excludes the possibility that the re- 
duction of cytokine release in the septic group was due to 
altered percentages of MO.  in the differential white blood 
cell counts when compared with the control group. 

It could be argued that the observed phenomenon  may  be 
related to the unphysiologically high  LPS concentration of 
1 ,ug/mL, because Wright et a14 suggested an unspecific 
activation of MOwith consecutive cytokine release in human 
whole  blood using LPS concentrations greater than 10 ng/ 
mL. Therefore, additional studies were carried out  using 
an LPS concentration of 1 ng/mL, as this dose reflects a 
physiologically relevant concentration detected in plasma 
from septic Despite using concentrations of 1 
ng/mL LPS, the release of TNF-a,  IL-lP, and IL-6 remained 
markedly decreased in the septic group compared with the 
control group (Table 3). 

To gain further insight into the mechanisms of reduced 
cytokine synthesis in LPS-stimulated whole blood from sep- 
tic patients, Northern blotting was performed. Although IL- 
lp mRNA expression was similar in  both groups, TNF-a 
and IL-6 mRNA expression were decreased in  PBMCs from 
septic patients compared with control patients (Fig 1). These 
results were validated by the fact that the total amount of 
RNA  per lane was similar for each sample and group, as 
indicated by comparable intensity of the 28s rRNA lanes of 
the two groups. To get information on regulatory mecha- 
nisms possibly involved in the suppression of TNF-a and 
IL-6 mRNA expression, stability of TNF-a and IL-6 mRNA 
was assessed. After an initial 2-hour induction period of 
TNF-a and IL-6 synthesis in whole blood cells by LPS, 
further transcription was blocked by addition of actinomycin 
D. As determined by digital densitometric analysis of  mRNA 
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Table 3. Proinflammatory Cytokine  Release Into Blood Stimulated 
With Low-Dose  LPS 

Time 

Oh l h  2 h  4 h  

TNF (U/mL) Control 0 119 326 944 
Control 0 198  399 729 
Sepsis 0 19  4 0 
Sepsis 0 37  141  122 

IL-18 (ng/mL) Control 0 0 0.4 24.4 
Control 0 0 0.3  8.1 
Sepsis 0.2 0 0  0 
Sepsis 0 0 0  0 

11-6 (U/mL) Control 0 317  6,970  11,309 
Control 0 898 3,445 5.798 
Sepsis 4  16 1,173 2,452 
Sepsis 0 0 1,590 2,740 

Kinetics  of  TNF-a (U/mL per 1 x 10' monocytes), IL-l 0 (ng/mL  per 
1 x 10' monocytes),  and 11-6 (UlmL per 1 x 10' monocytes)  release 
into whole blood from two patients with sepsis  syndrome  and two 
control  patients after stimulation with LPS (1 ng/mL)  for 0, 1, 2, and 
4 hours. 

levels at different time points after addition of actinomycin 
D, stability of both TNF-a and IL-6 mRNA was markedly 
reduced in septic patients when compared with a control 
patient without infection (Fig 2). Therefore, reduced levels 
of TNF-a and IL-6 transcripts detected in PBMCs from 
patients with severe sepsis is caused, at least in part, by a 
reduction of mRNA half-life. However, this does not exclude 
a further depression of transcriptional activity of the genes 
involved  in reduced mRNA expression in patients with se- 
vere sepsis. 

These results suggest that the defect of cytokine synthesis 
in whole blood from patients with severe sepsis occurs on 
different levels. Although  we did not perform nuclear run- 
on studies to precisely document transcript regulation, TNF- 
a and IL-6 synthesis seems to be inhibited on a transcrip- 
tional level, because the half-life of TNF-a and IL-6 mRNA 
in  PBMCs  from septic patients is markedly reduced. In con- 
trast, the significant inhibition of IL-10 secretion may be 
due to reduced synthesis of the IL-lp protein rather than 
defects in the transcription process, as the expression and 
the half-life (data not shown) of IL-10 mRNA were similar 
in both groups. 

The downregulatory mechanisms of decreased cytokine 
release in  whole  blood from septic patients remain unclear. 
There is evidence from in vitro and in vivo s t ~ d i e s * ~ ~ ' ~ '  that 
following stimulation with endotoxin, regulation of IL-l and 
TNF-a synthesis and release by PBMCs may be different, 
which  is  in line with our results. Potential mediators that 
are effective in suppressing IL-l protein synthesis without 
influencing IL-l mRNA accumulation are  PGE, and dexa- 
methasone."2." Prostaglandin E2, as well as corticosteroids, 
are increased during endoto~emia."~" In addition, both anti- 
inflammatory substances inhibit mRNA expression of TNF- 

IL-10,5° IL-13,5' or TGF-0lS2) may be involved in the sup- 
a.47.48 Moreover, antiinflammatory mediators (IL-4,49 
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pression of proinflammatory cytokine release by PBMCs 
during sepsis. Measurements of IL-4 secretion into whole 
blood excluded an inhibitory influence of IL-4  on  proin- 
flammatory cytokine release, because stimulation of  whole 
blood  with  LPS did not induce synthesis and secretion of 
IL-4 in any of the two groups (Ertel et al, manuscript in 
preparation). Though levels of soluble TNF-receptors are 
increased in blood obtained from patients with severe sep- 
sis? they may  not  be responsible for the reduced release of 
TNF-a into whole blood from septic patients. Neither, are 
they effective intracellularly, nor, are they able to neutralize 
IL-lp or IL-6. However, the profile of decreased cytokine 
synthesis and release on different levels observed in whole 
blood from septic patients is similar to observations made 
when TGF-01 was added to LPS-stimulated whole  blood 
from control  patient^.'^ This hypothesis is supported by the 
fact that sepsis results in a significant increase of  TGF-/?l 
serum levels.5s It seems unlikely that the observed phenom- 
ena are due to decreased expression of the LPS binding 
receptor CD14, reduced opsonization of LPS, or inhibition 
of LPS binding to receptors on monocyteshacrophages, be- 

time (h) 

TN F-a! 

Control Sepsis 
0 1 2 4  0 1 2 4  

. .  

11-1 

I 

11-6 

i 
; l  

Fig 1. Kinetics  of TNF-a, IL-1/3, and IL-6 mRNA  expression in 
PBMCs  isolated from whole blood from a  septic patient and from a 
control patient after stimulation with LPS (1 ng/mL) for 0, 1,2, and 
4 hours. 
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Fig 2. Stability of TNF-a (left1  and IL-6 (right) mRNA. Whole blood 
from two septic patients (full symbols) and a control patient without 
infection (open symbols) was stimulated with LPS (1 pg/mLl for 2 
hours followed by complete inhibition of transcription using  actino- 
mycin D. PBMCs were isolated and lysed at the indicated time points. 
Total mRNA was prepared and  subjected to Northern blotting as 
described. The amounts of TNF-a and IL-6 mRNA were measured 
with  the FUJI digital imaging system and normalized based on 28s 
rRNA  levels. 

cause IL-lP mRNA expression in PBMCs isolated from 
septic patients was similar to that found in control patients. 
This suggestion is supported by studies indicating that desen- 
sitization of macrophages is not caused by downregulation 
of LPS-binding sites.56 

Our data suggest a reduced responsiveness of PBMCs to a 
maximum and a physiologically relevant endotoxin stimulus. 
This phenomenon, referred to as endotoxin tolerance,' seems 
to be due to a reduced capacity of white blood cells to 
synthesize and/or secrete proinflammatory cytokines. Our 
data are in line with previous studies by Granowitz et 
and Rodrick et al?' These investigators described a suppres- 
sion of proinflammatory cytokine release in PBMCs isolated 
from endotoxin-injected human volunteers. Granowitz et a157 
hypothesized that the phenomenon of endotoxin tolerance 
may  be due to a defect in transcriptional andor translational 
regulation. Our data demonstrating the reduced respon- 
siveness of blood monocytes from septic patients to an ade- 
quate endotoxin challenge do not  only  confirm the clinical 
relevance of their results in endotoxin-injected human  volun- 
teers, but also elucidate the reduction of mRNA half-life 
in PBMCs from septic patients as one of the underlying 
mechanisms. 

Although cytokines released in  high amounts cause tissue 
damage and multiple-organ f a i l ~ r e , ~ ~ , ~  TNF-a, IL-I/?, and 
IL-6 stimulate and regulate a wide array of immune func- 
tions,6"h' thus playing an important role in  the  host defense 
system. Moreover, previous investigations suggest that TNF- 
a mediated immune responses may  be important in the host 
defense against parasitic  infection^^^.^^ and  that injection of 
IL- 1 a protects animals from lethal infection by intracellular 
bacteria.@ In addition, recombinant TNF-a attenuated the 
lethal effect of gram-negative sepsis induced by cecal liga- 
tion and puncture (CLP),67 and studies by Cross et aI6' de- 
scribed a protective effect of TNF-a in combination with 
IL-la in a bacteremia mouse model. These reports were 

confirmed  by studies from Alexander et a169 who demon- 
strated that hypotension after a lethal infusion of E. coli 
LPS was completely prevented and tissue injury substantially 
ameliorated by pretreatment with recombinant TNF-a. These 
results indicate that a controlled immune response in the  host 
to endotoxin mediated by TNF-a and IL-16 may represent a 
potent protective mechanism against infection with invasive 
microorganisms causing septic shock  in humans. In this 
light, the reduced capability of PBMCs in whole  blood from 
septic patients to produce and release adequate amounts of 
proinflammatory cytokines after exposure to endotoxin may 
indicate the inability of septic patients to adequately respond 
to repeated or persisting invasion of microorganisms and  to 
maintain an effective defense system. 

It  is our hypothesis that two essential mechanisms (sys- 
temic inflammation and  an effectively functioning immune 
system) of the host  to eliminate invading microorganisms 
are compromised during clinical sepsis in different ways 
dependent on the timepoint of macrophage activation. Al- 
though the downregulation of excessive proinflammatory cy- 
tokine synthesis and release in the early period after contact 
with microorganisms may be an evolutionary process to re- 
duce the incidence of tissue necrosis and consequence multi- 
ple organ failure through overwhelming cytokinemia, an al- 
most complete inhibition of proinflammatory cytokine 
synthesis and release in the late period may  lead  to immuno- 
deficiency in patients with severe sepsis. Therefore, only the 
balanced synthesis and release of proinflammatory cytokines 
may  be beneficial for the host. 
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