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ABSTRACT
State-dependent regime switching diffusion processes or hybrid switching diffusion
processes (HSD) are hard to simulate with classical methods which leads us to adopt
an MCMC Bayesian approach very convenient to estimate complicated models such
as the HSD one. In the HSD, the diffusion component is dependent on the switching
discrete hidden regimes and the transition rates of the regime switching are depen-
dent on the diffusion observations. Since in reality phenomena are only observed in
discrete times, data imputation is called for to create more observations so as to
have good approximations for the density of the diffusion process. Three categories
of entities will be computed in a Bayesian context: The latent imputed observations,
the regime switching states, and the parameters of the models. The latent imputed
data is updated at random time intervals in block using a Metropolis Hastings al-
gorithm. The switching states are computed by an adaptation of a forward filtering
backward smoothing algorithm to a the HSD model. The parameters are estimated
after prior specifications and conditional posterior densities formulation using Gibbs
sampler or Metropolis Hastings algorithm.

KEYWORDS
Data imputation; Hidden states computation; Hybrid switching diffusion model;
Latent state estimation; Metropolis-Hastings algorithm; Random time imputation;
State dependent transition rate matrix.

1. Introduction

Understanding phenomena dynamic such as disease progression is very challenging
because it incorporates behavioural switching in continuous time; which requires us to
apply a methodology that is suitable when data is observed at irregular times. Indeed,
one should appeal to a rich class of continuous time models. Those models are usually
taken to be diffusion processes such as the Ornstein-Uhlenbeck models [13] . Even
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though the usefulness of diffusion processes and the many advantages they can offer,
they can’t handle all the dynamics caused by some complex phenomena. In many
cases, phenomena change behaviour or evolution depending on intermediate indica-
tors or variables. For example in economics the states can be the economic situations
(growth, stability, crisis)and the developed variable can be options pricing or any eco-
nomic factors that are changing attitude due to different economics situations. Also,
in ecology [4] , animal movement has been shown to change behaviour depending of
the state of whether the animal is resting at a nest, foraging, or heading for a nest.
Our modeling can be well present in disease progression such as HIV progression [23]
, where an observed bio-marker called CD4 counts decline is varying from one HIV
disease stage to another. Thus, we recourse for diffusion processes but with the exten-
sion of regime switching. By adding the regime switching characteristics, the regime
switching model (RSM) will be combining two components: a continuous diffusion
observation component and an unobserved component most of the time discrete and
supposed to be Markovian. Consequently, RSM are usually supposed to be Markovian
and hence called Markov regime switching models (MRS). Their underlying idea is the
switching mechanism who is supposed to be latent (unobserved or unknown). The
simplest model supposes a two-dimensional Markov processes, where the first com-
ponent is continuous and real valued and depending on the second, and the second
has discrete values and acts monotonously from the first process. Such models have
attracted a lot of attention in diverse fields or sciences such as in population dynamics
[28] , in pattern recognition [17] , or in ecology [5,6] . However in our case, we will go
a little further and direct our attention toward a more advanced switching diffusion
process that supposes the dependence of the rate of the switching or of the transition
on the observations or covariates. A fundamental theoretical description and practi-
cal significance related to this modelling is provided in [8]. A recent example with
the Bayesian estimation methodology is presented in [4], where animal movement is
an adaptive movement since it depends and follows the habitat (resting or foraging).
Those kinds of models are called HSD models and highlight the coexistence of continu-
ous dynamics and discrete events: one component describes the continuous dynamics,
whereas the other is a switching process representing discrete events with the switch-
ing part depending on the continuous dynamics. The exception to RSM is that the
rates of transition for the discrete states in HSD process depend on the continuous
dynamics [21,27] .
In this paper, we will provide a Markov chain Monte Carlo (MCMC) method to es-
timate the parameters of a HSD model. While we could find classical methods to
compute the parameters of a RSM as in [22,24] where a maximum likelihood and
expectation-maximization procedures are adopted, likelihood inference is very chal-
lenging for HSD. In fact, the diffusion component is non linear most of the time and
most of the diffusion phenomena of practical interest are nonlinear in their nature
[32]. Furthermore, the transition rates of the regime switching are dependent on the
diffusion observations [4,8]. Moreover, the observations are available only at scattered
discrete times or are subject to measurement errors [20] . This leads us to impute data
between successive observations to find an efficient approximation to the unavailable
transition density of the HSD using an Euler approximation in the case of HSD as in
[33] . The method of imputation aims at augmenting the likelihood with the imputed
data. In the Bayesian context, the procedure alternates between updating the imputed
data and updating the parameters. Unfortunately the update of the imputed data can
suffer from poor mixing such as the single site update of [16], or has a long mixing
times of MCMC algorithm such as the block update of [14] if the number of imputation
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data is so large. The challenge of our modelling is that we have to augment the likeli-
hood with the hidden states beside the imputed data and the parameters. Also, unlike
regular state independent Markov switching diffusion process, our model supposes the
dependence of the transition rate matrix on the diffusion process. Furthermore, instead
of fixed times imputation, we opt for the algorithm of random time points update as
described in [35] and applied to HSD in a Bayesian context in [4] . These will avoid
any discretization error, where the times and the imputed data proposed are accepted
or rejected using a Metropolis Hastings algorithm (MHA). Thus, we will appeal to the
Bayesian inference through MCMC methods to sample the posterior distribution for
the parameters, the latent imputed data and the hidden states for the uni-dimensional
regime switching process since the discrete states of the switches are supposed un-
known in this model. We will extend the Bayesian inference and data imputation of
[19, Ch. 7] for non-linear diffusion to uni-dimensional HSD using the random time
intervals for the imputation as in [4].
This paper is organized as follows: In section 2, we describe the model considered. Sec-
tion 3 provides the Bayesian inference for the latent imputed data, the hidden states,
and the parameters including the parameters of transition rate matrix. In section 4, we
see more details on how priors are chosen and how posteriors densities are computed
with an illustration by an important non linear HSD process, and an application to
disease progression. Finally we give a discussion and a conclusion.

2. Model description and notations

We consider a continuous time HSP of the following form

dX(t) = µ(X(t), S(t))dt+ σ(X(t), S(t))dWt. (1)

X(t) = X0, and S(t) = S0,

with P (S(t + δt) = j|S(t) = i,X(s), S(s), s ≤ t) = qij(X(t))δt + o(δt), i 6= j, µ()
and σ(.) are appropriate real valued functions satisfying certain regularity conditions .
W is a uni-dimensional standard Brownian motion. S(.) is a switching process taking
discrete values in {1, .., a} with a is an integer and with the dynamics of S(.) depending
on X(t). Specifically, the spontaneous transition rate matrix Q(x, t) = (qkl(x, t))1≤k,l≤a
for the switching process has the following properties:

(i) qkl(x, t) ≥ 0, for k 6= l, for any x and time t.

(ii)
∑
l

qkl(x, t) = 0, for any x and time t.

[45] has summarized the difference between continuous state dependent switching dif-
fusion process and Markovian switching models in term of properties of solutions of
the process and numerical procedures.
We suppose we have N individuals with ni the number of observation times for each in-
dividual i such that the trajectory for each individual i is given by xi = (xi1, ..., xini).
We consider tij the times of observations for individual i, and the latent switching
states will be denoted sij for individual i at time tij . Time points are usually different
between subjects, also ni may differ between individuals. Θ is the set of the parameters
in the model, while θ is the set of all parameters except the parameters related to the
transition rate matrix. Hence, by applying the Markov property and the conditional

3



probability and Bayes rules, the likelihood could be written as:

L(X,S; Θ) ∝
N∏
i=1

(P (xi1, si1,Θ)

ni∏
j=2

P (xij , sij |xij−1, sij−1,Θ)

∝
N∏
i=1

(P (xi1, si1,Θ)

ni∏
j=2

P (xij |xij−1, sij , sij−1,Θ)P (sij |xij−1, sij−1,Θ)

∝
N∏
i=1

(P (xi1, si1,Θ)

ni∏
j=2

P (xij |xij−1, sij−1,Θ)P (sij |xij−1, sij−1,Θ)

Applying exponential matrix to the switching process gives:

L(X,S; Θ) ∝
N∏
i=1

(P (xi1, si1,Θ)

ni∏
j=2

P (xij |xij−1, sij−1,Θ)×

[exp (Q(xij−1)∆tij)]sij−1,sij

P (sij |xij−1, sij−1,Θ) is the element (sij−1, sij) of the transition probability matrix
evaluated at the diffusion location xij−1. Since the transition matrix is obtained from
the exponential of the generator Q evaluated at xij−1, and we obtain the elements
[exp (Q(xij−1)∆tij)]sij−1,sij

, with ∆tij = tij − tij−1. This exponential approximation

supposes constant xt for a short period of time ∆tij .

3. Bayesian inference

Direct estimation of HSD processes is very difficult because the transition density
of the diffusion component is most of the time unavailable in a closed form and
we need to approximate it. Thus, to overcome the issue of low frequency data and
consequently the density approximation can be used, we need to introduce interme-
diate data between successive observations. Thus, we appeal to Bayesian data im-
putation [15,16,34] . Hence an mij − 1 missing observations are imputed between
successive observations xij and xij−1 to obtain for each individual i a vector :

Xi = (xi1, X
2
i1, ..., X

mi1

i1 , xi2, X
2
i2......, xini−1

, X2
ini−1

, ..., X
mini

ini−1
, xini), with X1

ij = xij and

Xk
ij will have corresponding Skij at the time point tkij (the kth imputation time after

observation xij) . Since we have three categories of variables to estimate: The param-
eters Θ, the latent switching state S and the imputed (latent) data X, our imputed
joint posterior density is formulated as follows:

P (Θ, X, S|x) ∝ P (Θ)

N∏
i=1

(P (X1
i1, S

1
i1|Θ)×

ni−1∏
j=1

P (X1
ij+1|X

mij

ij , S
mij

ij ,Θ)
[
exp (Q(X

mij

ij )∆t1ij+1)
]
S
mij
ij ,S1

ij+1

×

ni−1∏
j=1

mij−1∏
k=1

P (Xk+1
ij |X

k
ij , S

k
ij ,Θ)

[
exp (Q(Xk

ij)∆t
k+1
ij )

]
Skij ,S

k+1
ij

,
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To evaluate the conditional posterior, we use a numerical Euler approximation
[25] for the small time tkij (the kth imputation time between observation xij
and xij+1, with the exception that ∆t1ij+1 = t1ij+1 − t

mij

ij and t1ij is the time

at the observation xij ) , and we have: πEuler(Xk+1
ij |Xk

ij , S,Θ) ≈ φ(Xk+1
ij |Xk

ij +

µ(Xk
ij , S

k
ij ,Θ)∆tk+1

ij , σ(Xk
ij , S

k
ij ,Θ)∆tk+1

ij ), with Skij the regime switching state value

for individual i at time imputation tkij , with ∆tk+1
ij = tk+1

ij − tkij and φ(z|ν,Λ) is a

normal distribution with mean ν and variance Λ. P (Θ) is the prior distribution for
the set of parameters Θ. The MCMC algorithm will generate a Markov chain target-
ing the augmented posterior P (Θ, X, S|x) under some mild regularity conditions. In
fact, the data augmentation procedure of [40] inference may proceed by alternating
between the simulation of the parameters conditional on the augmented data, and the
simulation of the augmented data given the observed data and the current state of the
model parameters. A discussion of convergence issues related to non linear diffusion
processes with latent data is provided in [20]. Such issues include the update choice
for the imputed data and that the mij shouldn’t be so large in order to avoid the
slow mixing of the targeted chain in the MCMC algorithm. Hence, we perform our
simulation by alternating between drawing from the following conditional posteriors
given all other quantities (denoted by .):

(i) Draw the latent(imputed) observations from P (X|.)
(ii) Draw the latent switching states from P (S|.)

(iii) Draw the parameters from P (Θ|.)

3.1. Sampling the latent data

While it is possible to update each latent(imputed) data separately, we will adopt a
block update for the whole sequence of imputed data for each individual observation
Xi. Since it is difficult to come with an analytical form for the posterior distribution
of the imputed data, a MHA [19, Ch. 7] is utilized to draw the new imputed data
Xnew
i from an old Xold

i , for i = 1, ..., n. Though for the imputation of auxiliary data,
we opt for the algorithm of random time points update as described in [35] and
applied to HSD in a bayesian context in [4]. These will avoid any discretization error.
Suppose that the transition rates are all bounded above and let the times will be
generated from a Poisson process with parameter κ > maxi,x,t{−Qii(x, t)}, and the
algorithm proceeds for each individual i = 1, ..., N as follow:

Algorithm. 1 :

(i) For j = 1, ..., ni−1

(ii) For each interval [tij , tij+1], the times are generated from a Poisson process with

parameter κ, and we obtain the tnew,kij time points for k = 1, ...,mij .

(iii) for k = 1: Xnew,1
ij = Xold,1

ij = xij and Snew,1ij = Sold,1ij .

(iv) for each k = 2, ...,mij ,
(a) we determine whether there is a switch in time with probability

−Q
S
new,k−1
ij

,S
new,k−1
ij

(Xnew,k−1
ij )

κ .

(b) If there is a switch, we sample the new state Snew,kij = C with probability
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Q
S
new,k−1
ij

,C
(Xnew,k−1

ij )

−Q
S
new,k−1
ij

,S
new,k−1
ij

(Xnew,k−1
ij )

(c) We propose the new imputed Xnew,k
ij following the last update of time tnew,kij

and Snew,k−1
ij .

(v) We ran a MHA to decide on the acceptance of the new time proposal Tnewi =

{t,new,kij , k = 1, ...,mij , j = 1, ..., ni−1} as well as the proposed imputed data
Xnew
i .

So by introducing mij −1 new observations between two successive observations xij−1

and xij , the MHA acceptance ratio will be:

ζ(Xnew
i , Tnewi ;Xold

i , T oldi ) = 1 ∧ P (Xnew
i |D,S,Θ)ψ(Xold

i |Xnew
i , D, S,Θ)

P (Xold
i |D,S,Θ)ψ(Xnew

i |Xold
i , D, S,Θ)

.

Where P denote the posterior density, ψ the proposal density, and D the observed,
not the imputed data. Due to the Markov property in HSD, we have:

P (Xnew
i |D,S,Θ)

P (Xold
i |D,S,Θ)

=

ni−1∏
j=1

P (X1
ij+1|X

new,mij

ij , S,Θ)

P (X1
ij+1|X

old,mij

ij , S,Θ)

ni−1∏
j=1

mij−1∏
k=1

P (Xnew,k+1
ij |Xnew,k

ij , S,Θ)

P (Xold,k+1
ij |Xold,k

ij , S,Θ)

=

ni−1∏
j=1

P (∆tnew,1ij+1 , X
new,mij

ij , X1
ij+1)

P (∆told,1ij+1, X
old,mij

ij , X1
ij+1)

ni−1∏
j=1

mij−1∏
k=1

P (∆tnew,k+1
ij , Xnew,k

ij , Xnew,k+1
ij )

P (∆told,k+1
ij , Xold,k

ij , Xold,k+1
ij )

∆tk+1
ij = tk+1

ij − tkij is very small to permit an Euler approximation for P by

PEuler(Xk+1
ij |Xk

ij , S,Θ) ≈ φ(Xk+1
ij |Xk

ij + µ(Xk
ij , S

k
ij ,Θ)∆tk+1

ij , σ(Xk
ij , S

k
ij ,Θ)∆tk+1

ij ),

with Skij the regime switching state value for individual i at time imputation tkij ,
and φ(z|ν,Λ) is normal distribution with mean ν and variance Λ.
While to the choice of the proposal density ψ, one could choose an Euler proposal or a
double-sided Euler proposal, but due to the dependency between Xnew and Xold, we
will adopt the modified bridge proposal ψMB of [14] ; supposed to overcome the issue
of dependence between successive draws; as adopted in the Bayesian context by [10].

Note that Xnew,1
ij = Xold,1

ij = xij and Snew,1ij = Sold,1ij , and the proposed path will be
accepted with probability:

ζ(Xnew
i , Tnewi ;Xold

i , T oldi ) = 1 ∧

ni−1∏
j=1

P (X1
ij+1|X

new,mij

ij , S,Θ)

P (X1
ij+1|X

old,mij

ij , S,Θ)

×
ni−1∏

j=1

mij−1∏
k=1

P (Xnew,k+1
ij |Xnew,k

ij , S,Θ)

P (Xold,k+1
ij |Xold,k

ij , S,Θ)

× ψMB(Xold
i |Xi1, Xini , S,Θ)

ψMB(Xnew
i |Xi1, Xini , S,Θ)

, (2)
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where
ψMB(Xold

i |Xi1, Xini , S,Θ)

ψMB(Xnew
i |Xi1, Xini , S,Θ)

=

ni−1∏
j=1

mij−1∏
k=1

ψMB(Xold,k+1
ij |X1

ij , X
1
ij+1, S,Θ)

ψMB(Xnew,k+1
ij |X1

ij , X
1
ij+1, S,Θ)

with ψMB(Xnew,k+1
ij |X1

ij , X
1
ij+1, S,Θ) =

φ(Xnew,k+1
ij |Xnew,k

ij +
X
mij

ij −X
new,k
ij

tnew,1ij+1 − t
new,k
ij

∆tnew,k+1
ij , ...

tnew,1ij+1 − t
new,k+1
ij

tnew,1ij+1 − t
new,k
ij

σ(Xnew,k
ij , Snew,kij ,Θ)∆tnew,k+1

ij ).

3.2. Sampling the switching hidden states

Instead of simulating each hidden state separately, Chib [9] developed a method called
block update of the hidden states in which we simulate the full latent data for each
individual i, i = 1, 2, ...., N . Its algorithm was adapted to a multivariate autoregressive
hidden Markov model in [30]. We will adapt this algorithm to the HSD process, with
the modification that our model suppose observations with different lengths and non
equidistant intervals. For clarity of representation and for good understanding of this so
called forward filtering backward smoothing (FFBS) algorithm, we stack the imputed
observations with the observations in one vector of size Ni (The staked data contains
both the observation data xi ” and the imputed terms Xk

ij to give the new stacked

vector X̃i) X̃i. = (X̃i1, ..., X̃iNi), with the corresponding switching hidden vector S̃i. =
(S̃i1, ..., S̃iNi), and the times t̃i. = (t̃i1, ..., t̃iNi). The times contains both the original as
well as the new times staked in a new vector and we use the forward filtering backward
smoothing to sample the whole sequence of the hidden states. A similar procedure
is described in [35]. Let denote X̃−ji = (X̃i1, ..., X̃ij), X̃

j
i = (X̃ij , ..., X̃iNi), S̃

−j
i =

(S̃i1, ..., S̃ij), and S̃ji = (S̃ij , ..., S̃iNi). Now, we write the joint conditional distribution
for the hidden states as:

P (S̃i.|X̃i.,Θ) =

Ni∏
j=1

P (S̃ij |X̃i., S̃
j+1
i ).

Hence the states computation is based on the term P (S̃ij |X̃i., S̃
j+1
i ) which will be

evaluated in the backward pass after running the forward filtering that proceeds as :

Algorithm. 2:

(i) Initialize for the time j = 1.
(ii) For j = 2, ..., Ni, and k = 1, ...., a, compute and alternate between :

(a) P (S̃ij = k|X̃−(j−1)
i ,Θ) ∝

a∑
l=1

P (S̃ij = k|S̃ij−1 = l, X̃ij−1)×

P (S̃ij−1|X̃−(j−1)
i ,Θ)
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(b) P (S̃ij = k|X̃−ji ,Θ) ∝ P (S̃ij = k|X̃−(j−1)
i ,Θ) ∗ f(X̃ij |X̃ij−1), S̃ij−1,Θ).

Later on, the backward smoothing proceeds by:

(i) Initialize for the time j = Ni from the last forward quantity P (S̃iNi = k|X̃i.,Θ).
(ii) For j = Ni − 1, ..., 2, 1, and k = 1, ...., a, compute and alternate between :

(a) P (S̃ij+1|S̃ij , X̃ij) is the element (S̃ij , S̃ij+1) of the transition probability

matrix evaluated at the diffusion location X̃ij . Since the transition matrix

is obtained from the exponential of the generator Q evaluated at X̃ij , and

we obtain the element
[
exp (Q(X̃ij)∆t̃ij+1)

]
S̃ij ,S̃ij+1

for small time ∆t̃ij+1,

assuming constant X̃ij for a short period of time ∆t̃ij+1.

(b) P (S̃ij |X̃i., S̃
j+1
i ) ∝ P (S̃ij = k|X̃−ji ,Θ) ∗ P (S̃ij+1|S̃ij , X̃ij).

(c) Use those last probabilities to draw the hidden states.

Again, let’s remind that in the HSD model, the transition rates are related to the
observed diffusion component.

3.3. Sampling from P (θ|X̃, S̃)

Given the estimation of X̃ and S̃ in the previous subsection, the conditional posterior
of θ is proportional to the prior P (Θ) multiplied by the likelihood, which gives:

P (θ|X̃, S̃) ∝ P (θ)P (X1
i1, S

1
i1|Θ)×

N∏
i=1

Ni−1∏
j=1

P (X̃ij+1|X̃ij , S̃ij , θ)
[
exp (Q(X̃ij)∆t̃ij+1)

]
S̃ij ,S̃ij+1

Usually, we don’t come with a standard distribution to sample from by using Gibbs
sampler, thus we will appeal to a MHA. After using proportionality and dropping the
terms of the transition rate matrix since they are independent of θ. Hence, we come
with a MHA [19, Ch. 7] with an acceptance probability ratio for every new proposal
θ∗ as:

ζ(θ, θ∗) = 1 ∧ P (θ∗)

P (θ)
×


N∏
i=1

Ni−1∏
j=1

P (X̃ij+1|X̃ij , S̃ij , θ
∗)

N∏
i=1

Ni−1∏
j=1

P (X̃ij+1|X̃ij , S̃ij , θ)

× ψ(θ|θ∗, X̃, S̃)

ψ(θ∗|θ, X̃, S̃)

As before, using Euler approximation we have: P (X̃ij+1|X̃ij , S̃ij , θ) =

PEuler(X̃ij+1|X̃ij , S, θ) ≈ φ(X̃ij+1|X̃ij+1 +µ(X̃ij+1, S̃ij , θ)∆t̃ij , σ(X̃ij , S̃ij , θ)∆t̃ij+1), ψ
is a proposal density to draw a new Θ∗, it depends on the form of the likelihood and
the hypothesis of the HSD. Some times, we could use simply a random walk proposal
which is independent of X̃ and S̃ and it is only related to the old draw Θ(old), and
we simply propose from a gaussian distribution for some θnewj ∼ N (θoldj , ε). ε is the
random walk step that can be adjusted to improve convergence. For positive values,
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we could propose from the log-normal distribution: log θnewj ∼ LN (log θoldj , ε).
Finally, and since we have a HSD, the parameters will be dependent on the switching
process S̃, so for every given parameter θj , we will have to estimate (θ1

j , ..., θ
k
j , ..., θ

a
j ),

and the posterior for θkj is

P (θkj |X̃, S̃) ∝ P (θ)×
N∏
i=1

Ni−1∏
j=1,S̃ij=k

P (X̃ij+1|X̃ij , S̃ij , θ). (3)

4. Numerical example with application to disease progression

We will consider here an example of a non linear HSD process and give more details
on how we can estimate each parameter of the model. In fact, a non linear drift
and a non linear volatility would allow the HSD process to dispose of elements to
represent clearly any complex problem and to be more flexible. Considering the non-
linear process of [1] with an extra addition of the regime switching and we get in

our case dX̃ij =
[
α0,k + α1,kX̃ij + α2,kX̃

2
ij + α3,k

X̃ij

]
dt̃ij+1 + σX̃ηk

ij dW , for the hidden

switching state k ∈ {1, ..., a}. This general form with the regime switching gives many
explanations for majority of phenomena, where a negative α2,k guarantees ergodicity

and second order stationarity for a volatility function σk(X̃ij) = σX̃ηk
ij . Than the first

order Euler approximation of this model for a state S̃ij = k :

X̃ij+1−X̃ij =

[
α0,k + α1,kX̃ij + α2,kX̃

2
ij +

α3,k

X̃ij

]
∆t̃ij+1+σX̃ηk

ij

√
∆t̃ij+1ε, ε ∼ N (0, 1),

(4)

4.1. Computation of αk and σ2:

To simulate our parameters αk and σ2 using the MCMC algorithm, first let mention
that when the posterior density is not known we have to use a MHA as described in
parameters update 3, otherwise if we come up with a known posterior density to draw
from it directly using Gibbs sampler as it is the case here. For this reason, let’s pose

Yij = X̃ij+1−X̃ij
X̃
ηk
ij

, βk = (α0,k, α1,k, α2,k, α0,k) and yij =(√
∆t̃ij+1

X̃
ηk
ij

,
X̃ij
√

∆t̃ij+1

X̃
ηk
ij

,
X̃2
ij

√
∆t̃ij+1

X̃
ηk
ij

,
(1|X̃ij)

√
∆t̃ij+1

X̃
ηk
ij

)
. In matrix form, the Euler discretiza-

tion may be represented as in [38]: Y = yβk + ε, with ε ∼ N (0, σ2), which is the
formulation for a regression model. Consequently, the parameters of the HSD can be
easily computed using the Bayesian approach for regime switching regression model.
Hence for each βk, k = 1, ..., a, the posterior is proportional to the prior multiplied by
the likelihood

P (βk|X̃, S̃) ∝ P (β)×
N∏
i=1

Ni−1∏
j=1,S̃ij=k

P (X̃ij+1|X̃ij , S̃ij ,Θ).

As in ([18, p:251]); by supposing a normal and an inverse gamma prior respectively
for βk and σ2: Consequently with a conjugate normal prior for βk ∼ N4(b0k, σ

2B0K),

9



we have βk|. ∼ N4(bk, BK), where
Bk = (B−1

0K + y′y)−1 and bK = Bk(B
−1
0Kb0k + y

′

kYk); Yk and yk corresponds only to the

observations where S̃ij = k.
Similarly, under an inverted conjugate prior for σ2 ∼ IG(c0, C0), the posterior density
for σ2 given the observations, the imputed data, the other parameters and the switch-
ing states is σ2|. ∼ IG(c, C), where

c = (c0 + M
2 ), and C = (C0 + 1

2

a∑
k=1

b
′

0kB
−1
0Kb0k + 1

2

a∑
k=1

(y
′

kyk − b
′

kB
−1
K bk)) , M is the

number for all individuals observations.
Ridge regression:
One of the problem that can be faced here is the effects of multi-collinearity on
the Bayesian regression estimation. Consequently, we recourse to the Bayesian Ridge
Regression approach as in [43] who supposes the same priors as earlier for βk and
σ2 and we get agian similar posteriors as before, the only difference is that in the
ridge regression we have B0K = Diagonal(R1, R2, R3, R4). Moreover, to overcome
the issue of choosing fixed value for Rj ; we suppose the prior P (R1, R2, R3, R4) ∼

4∏
j=1

R
A

2
−1

j exp(− b
2Rj). Hence, we alternate between updating the following posteriors,

for each k = 1, ..., a:

Rjj ∼ Gamma(
A+Mk

2
,
b+ β2

j

2
), Mk : the number of observations where S̃ij = k.

B0K = Diag(R1, R2, R3, R4).

βk ∼ N4(b0k, σ
2B0K). (5)

σ2 ∼ IG(c, C). (6)

4.2. Sampling the posterior dependent parameters on the transition rate
matrix Q:

In this example, we will suppose that the intensities of the transition rate matrix are
dependent on the observed diffusion process through the relation of Gompertz model as
in [44]. The consideration of the Gompertz model comes from the fact that this function
has been used longer in insurance, in biology such as tumor evolution or bacteria
growth and in many other fields [41]. Also the Gompertz model has interpretable
parameters, and we have: qkl(X̃ij) = λkl exp(−γklX̃ij), λkl, γkl > 0, for k 6= l ∈
{1, ..., a}, i = 1, ..., N ; and j = 1, ..., Ni. We will suppose prior independence between
the parameters of Θ. While the λ′s and the γ′s can be updated in block as in [29], here
we adopt an approach similar to [37], where each element is updated conditional on
the other since they are correlated. Hence by supposing a Gamma prior G(0.01, 0.01)
for the λkl, the posterior of λkl will be:

P (λkl|X̃, S̃) ∝ P (λkl)

N∏
i=1

Ni−1∏
j=1

[
exp (Q(X̃ij)∆t̃ij+1)

]
S̃ij ,S̃ij+1

.

As we can see, all the other parameters especially θ are omitted due to the Bayes rule.
Consequently, we obtain a non standard posterior and we have to adopt a random
walk MHA to draw a new λnewkl (the new MCMC iteration) from an old value λoldkl (the

10



previous MCMC iteration) with an acceptance probability :

ζ(λnewkl , λoldkl ) =

1 ∧


P (λnewkl )

N∏
i=1

Ni−1∏
j=1

[
exp (Q(X̃ij)∆t̃ij+1)

]new
S̃ij ,S̃ij+1

P (λoldkl )
N∏
i=1

Ni−1∏
j=1

[
exp (Q(X̃ij)∆t̃ij+1)

]old
S̃ij ,S̃ij+1

× λnewkl

λoldkl
, (7)

Where we propose the λnewkl from a log-normal distribution LN (λoldkl , ελ) so as to keep
operating on real positive values with ελ the random walk step. Similarly, a no close
form is obtained for the posterior of γkl. So, we consider again a random walk MHA.
With a Gamma prior G(0.01, 0.01) on γkl and a random walk proposal LN (γoldkl , εγ)
, our MHA acceptance probability is:

ζ(γnewkl , γoldkl ) = 1 ∧


P (γnewkl )

N∏
i=1

Ni−1∏
j=1

[
exp (Q(X̃ij)∆t̃ij+1)

]new
S̃ij ,S̃ij+1

P (γoldkl )
N∏
i=1

Ni−1∏
j=1

[
exp (Q(X̃ij)∆t̃ij+1)

]old
S̃ij ,S̃ij+1

× γnewkl

γoldkl
, (8)

4.3. Computation of ηk :

To compute ηk, the posterior is proportional to the prior multiplied by the likelihood.
By supposing a Gamma prior G(0.01, 0.01), we come with a non standard posterior,
and we call for random walk MHA with the acceptance probability :

ζ(ηnewk , ηoldk ) = 1 ∧


P (ηnewk )

N∏
i=1

Ni−1∏
j=1,S̃ij=k

P (X̃ij+1|X̃ij , S̃ij , η
new
k ,Θ−ηk)

P (ηoldk )
N∏
i=1

Ni−1∏
j=1,S̃ij=k

P (X̃ij+1|X̃ij , S̃ij , ηnewk ,Θ−ηk)

× ηnewk

ηoldk
. (9)

Θ−ηk represent all the parameters except ηk. Each ηk must be positive. As before we
propose from a log-normal distribution LN (ηoldk , εη) with step εη chosen concisely.

4.4. Numerical implementation and simulation:

To assess the accuracy of our finding, we will simulate observations for N = 50
individuals with follow up size between 16 and 20 for every individual. We suppose
we have a = 3 regime switching states. the parameters of the non linear HSD
are : α0 = (0.3, 0.6, 0.9), α1 = (0.02, 0.04, 0.06), α2 = (−0.08, −0.06, −0.04),
α3 = (0.01, 0.05, 0.09), η = (0.4, 0.5, 0.6), σ2 = 0.04, and

λ =

 0 0.2 0.4
2 0 3

0.3 0.9 0

 , γ =

 0 0.2 0.04
0.01 0 4

1 0.8 0


The simulation algorithm work with the help of the Euler approximation for every
individual i for i = 1, ..., 50, and we have:
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Algorithm. 3:

(i) Choose ni uniformly in [16, 20] for j = 1
(a) Choose the regime switching state Si1 = k uniformly for k in {1, 2, 3}.
(b) Initialize Xi,1 ∼ N (α0,k, σ

2).
(c) Compute Q using formulation Qkl(Xi1) = λkl exp(γklXi1), λkl > 0, for

k 6= l ∈ {1, 2, 3}, and Qkk(Xi1) = −
∑
l 6=k

Qkl(Xi1).

(d) Compute ti2 from exp(−Qkk(Xi1))
For j = 2, ..., ni :

(ii) Compute Sij using the line Sij−1 of Q(Xij−1)
(iii) Compute Xij for Sij−1 using Euler approximation for the model 4.
(iv) Compute Q using formulation Qkl(Xij) = λkl exp(γklXij), λkl > 0, for k 6= l ∈

{1, 2, 3}, and Qkk(Xij) = −
∑
l 6=k

Qkl(Xij).

(v) Compute tij+1 from exp(−Qkk(Xij)), if j < ni.

To assess the efficiency of our methods, we will see how our MCMC algorithm can
estimate the true values (values used to generate the simulated data). Before providing
the MCMC algorithm, we should point out that we don’t opt for the usual regularly
spaced points imputation procedure that can drive the Bayesian estimation to break
down if the amount of imputation is large [20]. In fact, it has been shown dependence
between the unknown parameters in the diffusion and the missing data while adopting
this imputation. This can result in slow rates of convergence of naive sampling or could
conduct to identifiability problem as in the single update of [16] or the block update
of [14]. Thus we call for random time imputation that allow exact estimation as in [4].
After the generation of the simulated data and to check the accuracy of the estimation,
we ran the MCMC algorithm for a large number of iterations. During this ran there
is a burnings period (where the algorithm hasn’t converged yet). The burnings period
varies depending on the volatility complexity, the number of parameters in the model,
or the number of imputation as well as the latent data. After the burnings period,
the MCMC converges and the inference is based on the last iterations of the MCMC
algorithm. Our algorithm proceeds for 8000 iterations (number of iterations found in
our case to be convenient for the MCMC to converge so as we can draw inference from
the MCMC output ) as follow:

Algorithm. 4:

(i) Initialize Θ
(ii) for m = 2, ..., 8000:

(a) Propose the new times Tnewi using a Poisson process with parameter κ.
(b) Propose the new imputed data Xnew

i Using Euler approximation and Mod-
ified brownian proposal.

(c) Accept the new proposal of the times as well as the imputed data using
MHA (2).
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(d) Stack the new data and the new times in new vector of data and times: X̃
and T̃ .

(e) Simulate the regime switching states P (S̃|.) using the FFBS algorithm .
(f) Simulate the parameters of the transition rate matrix Q: λ and γ using the

random walk MHA (7) and (8) respectively .
(g) Compute βk|. ∼ N4(bk, BK) from (5) for k = 1, 2, 3.
(h) Compute σ2|. ∼ IG(c, C) from (6).
(i) Simulate ηk using MHA (9), for k = 1, 2, 3.

Table 1 gives the posterior statistics of our algorithm such as the posterior mean,
the standard deviation and the 95% credible intervals, where estimations are of good
approximation to the true values even though that this complicated process has a
large number of parameters. Consequently, parameter estimations have been rendered
very simple. Moreover the convergence issues have been checked for every parameter
of the model by the graphical inspection of the trace-plot, the kernel density, and the
autocorrelation function plot. It is revealed that we get a good mixing of the MCMC
chain (figure 1), a perfect density shape (figure 2) and autocorrelations that decay
immediately after a few lag (figure 3) . Hence convergence for this MCMC method is
achieved. In fact, the MCMC methods shows that they are appropriate especially that
we have opted for random time imputation. Our algorithm works well if we choose
different values for this switching one factor model, or ran a bootstrap simulation.
Hence, the algorithm was efficient in approximating the true values.

4.5. Application to disease progression:

Many models have been proposed to model disease progression through markers obser-
vations, among them [46] proposed a deterministic differential equation model (DEM)
to model markers in disease such as Alzheimers disease, Huntingtons disease, or Parkin-
sons disease. Taking the stochastic version of this DEM by adding the regime switching,
we get a process similar to the previous regime switching one factor model with the
following expression:

dX̃ij =
[
α0,k + α1,kX̃ij + α2,kX̃

2
ij

]
dt̃ij+1 + σdW , for k = 1, 2, 3.

We applied this process to model marker observations from a slow developed disease:
COPD (Chronic Obstructive Pulmonary Disease). Doctors use Gold stages to address
the stage of the COPD (the severity of the disease). Knowing how severe the COPD
is in a patient helps to choose the best treatment. The idea is to unravel the stages
of the disease using one marker or a combination of many markers. In fact, there
are many clinical markers for COPD disease among them: Chest hyperinflation, low
body mass index (BMI), the use of accessory muscles of respiration, and prolonged
expiration. Since, we are interested in one dimensional diffusion process, we take into
consideration as a marker the FEV1 (how much air one can exhales from his lungs
in one second, measured in Liter). We will see how the FEV1 observations allow to
estimate the parameters of the HSD process. We have supposed that our model has
three hidden states; a = 3 (Mild, Moderate, and severe) [39]. We extracted our FEV1
observations using data from the Danish Lung Cancer Screening Trial (DLCST) [36]
where 2052 current or ex-smokers aged 50− 70 years having FEV1 measured annually
for 5 years (2005-2009). We have for each subject, five FEV1 measurements with the
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date of each measurement. While having more than 10 marker observations by pa-
tient would give more parameters precision and identification, disposing here of only
5 marker observations by patient is found to be sufficient for giving accurate results.
From the database, it can be seen that he values of the FEV1 marker decreases with
the severity of the COPD disease (from values that are greater than 3L in mild stages
to approximately less than 1.5L for severe stages).
We ran our MCMC algorithm to fit the HSD model and make the inference after
the burnings period (inference is based on the last 3000 samples after the burnings).
In fact, starting from good initial values for the parameters would help in reducing
the time of the burnings period and hence accelerate the MCMC convergence. Such
initial values can be obtained from other estimation methods such as the maximum
likelihood computation.
Also, while the α′s and σ are computed here using Gibbs sampler via a ridge regression
approach, in the general case when the posterior is not a known one we call for the
MHA such as for the parameter of the transition rate matrix: the λ′s and γ′s that
have been computed via MHA.
Furthermore, this MCMC uses the random time imputation mechanism. Hence, we
have seen that between successive observations, it could happen no imputation or 1
imputation, or 5, or more than 10 time points.
Finally, table 2 gives the posterior computations for each one of the parameters of
the model. It shows how the marker can lead to the estimation of the parameters de-
pending on the hidden states. We could see that most of parameters (the linear effect
parameters and the quadratic effect parameters) have negative values, which goes with
the attitudes of the FEV1 marker to decrease with the time. Moreover, and while here
we fitted a model with 3 hidden states one can consider the cases where a = 4 or 5,
and uses the Bayesian information criterion (BIC) to choose the best model. Also, we
could take other forms of stochastic differential equations and choose which equation
fits well the data using the BIC.

5. Discussion

Bayesian approach is very efficient in simulating complicated models such as the non-
linear diffusion processes. In fact, one can incorporate any prior information or knowl-
edge in the likelihood through the prior specification and this is possible because the
posterior of the parameters is proportional to prior multiplied by the likelihood. Also,
and while MCMC algorithm can converge even when starting in dispersed initial values
for the parameters, we can take use of classical method inference on data to get a good
starting values such as maximum likelihood or expectation-maximization algorithms.
Another issue that should be pointed here too is that this model uses observation
intervals that are non equi-distant, though we get accurate estimate using The Euler
discretization; and why not should we try to improve this accuracy in the future by
using the Milstein discretization [42]. Moreover, the number of observations imputed
was chosen using the random time imputation which gives exact simulation. With this
way, for small intervals we don’t impute any data while for large intervals we could
impute data.
Other ideas that can attract attention, is the use of the random walk MHA; that could
have many problems such as the moving step. Indeed, a bad choice for the moving
step can lead to bad mixing or create high correlated draws. Thus, we should some
times avoid the random walk MHA and find good proposal density for every new
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Table 1. MCMC estimation for the parameters of the model(8000 iterations)

Posterior computations
Parameters True value Mean Standard deviation Credible interval (95%)

α0,1 0.3 0.3026 0.0011 (0.3004,0.3048)
α0,2 0.6 0.6028 0.0201 (0.5636,0.6426)
α0,3 0.9 0.9048 0.0047 (0.8956,0.9140)
α1,1 0.02 0.0211 3.5015.10−04 (0.0204,0.0218)
α1,2 0.04 0.0401 0.0036 0.0331,0.0472)
α1,3 0.06 0.0602 6.0245.10−04 (0.0590,0.0614)
α2,1 -0.08 -0.0722 6.2750.10−04 (-0.0734,-0.0710)
α2,2 -0.06 -0.0593 0.0038 (-0.0671,-0.0522)
α2,3 -0.04 -0.0395 5.575210.−04 (-0.0406,-0.0384)
α3,1 0.01 0.0101 3.4369.10−04 (0.0094,0.0107)
α3,2 0.05 0.0503 0.0037 (0.0431,0.0577)
α3,3 0.09 0.0901 7.1083.10−04 (0.0887,0.0915)
λ12 0.2 0.1839 0.0040 (0.1911,0.2070)
λ13 1 0.9108 0.0195 (0.9413,1.0181)
λ21 0.3 0.2790 0.0059 (0.2895,0.3126)
λ23 2 1.8189 0.0392 (1.8738,2.0267)
λ31 0.4 0.3708 0.0080 (0.3846,0.4161)
λ32 7 6.5094 0.1432 (6.7576,7.3138)
γ12 0.2 0.1827 0.0040 (0.1902,0.2056)
γ13 0.04 0.03681 7.7337.10−04 ( 0.0381,0.0411)
γ21 0.3 0.2899 0.0063 (0.3021,0.3268)
γ23 0.06 0.0538 0.0012 (0.0558,0.0604)
γ31 0.4 0.3841 0.0082 (0.3948,0.4264)
γ32 0.08 0.0742 0.0016 (0.0778,0.0842)
η1 0.3 0.2909 0.0201 (0.2510,0.3298)
η2 0.4 0.3788 0.0430 (0.3098,0.4694)
η3 0.5 0.5324 0.0199 (0.4933,0.5716)
σ2 0.04 0.0377 0.0023 (0.0333,0.0425)

draw for each parameter or adopting more efficient algorithm such as the accept-reject
MHA [11]. Hopefully here the ridge regression has allowed to sample many parameters
through Gibbs sampler.
Finally, even that the HSD model here adopts an homoscedastic σ2, it could be easily
extended to σ2

k depending on the hidden states k = 1, .., a or we can take the stochastic
variance as in the case of ARCH and GARCH model [2,7,12,31].

6. Conclusion

This work provides a Bayesian approach for the simulation of a state-dependent switch-
ing diffusion process; one of the process usually hard to handle in a classical framework.
We used Euler discretization to overcome the issue of dispersed observations as it is
the case for most diffusion models. We have adapted the random time data imputation
to the HSD model. We have let the transition rate matrix to depend on the diffusion
observations. Hence, we have lead to the estimation of three categories of variables:
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Table 2. MCMC output for fitting a HSD Process via FEV1 marker in COPD disease progression

Posterior computations
Parameters Mean Standard deviation Credible interval (95%)

α0,1 0.0030 0.0084 (-0.0128,0.0172)
α0,2 0.0169 0.0231 (-0.0300,0.0618)
α0,3 0.0164 0.0127 (-0.0113,0.0402)
α1,1 -0.0539 0.0209 (-0.0952,-0.0136)
α1,2 -0.0226 0.0656 (-0.1545,0.1105)
α1,3 -0.0240 0.0395 (-0.1037,0.0497)
α2,1 -0.0264 0.0242 (-0.0730, 0.0202)
α2,2 -0.0094 0.0744 ( -0.1557,0.1452)
α2,3 -0.0120 0.0450 (-0.0991,0.0761)
λ12 0.2657 0.0058 (0.2538,0.2782)
λ13 0.7661 0.0369 (0.7224,0.8706)
λ21 0.0458 7.55× 10−4 (0.0435,0.0470)
λ23 0.6294 0.0114 (0.6152,0.6584)
λ31 0.0708 0.0011 (0.0688,0.0733)
λ32 0.2223 0.0034 (0.2144,0.2263)
γ12 0.0122 4.79× 10−4 (0.0113,0.0131)
γ13 0.312 0.012 (0.2889,0.3369)
γ21 2.0406 0.081 (1.8855,2.2007)
γ23 0.0087 3.59× 10−4 (0.0081, 0.0095)
γ31 4.592 0.187 (4.2384,4.9777)
γ32 3.122 0.126 (2.8812,3.3773)
σ2 0.0086 7.78× 10−4 (0.0073,0.0103)
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The imputed data, the hidden switching states, and the parameters of the diffusion
process; the sampling of the hidden state has been realized by FFBS algorithm adapted
to the HSD. Overall, even though the complexity of the switching one factor model,
the MCMC algorithm has shown its efficiency to estimate the parameters accurately.
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Figure 1. 8000 MCMC iteration plots for the parameters of the model
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Figure 2. Posterior density plots for the parameters of model
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Figure 3. Autocorrelation sample plots for the parameters of model
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