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Abstract 59 

 Atopic dermatitis (AD) is the most common inflammatory skin disorder, with 60 

14.91% of risk heritability explained by 31 common genetic variants identified by 61 

genome-wide association studies (GWAS). Here, we evaluated common, low-frequency 62 

and rare protein-coding variants in 15,574 AD cases and 377,839 controls. 12.56% (s.e. 63 

0.74%) of AD heritability is further explained by rare variation in gene coding sequence. 64 

Multi-tissue gene expression profile analysis showed that AD-associated protein-coding 65 

variants exert their greatest effect in skin tissues. Protein domain analysis suggests that 66 

AD-associated missense variants jointly affect tyrosine phosphorylation and protein 67 

interaction sites in DOK2 and CD200R1 that are important for down-regulation of 68 

immune receptor signalling. Multiomics-based network analysis combined with whole 69 

transcriptome data on lesional, non-lesional and healthy skin revealed DOK2 as a 70 

central hub interacting, among others, with CD200R1, IL6R and STAT3. Our discoveries 71 

highlight a potential role of rare coding variants in AD acting independently of common 72 

variants. 73 

 74 

 75 
76 
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Introduction 77 
 78 
 Atopic dermatitis (AD; MIM: 603165) is the most common chronic inflammatory skin 79 

disorder affecting 15–20 % of children and 5–10 % of adults (~280 million people 80 

worldwide), and the leading cause of the non-fatal disease burden conferred by skin 81 

conditions1. Given its high genetic heritability (90 % in Europeans), finding causal genes is a 82 

crucial step for developing effective preventive and therapeutic approaches for AD. GWAS so 83 

far have identified 31 specific genomic regions associated with AD susceptibility2-8. The 84 

reported susceptibility variants are common (n = 31 with MAF ≥ 5 %) and mostly located in 85 

non-coding DNA regions of the genome, have rather small effect sizes (odds ratio 86 

(OR) < 1.15) and a largely unclear functional significance8. Notable exceptions are low-87 

frequency null mutations in the gene encoding the epidermal structural protein filaggrin 88 

(FLG), which lead to a reduction in biologically active filaggrin peptides, and a complex 89 

perturbation of skin barrier function9, as well as common missense variants in the genes 90 

encoding the T helper 2 (Th2) signature cytokine IL13 (IL13; rs20541)10 as well as the IL6 91 

receptor (IL6R; rs2228145)11. Recently, an exome chip based association study of low-92 

frequency variation across all autosomal exons in multiple sclerosis (MS) cohorts of European 93 

ancestry led to the detection of low-frequency MS-associated coding variants for four genes 94 

that were missed by previous large-scale MS consortium GWAS12 and that explain another 95 

5% of MS heritability, thus reopening the debate on the contribution of low-frequency and 96 

rare variants to disease risk in complex diseases.  97 

 To systematically evaluate the contribution of genetic variation to the genetic 98 

architecture of AD on the exome-wide scale, particularly protein-altering variants of low or 99 

rare-frequency, we profiled 1,913 AD patients and 14,295 controls in two German cohorts 100 

using the Illumina HumanExomeBeadchip (exome chip) (see also Supplementary Table 1). 101 

The exome chip captures approximately 88 % of low-frequency and rare-coding variants 102 

(non-synonymous, splice-site and stop altering, MAFs between 0.01 % and 5 %) present in 103 
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Europeans13. Suggestive significant novel associations (pexomechip < 1×10-5) were taken 104 

forward to replication genotyping in a third German cohort of 1,789 AD cases and 3,272 105 

controls, and a Danish exome chip case-control study of 292 severe AD cases and 650 106 

controls. GWAS association statistics of the EAGLE eczema consortium of 2,298 107 

independent AD cases and 7,802 controls were further used for replication analysis (see also 108 

Supplementary Table 1) as well as association summary statistics of 361,132 individuals 109 

from UK Biobank with self-reported information (see also Supplementary Table 1). Gene-110 

based tests and Bayesian fine-mapping analysis as well as whole transcriptome RNA-seq, 111 

immunohistochemistry and variant protein analyses were conducted to elucidate potential 112 

functional consequences of coding variation associated with AD. Finally, we performed 113 

multiomics-based network, pathway gene set and gene expression tissue profile analyses, and 114 

we quantified the overall contribution of exome chip variation to AD risk. 115 

  116 
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Results 117 

[Exome chip single-variant and gene-based association analysis] 118 

 In our exome chip discovery search for common, low-frequency and rare variant 119 

associations, two German AD discovery cohorts were combined via a meta-analysis resulting 120 

in single variant association analysis score statistics of 143,884 genotyped and 1,357,289 121 

single nucleotide variants after imputation (see also Supplementary Figure 1-2, 122 

Supplementary Table 2, see Methods). 438 and 1,331 SNPs within 8 and 26 loci were 123 

identified with genome-wide significance (pexomechip < 5×10-8) and suggestive association 124 

(pexomechip < 1×10-5), respectively (see also Supplementary Figure 3, Supplementary Table 3). 125 

To identify novel susceptibility variants outside of established AD GWAS loci (see also 126 

Supplementary Table 4) eleven suggestively associated SNPs (pexomechip < 10-5 with 127 

MAF ≥ 1 %) were selected based on LD clumping method (see Methods) and carried forward 128 

for replication (Supplementary Table 5). Using the genome-wide threshold of 5×10-8 for the 129 

combined analysis of discovery and replication, we identified a novel low frequency missense 130 

variant in exon 3 of the gene Docking protein 2 (DOK2 at 8p21.3; rs34215892 (p.P274L); 131 

pexomechip = 9.83×10-7) which consistently and robustly replicated in three independent cohorts 132 

(pGerman = 3.75×10-4; pDenmark = 7.60×10-3; pEAGLE = 4.35×10-2; pcombined = 2.15×10-10; 133 

ORcombined = 0.64; Table 1; see also Supplementary Table 5). Further, we detected a novel 134 

association between AD and a common missense variant at 3q13.2 (rs9865242; p.E312Q; 135 

pcombined = 1.17×10-7; ORcombined = 1.16, see also Supplementary Table 5) located in exon 7 of 136 

CD200 Receptor 1 (CD200R1) and 266,51 kb upstream of the previously reported intergenic 137 

locus 3q13.2 (CCDC80, rs12634229) described only in a Japanese AD cohort5 so far 138 

(r²rs9865242-rs12634229 = 0.005). A look-up of association results from UK Biobank for the self-139 

reported broad allergic disease phenotype “AD (eczema), allergic rhinitis and/or hayfever”14 140 

(see Methods) further confirmed association signals for DOK2 (rs34215892; pUK-141 

Biobank = 3.35×10-6) and CD200R1 (rs9865242; pUK-Biobank = 1.35×10-8) (Table 1). Further, we 142 
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performed gene-based association analysis, in which we evaluated the cumulative effects of 143 

low-frequency and rare variants for each gene from autosomes (see Methods). Only DOK2 144 

met the exome-wide significance threshold (see Methods) and exhibited a stronger 145 

association signal than compared to single variant analysis (pcombined-DOK2 = 4.23×10-13; Table 146 

2; see also Supplementary Table 6) comprising twelve protein-altering variants of which two 147 

were of low-frequency and LD-independent (rs34215892 and rs56094005; 148 

1 % ≤ MAF < 5 %) and ten were rare (MAF < 1 %) (Figure 1). We genotyped the second 149 

low-frequency variant rs56094005 (p.L138S; prs56094005-exomechip = 4.31×10-3) in our replication 150 

set, in addition to rs34215892, and successfully confirmed the single SNP (prs56094005-151 

replication = 5.96×10-3; see also Supplementary Table 5) and the aggregated DOK2 association 152 

signal (pDOK2-replication = 1.54×10-6; see also Supplementary Table 6). 153 

 154 

[Bayesian fine-mapping and functional annotation] 155 

 As a next step towards understanding the functional causality of the identified AD-156 

associated variants, we carried out Bayesian fine-mapping and functional annotation analysis 157 

for loci CD200R1 and DOK2 using imputed exome chip data of our discovery cohorts (see 158 

Methods). Fine-mapping strengthened our hypothesis that lead variants rs9865242 159 

(CD200R1) and rs34215892 (DOK2) as being most likely causal (in the context of fine-160 

mapping), with posterior probabilities of 97.2 % and 44.3 %, respectively (see also 161 

Supplementary Figure 2). rs34215892 overlaps enhancer histone marks and DNase peaks in 162 

15 and 12 different tissues respectively, in each case including the skin, and is predicted to 163 

affect protein binding and regulatory motifs (see also Supplementary Table 7). The second 164 

DOK2 lead variant rs56094005 (Figure 1) overlaps promoter histone marks and DNase peaks 165 

in ten tissues, in each case including T and B cells, and is in perfect LD (r² = 1) with an 166 

intronic variant rs118162691 (prs118162691-exomechip = 4.17×10-3; MAF = 3.9 %) which overlaps 167 

enhancer histone marks in nine different tissues including the skin (see also Supplementary 168 
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Table 7). The CD200R1 missense variant rs9865242 has been suggested as a cis-eQTL for 169 

GTPBP8 in whole blood15. Ten variants in perfect LD with rs9865242, further overlapping 170 

enhancer histone marks in blood predicted to alter regulatory motifs, are located in a 171 

conserved region or are found as eQTLs for CD200R116 (see also Supplementary Table 7).  172 

 173 

[Immunohistochemistry and whole transcriptome mRNA-seq data analysis] 174 

 Immunohistochemistry was used to determine the location of DOK2 in skin tissue (see 175 

Methods). It showed strong epidermal staining with clear differences among AD lesional, AD 176 

non-lesional and healthy skin (see also Supplementary Figure 5). DOK2 is predominantly 177 

expressed in lymphocytes and the increased abundance of DOK2 in lesional AD skin 178 

correlates with the degree of lymphocyte infiltration (see also Supplementary Figure 5). 179 

Moreover, we observed a significantly increased DOK2 and CD200R1 mRNA expression in 180 

whole transcriptome mRNA-seq data (see Methods) on lesional as compared to non-lesional 181 

skin samples of 27 AD patients (pDOK2 = 4.2×10-5, pCD200R1 = 2.2×10-5) and as compared to 182 

skin from 38 healthy individuals (pDOK2 = 8.8×10-11, pCD200R1 = 2.2×10-7), as well as in AD 183 

non-lesional skin compared to healthy skin (pDOK2 = 4.5×10-3, pCD200R1 = 2.0×10-2) (see also 184 

Supplementary Figure 6a-b). We also observed a slightly increased expression of DOK1, 185 

whose protein is a heterodimeric partner for DOK2, and CD200 in lesional skin compared to 186 

non-lesional (pDOK1 = 1.1×10-1, pCD200 = 2.9×10-1) or healthy skin (pDOK1 = 3.1×10-4, 187 

pCD200 = 2.0×10-1), as well as non-lesional skin compared to healthy skin (pDOK1 = 4.0×10-3, 188 

pCD200 = 7.8×10-1) (see also Supplementary Figure 6c-d). 189 

 190 

[In silico variant protein analysis] 191 

 To construct a first hypothetical model of whether CD200R1 and DOK2 missense lead 192 

variants are likely to interfere with functionally active domains on the protein level, we 193 

performed extensive literature search and further conducted protein domain analyses of 194 
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DOK2 and the CD200/CD200R1 receptor complex (see Methods) (Figure 2). Members of 195 

the DOK adapter protein family act as regulators of cell stimulatory signals by serving as 196 

substrates for diverse receptor and cytoplasmic kinases, and the highly similar and interacting 197 

members DOK1 and DOK2 are involved in the down-regulation of immune receptor 198 

signalling in CD4+ T cells as well as myeloid cells such as macrophages and neutrophils17. It 199 

is assumed that the inhibitory role of DOK2 is accomplished by recruiting and activating 200 

RasGAP to inhibit Ras and thus to suppress pro-inflammatory ERK, JNK and MAPK 201 

pathways for the DOK2 response to CD200R1 in human myeloid cells18. By means of protein 202 

sequence and structural domain analyses we hypothesize that p.P274L (rs34215892; DOK2) 203 

is likely to interfere with RasGAP binding following the observation that the variant locates 204 

within an invariant RasGAP-SH2 binding motif (YxxPxD) since proline side chains confer 205 

strong local main chain rigidity compared to other amino acids. Less structural effect was 206 

predicted for p.L138S (DOK2) but the variant may interfere with DOK1/2-regulation due to 207 

its location within the protein interaction site. p.E312Q (rs9865242; CD200R1) causes a loss 208 

of negative charge in proximity of the NPLY motif needed for DOK2 recruitment and may 209 

therefore affect protein-protein contacts and signalling.18,19 210 

 211 

[AD core network construction and differential gene expression analysis of core genes] 212 

 In order to assess possible interactions of genes CD200R1 and DOK2 with candidate 213 

genes from AD GWAS loci2-8, we generated an AD core interaction network using network 214 

prioritization algorithms which make use of protein-protein, protein-gene, co-expression, and 215 

shared protein domains data from public repositories (see also Supplementary Figure 7; 216 

Supplementary Table 8; see Methods). We identified DOK2 as a central hub node interacting 217 

with CD200R1 and functionally established AD susceptibility genes STAT38, MICB20, 218 

CLEC16A7 and IL6R11 (Figure 3a). We used our aforementioned whole transcriptome 219 

mRNA-seq data (see Methods) to assess whether expression levels from genes of our AD 220 
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core network are differentially expressed in lesional, non-lesional and healthy skin from AD 221 

patients and healthy individuals. 22 out of the 30 AD core genes (Figure 3a) are significantly 222 

up or downregulated (see also Supplementary Table 9; Supplementary Figure 8), with 17 223 

out of 22 directly interacting with DOK2 (Figure 3b), thus indicating the biological 224 

importance of DOK2 in AD pathogenesis. 225 

 226 

[Pathway and gene expression tissue specificity analysis for exome chip variants] 227 

 To reveal potential differences in terms of biological pathways and involved tissues 228 

for exome chip variant (exome chip) and common variants investigated in AD GWAS meta-229 

analysis studies (GWAS) from the EAGLE consortium, we performed gene-set pathway 230 

enrichment analysis for curated gene sets and gene ontology (GO) terms as well as tissue-231 

specific gene expression profile analysis21 for 53 tissue types and 11,688 samples from GTEx 232 

release 7 (see Methods). The pathway enrichment analysis identified one significant gene set 233 

including five genes (PBonferroni < 0.05; IL4R, IL13, JAK1, JAK2, TYK2) of the IL13 pathway 234 

for the exome chip in comparison to eight blood-cell related gene sets (including regulation of 235 

immunoglobulin production, B cell activation and B cell mediated immunity) for the EAGLE 236 

GWAS data. Recently, AD was characterized as an IL13-dominant disease based on high-237 

depth RNA-seq transcriptome data of 147 samples from cohorts of AD patients, psoriasis 238 

patients, and healthy controls, with IL13 being the most distinctive marker for AD22. We 239 

hypothesize that low-frequency and rare coding variants in genes of the IL13 pathway are 240 

further likely to be associated with AD. In the tissue specificity analysis, we tested for 241 

relationships between tissue-specific gene expression profiles and variant association statistics 242 

from exome chip and GWAS, respectively. For the exome-chip data, we observed a 243 

Bonferroni-corrected significant association (P < 9.43×10-4) with two skin tissue types (sun 244 

exposed and non-sun exposed skin; Figure 4a). In comparison the EAGLE GWAS data 245 

revealed a significant association with tissues whole blood and spleen (Figure 4b). 246 
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[Estimation of liability-heritability from exome chip variants] 247 

 To quantify the overall contribution of exome chip variation to AD risk, we used a 248 

restricted maximum-likelihood approach to model heritability attributable to genotypic 249 

variation across genotyped-only exome chip variants (see Methods). We found that common 250 

variants from exome chip (LD pruned, MAF ≥ 5 %; see Methods) explain 1.04 % of 251 

heritability on the observed scale (corresponding to 2.93 % on the liability scale assuming a 252 

prevalence of 0.14). By lowering the MAF threshold to 1%, exome chip heritability increased 253 

to 1.27 % (3.60 %). Dividing variants into low-frequency (1 % ≤ MAF < 5 %) and rare 254 

(MAF < 1 %), heritability was found to be 0.37 % for low-frequency variants (0.94 %) and 255 

4.47 % for rare variants (12.56 %). Furthermore, we estimated the heritability explained by 256 

the newly identified lead variants of DOK2 (rs3215892, rs56094005) and CD200R1 257 

(rs9865242). Variants rs3215892, rs56094005 and rs9865242 explain approximately 0.015 % 258 

(0.041 %), 0.004 % (0.012 %) and 0.013 % (0.035 %) on the observed scale (liability scale), 259 

respectively. 260 

  261 
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Discussion 262 

In conclusion, we analysed the association of AD with common, low-frequency and 263 

rare protein-coding variants and implicate two novel genes (DOK2 and CD200R1) 264 

contributing to AD risk. So far, 14.91 % (6.95 % excluding FLG mutations) of AD liability-265 

scale heritability could be attributed to common lead variants of 31 GWAS loci, estimated 266 

from a set of 5,775 clinically diagnosed AD patients and assuming a population prevalence of 267 

0.152,8. Recently, Ferreira et al.14 further reported a genome-wide liability-scale heritability 268 

estimate of 9.04 % from 1.2 million HapMap SNPs (assuming a population prevalence of 269 

0.14) and on the basis of self-reported information from questionnaires. Our newly identified 270 

variants (rs3215892, rs56094005, rs9865242) explain another 0.088 % of the variance in 271 

liability. Interestingly, approximately 12.56 % (s.e. 0.74 %) of liability-scale heritability is 272 

estimated to be explained by rare variants (MAF < 1 %), thus highlighting the importance to 273 

study rare coding variation in AD. Our results encourage future studies along the same path 274 

and highlight the importance to study the impact of protein-coding variants for phenotypically 275 

well-defined clinically diagnosed cohorts.  276 

Pathway enrichment analysis of exome chip data revealed that association signals of 277 

low-frequency and rare coding variants are enriched in five genes of the IL13 pathway, all of 278 

which are targets for novel systemic AD therapeutics in advanced stages of clinical 279 

investigations23, supporting the pivotal role of type 2 inflammation in AD pathogenesis1. 280 

Gene expression tissue profile analysis showed that exome chip variants associated with AD 281 

cumulatively have a stronger effect on skin tissue gene expression than common GWAS 282 

variants associated with AD, as identified in combination with whole transcriptome RNA-283 

sequencing data on lesional, non-lesional and healthy skin tissue as well as tissue samples 284 

from GTEx. In accordance with results from the exome chip study for multiple sclerosis12, we 285 

observed that the minor allele of low-frequency lead missense variants in DOK2 is mostly 286 

protective (in context of the odds ratio; Table 2). 287 
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The newly discovered genes DOK2 and CD200R1 have clear immunological 288 

functions, confirming that AD pathogenesis is primarily driven by immune dysregulation. 289 

Structural protein domain analysis, topological network and differential gene expression 290 

analyses suggest that missense variants in DOK2 (rs34215892; rs56094005) in combination 291 

with the missense AD risk variant in CD200R1 (rs9865242) together may affect tyrosine 292 

phosphorylation sites in DOK2 and CD200R1 (Figure 2). DOK2 belongs to the DOK gene 293 

family encoding for seven different DOK proteins (DOK1–7) being involved in signal 294 

transduction24-27. DOK1–2 are adaptor proteins and mainly expressed in 295 

hematopoietic/immune cells28 and have been implicated to negatively regulate proliferation 296 

and constitutive expression of DOK2 29. Further studies showed that both DOK1–2 are 297 

essential negative regulators of ERK signalling downstream of Toll-like receptor 430. Mice 298 

lacking DOK1–3 showed significant defects in immune cell development and in immune 299 

responses 31. Furthermore, DOK1–2 play a role in the maturation of NK cells 32, which have 300 

been shown to be reduced in AD. In line with these observations, we observed a significantly 301 

increased DOK2 and CD200R1 mRNA expression in lesional as compared to non-lesional 302 

skin samples of AD patients, and as compared to skin from healthy individuals. Our AD core 303 

network (Figure 3) further showed that DOK2 acts as a central hub gene interacting with 304 

CD200R1 as well as several candidate AD GWAS susceptibility genes on the cellular level. 305 

Our AD core network revealed 21 genes that are directly functionally related to DOK2 of 306 

which 16 are significantly upregulated (including DOK1) and one (RASGAP) is significantly 307 

downregulated in lesional skin samples of AD patients. Taken into account the reported 308 

inflammatory role of both DOK2 and CD200R1, we conclude that signalling through 309 

CD200/CD200R1/DOK2 could be an important new regulatory signalling pathway in AD. 310 

Extensive functional studies are required to detect all potential causal variants and thus to 311 

specify the contribution of the DOK2 and CD200R1 to overall disease susceptibility. 312 

  313 
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Methods 314 

Study samples and genotyping 315 

All cases had been diagnosed with AD by a dermatologist except for UK Biobank 316 

cases. All participants provided written informed consent and the study was approved by the 317 

ethics boards of the participating institutions, in agreement with the Declaration of Helsinki 318 

principles. 319 

 German discovery cohort 1. German AD patients (n = 1,056) were recruited at the 320 

Department of Dermatology at Christian-Albrechts-University Kiel, Department of 321 

Dermatology and Allergy at the Technical University of Munich, and the Department of 322 

Dermatology and Allergy at the University of Bonn. Data from healthy control individuals 323 

(n = 7,026) were obtained from the PopGen biobank33, the KORA S4 survey (an independent 324 

population-based sample from the general population living in the region of Augsburg, 325 

southern Germany) 34 and the Heinz-Nixdorf Recall (HNR) cohort35, Bonn. AD cases as well 326 

as controls were genotyped using Illumina HumanExome-12 v1.0 BeadChips (see also 327 

Supplementary Table 1). 328 

 German discovery cohort 2. German AD patients (n = 1,051) were recruited from 329 

dermatology clinics in Kiel or Hannover (the University of Kiel and Medizinische 330 

Hochschule of Hannover). The AD cases were genotyped using Illumina HumanCoreExome-331 

24 v1.0 A or HumanCoreExome-24 v1.1 A BeadChips. Data from healthy control individuals 332 

(n = 8,135) were obtained from the SHIP and SHIP-TREND cohorts (from the Study of 333 

Health in Pomerania, a prospective longitudinal population-based cohort study in West 334 

Pomerania)36. All German controls were genotyped using Illumina HumanExome-12 v1.0 335 

BeadChips (see also Supplementary Table 1). 336 

 German replication cohort. German AD patients (n = 1,789) were recruited from 337 

dermatology clinics in Kiel or Berlin (University Children’s Hospital, Charité 338 

Universitätsmedizin Berlin, as part of the Genetic Studies in Nuclear Families with AD 339 
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(GENUFAD) study). Data from healthy control individuals (n = 3,272) were obtained from 340 

University Hospital in Kiel and Lübeck at the Institute of Transfusional Medicine (see also 341 

Supplementary Table 1). 342 

 Danish replication cohort. All Danish AD cases (n = 292) are hospitalized severe 343 

cases from the COPSAC eczema REGISTRY. Healthy control individuals (n = 650) were 344 

obtained from the COPSAC2000 and COPSAC2010 birth cohorts37 in Copenhagen, 345 

Denmark. Both, cases and controls were genotyped on the Illumina Infinium 346 

OmniExpressExome-8 v1.4 BeadChip (see also Supplementary Table 1). 347 

 EAGLE GWAS replication cohorts. We used imputed summary statistics of the 348 

EAGLE Eczema Consortium for the discovery cohorts (excluding 23andMe). 349 

(https://data.bris.ac.uk/data/dataset/28uchsdpmub118uex26ylacqm) comprising 11,294,660 350 

SNP markers with MAF ≥ 1 % and 10,788 AD cases and 30,047 (see also Supplementary 351 

Table 1).8 For replication analysis, we used only European studies independent from our 352 

German discovery cohorts and where AD diagnosis was ascertained by a dermatologist. For 353 

the two DOK2 variants (rs34215892; rs56094005) association statistics were available for 354 

1,881 cases and 6,154 controls in total. For the CD200R1 variant association statistics for 355 

2,298 cases and 7,802 controls in total were available.  356 

 UK Biobank. Since only 33 (primary diagnosis; field 41203) and 50 patients 357 

(secondary diagnosis; field 41204) have been diagnosed with “atopic dermatitis” (ICD10 code 358 

L30) in UK Biobank, we used questionnaire information from UK Biobank (release of March 359 

2018). Key words “atopic dermatitis” and/or “eczema” are contained in self-reported data-360 

fields“ Non-cancer illness code; self-reported: eczema/dermatitis” (data-field 20002) and 361 

“Age hay fever, rhinitis or eczema diagnosed” (data-field 3761) and three others (data-fields 362 

6152, 41202, 41203). For the three lead variants (DOK2: rs34215892; rs56094005; CD200R1: 363 

rs9865242), we downloaded imputed summary association statistics 364 

(http://www.nealelab.is/uk-biobank/; http://www.nealelab.is/uk-biobank/faq; release March 365 
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2018; see also Supplementary Table 1) for (a) 83,407 cases with eczema, allergic rhinitis 366 

or/and hayfever (data-field 20002) versus 277,120 controls and (b) 9,312 cases with eczema 367 

or dermatitis (data-field 3761) versus 351,820 controls. Summary associations statistics had 368 

been generated using a least-squares linear model predicting the phenotype with an additive 369 

genotype coding (0, 1, or 2 copies of the minor allele), with sex and the first ten principal 370 

components from the UK Biobank sample QC file as covariates. 371 

 An overview of the study design is shown in Supplementary Figure 1, and detailed 372 

characteristics of the discovery and replication case-control cohorts are provided in 373 

Supplementary Tables 1.  374 

 375 

Genotype calling, quality control and technical validation 376 

 DNA samples of discovery cohorts were genotyped on Illumina HumanExome-12 377 

v1.0, Illumina HumanCoreExome-24 v1.0 A or HumanCoreExome-24 v1.1 A BeadChips. 378 

Genotyping calling was performed separately for the three different chips using GenTrain 379 

version 2.0 in GenomeStudio Data Analysis software. Sample and marker quality control 380 

(QC) was performed with PLINK (v1.9; https://www.cog-genomics.org/plink/1.9)38. Sample 381 

exclusion criteria were based on call rate (< 98 %), average heterozygosity (±5 s.d. from the 382 

mean) and non-European ancestry defined as population outliers from principal component 383 

analysis (PCA) using EIGENSTRAT39 (see also Supplementary Figure 9). Duplicated and 384 

related samples (PI_HAT > 0.8 and PI_HAT > 0.1875), respectively, were removed. SNP 385 

markers were excluded due to low call rate (< 95 %), deviations from Hardy-Weinberg 386 

equilibrium (p < 10-5) and differential missingness between cases and controls (pfisher < 10-50). 387 

insertions/deletions, duplicated and tri-allelic variants were further removed. After QC, both 388 

discovery sets were merged. The resulting data set comprised 143,884 overlapping single 389 

nucleotide variants (SNVs) and a total number of 1,913 cases and 14,295 controls (see also 390 

Supplementary Figure 1, Supplementary Figure 10). EVOKER (v2.3; 391 
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https://sourceforge.net/projects/evoker/)40 was used to manually inspect intensity cluster plots 392 

(see also Supplementary Figure 11) for 6,697 SNVs according to the following criteria: 393 

SNVs occurring only in cases, only in controls or occurring more frequent (factor > 10) in 394 

cases than controls. If acceptable the genotypes were manually corrected and reintegrated into 395 

QCed data sets.  396 

 Replication genotyping for the German replication cohort was carried out with 397 

TaqMan technology from Applied Biosystems. QC was performed with PLINK38. Marker 398 

with a call rate of < 95 % or marker deviating from Hardy-Weinberg equilibrium (p < 10-5) 399 

were excluded. 400 

Technical validation of low-frequency lead variant rs34215892: 79 German AD cases 401 

with heterozygotic or homozygotic genotypes for the rare allele of DOK2 (rs34215892; 402 

MAFcases = 2.5 %; n = 79) of German data sets 1 and 2 were genotyped via TaqMan for 403 

technical validation. The validation confirmed genotypes derived from the exome chip. 404 

 405 

Genotype imputation and dosage-based association analysis 406 

 We used the genotype imputation service provided by the Wellcome Trust Sanger 407 

Institute (https://imputation.sanger.ac.uk). The Haplotype Reference Consortium (HRC) 408 

created a large reference panel (HRC.r1)41 consisting of 64,940 haplotypes with 39,635,008 409 

SNPs of predominantly European origin. EAGLE (v2.0.5; 410 

https://data.broadinstitute.org/alkesgroup/Eagle)42 was applied for phasing against the 411 

reference panel followed by the imputation using PBWT (Positional Burrows-Wheeler 412 

Transform)43.  For German discovery cohort 1 3,942,401 SNVs and for German discovery 413 

cohort 2 3,746,633 SNVs were imputed. Post-imputation, SNPs with an info score of less 414 

than 0.5, as well as tri-allelic variants were removed from each data set. Then for both data 415 

sets a fixed-effects meta-analysis was conducted.  416 

 417 
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Single marker association testing 418 

RAREMETALWORKER was used with the first ten principal components from PCA 419 

as covariates to analyse individual imputed studies and to generate association summary 420 

statistics that can later be combined across studies. Results were combined by a meta-analysis 421 

using RAREMETAL44. For the gene-based association testing we used the same approach as 422 

for the genotyped variants. EPACTS (v3.2.3; http://genome.sph.umich.edu/wiki/EPACTS) 423 

was used to annotate the imputed variants followed by a gene-based analysis for all protein-424 

altering variants.  425 

 Due to insufficient statistical power to perform single marker tests for rare variants 426 

(power = 15 % to detect an odds ratio of 2 with MAF = 1% at a Bonferroni-corrected 427 

significance threshold of 0.05/110,903=4.5x10-7), single variant association tests were carried 428 

out for common and low-frequency variants (MAF ≥ 1%). In the single marker association 429 

test, we examined genotyped and imputed variants with MAF ≥ 1 %, Hardy-Weinberg 430 

equilibrium (p < 10-6) and with consistent direction of effects in across both studies. 431 

Following QC, a total number of 1,246,386 SNPs was available for association testing across 432 

1,913 AD cases and 14,295 population controls (see also Supplementary Figure 10). To 433 

check for residual population stratification before and after imputation, we generated a set of 434 

‘null’ SNPs (ngenotyped = 14,622; nimputed = 39,654) based on the intersection of SNPs available 435 

for both data sets after filtering for LD (r2 > 0.5) and allele frequency (MAF > 5 %). For the 436 

genotyped and imputed data sets 14,328 and 38,759 'null' variants remained after exclusion of 437 

SNPs from the MHC region (chr6:25-34 Mb) as well as from established AD loci (n = 31), 438 

respectively. For German discovery cohort 1 we obtained genomic inflation factor 439 

λimputed = 1.06 and λ1000imputed = 1.04 (λgenotyped = 1.07 and λ1000genotyped = 1.04), for German 440 

discovery cohort 2 λimputed = 1.03 and λ1000imputed = 1.02 (λgenotyped = 1.05 and 441 

λ1000genotyped = 1.03), respectively, indicating minimal evidence of residual population 442 

stratification (see also Supplementary Figure 2). 443 
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For each cohort we used RAREMETALWORKER44 to compute score test statistics as 444 

well as the corresponding variance-covariance matrix with the first ten principal components 445 

as covariates. The following meta-analysis was performed with RAREMETAL. Odds ratios 446 

(ORs) were calculated with PLINK (v1.9)38 using a logistic regression model (--dosage 447 

option) with the first ten principal components from PCA as covariates for each single data 448 

set. For exome chip genotyped variants, genome-wide significance threshold of p < 5×10-8 449 

was applied and only variants with consistent direction of effects across both studies were 450 

considered to be associated with AD. For variants with p < 1×10-5, genotype cluster plots 451 

were manually inspected and assessed with regards to shape and consistency across different 452 

chip types. If acceptable, genotypes were corrected using Evoker, reintegrated into the data 453 

set and analysis was repeated.  454 

 455 

Gene-based association testing 456 

The exome chip genotype data of the full allele spectrum (see also Supplementary 457 

Figure 10; excluding imputed variants) was converted into vcf format with PLINK 38 and 458 

variants were functionally annotated with EPACTS for 15,998 genes. The gene group file 459 

included protein2altering (non-synonymous, stop-gain and essential splice site; n = 120,086; 460 

see also Supplementary Table 2) variants, which was used for the gene-based analysis with 461 

RAREMETAL44. Score statistics and covariance information were obtained with 462 

RAREMETALWORKER44 as described above. We applied the variance component test 463 

SNP-Set Kernel Association Test (SKAT)45 to model the possibility that minor alleles can be 464 

deleterious or protective. Bonferroni correction was applied for the number of genes, resulting 465 

in a significance threshold of α = 0.05/15,998 = 3×10-6.  466 

 467 

SNP selection for replication analysis 468 
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 For replication genotyping, we selected the most strongly associated SNP (n = 11) 469 

with p < 10−5 from each associated locus by means of PLINK’s clumping procedure (using 470 

default settings: p1 < 10-5, p2 < 0.05, r2 ≥ 0.5, kb = 250) representing 11 loci (see also 471 

Supplementary Table 5), which do not overlap genomic boundaries of the 32 previously 472 

reported AD GWAS loci2-8 (see also Supplementary Table 4). 473 

 474 

Bayesian fine-mapping analysis 475 

 A Bayesian fine-mapping analysis was carried out using FINEMAP46 in order to 476 

determine a credible set, a minimum set of SNVs containing all causal variants, and to 477 

calculate the posterior inclusion probability (PIP) for each SNP as causal in any of the models 478 

47 (see also Supplementary Figure 4). To this end, we extracted regions of interest from the 479 

exome chip and calculated the local LD structure in the discovery cohort by LDstore48, which 480 

served together with the exome chip summary statistics as an input for FINEMAP. We set the 481 

option --n-causal-snps 1. Analyses carried out with k = 2, 3, 5 (default) and 10 expected 482 

causal variants gave similar results. 483 

 484 

Variant effect prediction 485 

 We predicted the protein-altering effects of variants using SNPNEXUS 486 

(http://www.snp-nexus.org/). This software includes two tools: SIFT49 and PolyPhen50. 487 

Variants with SIFT score below 0.05 and/or PolyPhen-2 estimated false-positive rate below 488 

0.05 were considered to have a functional effect. 489 

 490 

Linkage disequilibrium (LD) estimates 491 

For LD calculations we used the LD link software from NIH with the LDpair option 492 

(v3.0, https://analysistools.nci.nih.gov/LDlink/)51,52. Pair-wise LD calculations are based on 493 
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the European population (CEU) comprising 503 samples of the 1000 Genomes Project Phase 494 

348. 495 

 496 

Functional variant annotation using HaploReg and RegulomeDB 497 

 The HaploReg (http://archive.broadinstitute.org/mammals/haploreg/haploreg.php) is a 498 

tool to explore annotations of the non-coding genome with the help of haplotype blocks53. 499 

Using the LD information of the haplotype blocks from the 1000 Genomes Project, linked 500 

SNPs and small indels can be visualized along with chromatin state and protein binding 501 

annotation from the Roadmap Epigenomics and ENCODE projects including the effect of 502 

SNPs on regulatory motifs, the effect of SNPs on expression from eQTL (expression 503 

quantitative trait loci) studies and sequence conservation. HaploReg v4 consists of a core set 504 

of 52,054,804 variants, which are primarily of single-nucleotide polymorphisms (SNPs) using 505 

all refSNP IDs, hg19 positions and alleles from dbSNP release b13753,54. In order to annotate 506 

variants by their effect on regulatory motifs, a library of position weight matrices (PWMs) 507 

was used55. The affinity in the reference sequence is higher, if PWMalt – PWMref is negative53. 508 

A further application of the HaploReg tool is to identify evolutionarily conserved regions 509 

based on SiPhy (SIte-specificPHYlogenetic) analysis56. 510 

 We used HaploReg (version 4.1) to select the linked SNPs (r² ≥ 0.5 in European 511 

populations) with the index SNP from the 1000 Genomes Project, investigate characteristic of 512 

transcriptional regulation activity based on the Roadmap Epigenomics data, and predict the 513 

target gene according to the eQTL studies. 514 

 RegulomeDB is a database that annotates SNPs with known and predicted regulatory 515 

elements in the intergenic regions of the human genome. These elements include regions of 516 

DNase hypersensitivity, binding sites of transcription factors, and promoter regions that have 517 

been biochemically characterized to regulation transcription. RegulomeDB uses public data 518 

sets from GEO, the ENCODE project, and published literature57. 519 
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 520 

Immunohistochemistry 521 

 The staining procedure was adapted from a protocol previously described58. Formalin-522 

fixed and paraffin-embedded skin samples from healthy controls as well as from lesional and 523 

non-lesional sites of AD patients were investigated. The 4.0 µm tissue sections were 524 

deparaffinised in xylene and dehydrated in graded ethanol solutions. Then tissue sections 525 

were heated for 20 min at 80 °C in EDTA/Tris buffer, pH 9.0, for antigen retrieval. To block 526 

endogenous peroxidase activity the sections were incubated with 30 ml/l H2O2 for 20 min. 527 

After incubation with a mouse anti-Dok2 monoclonal antibody (dilution 1:200, Santa Cruz 528 

Biotechnology, Inc., Dallas, Texas, US) at 4 °C overnight, staining was performed using the 529 

labelled streptavidin-biotin method. For the negative tissue section, the primary antibody was 530 

omitted. Examination and judgment of the staining was carried out semi-quantitatively and 531 

rated by the degree of infiltration and abundance by an expert dermatopathologist.  532 

 533 

Differential gene expression analysis 534 

 We performed differential gene expression analysis using a recently published RNA-535 

seq study of skin samples from 27 AD patients and 38 healthy controls22. Sample preparation 536 

and sequencing was described in the original publication22. In brief, total RNA was obtained 537 

from 5mm skin punch biopsies and sequenced on the Illumina HiSeq2500 with 2x125 bp after 538 

preparation using the Illumina Truseq® Stranded total RNA Protocol. After quality control 539 

and mapping to the human reference genome (b37) RNA read counts were TMM-normalized 540 

(Trimmed mean of M-values normalization) and log2-transformed for analysis. Genes of 541 

interest selected by the network analysis were investigated in lesional (L) and non-lesional 542 

(NL) skin of AD patients and compared with expression values from skin samples of healthy 543 

controls using the Mann-Whitney-U test on a nominal significance threshold. 544 
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 545 

In silico structural protein domain analysis 546 

 Protein sequence annotations and domain borders indicated in Figure 2 were derived 547 

from UniProt (DOK2_HUMAN/O60496, MO2R1_HUMAN/Q8TD46). The 3D structure of 548 

CD200/CD200R1 receptor complex was obtained from the PDB (PDB ID 4bfi) and 549 

visualized using PyMOL59,60. 550 

 551 

Functional AD core disease network 552 

 We developed a functional AD core network depicting the most important functional 553 

interactions prioritized from candidate genes of 32 known AD GWAS risk loci as well as 554 

genes DOK2 and CD200R1 identified in this study. In a first step, we used we used 555 

Cytoscape61 in combination with BisoGenet62 for network construction and searched for 556 

topologically important nodes, commonly referred to as hubs. As an input we used 42 genes 557 

including the 40 candidate genes from 32 known AD GWAS loci listed in Paternoster et al.8 558 

as well as genes DOK2 and CD200R1. Using BisoGenet, we retrieved information from 559 

public databases including DIP63, BIOGRID64, HPRD65, IntAct66, MINT67, BIND68. The 560 

databases consider protein-protein or protein-gene interactions based on experimental 561 

evidences. The constructed network had 228 nodes and 562 interactions (see also 562 

Supplementary Figure 7) and included genes and proteins that have interactions with at least 563 

two of the 42 input genes (or encoded proteins). We then ranked the 228 genes based on a 564 

prioritization function (Equation 1) of topological properties including the node degree (D), 565 

betweenness centrality (BC), closeness centrality (CC) and clustering coefficient (ClC) of a 566 

protein or gene (see also Supplementary Table 8, Supplementary Figure 7). 567 

 568 

Equation 1: Equation for ranking highly connected and most important proteins within 569 

the constructed AD network: V(N) denotes the set of nodes in the network N. Here DN(p), 570 
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BCN(p), CCN(p) and ClCN(p) denote network properties Degree, Betweenness Centrality, 571 

Closeness Centrality and Clustering coefficient, respectively, of the protein or gene identifier 572 

(denoted as p) in N. To give equal importance to each property, for each property, the 573 

property value was normalized according to the maximum value (Equation 1): 574 

 575 

 576 

 577 

 In a next step, we constructed an AD core network based on functional features 578 

including co-expression, co-localization, genetic interactions, pathway information, physical 579 

interactions and shared protein domains using the GeneMANIA69 App for Cytoscape, and we 580 

used the top ten hub nodes from the protein-protein and protein-gene network as input. In 581 

brief, GeneMANIA finds functionally similar genes using a wealth of human genomics, 582 

transcriptomics and proteomics data by highly weighting protein domain similarity networks 583 

and suggesting additional genes with a similar domain structure. GeneMANIA uses hundreds 584 

of data sets and hundreds of millions of interactions that have been collected from: GEO, 585 

BioGRID, EMBL-EBI, Pfam, Ensembl, NCBI, MGI, I2D, InParanoid and Pathway 586 

Commons. Our final AD core disease network (Figure 3a) included 30 nodes and was 587 

visualized with GeneMANIA 588 

  589 

FUMA – Functional Mapping and Annotation of Genome-Wide Association Studies 590 

 We used FUMA’s70 SNP2GENE function to compute gene-based p-values (gene 591 

analysis) and gene set p-values (gene set analysis) from association summary statistics of the 592 

exome chip data and the GWAS EAGLE consortium data, respectively. In FUMA version 593 

1.3.3c, 10,655 gene sets were provided, including 4,738 curated gene sets and 5,917 GO 594 

terms from MsigDB v6.1. MAGMA v1.621 gene-set (pathway enrichment) analyses used the 595 
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full distribution of SNP p-values and Bonferroni correction was applied for tested gene sets. 596 

The 1000G phase 3 reference panel71 was used to calculate LD across SNPs and genes. 597 

 FUMA performs MAGMA gene-property (tissue specificity) analyses to test 598 

relationships between tissue-specific gene expression profiles and disease-gene associations. 599 

The gene-property analysis is based on a multiple regression model21 where gene-based p-600 

values (excluding genes from the extended MHC region on chr6:25-34 Mb) are converted to 601 

gene Z-scores. A one-sided test is performed to test the positive relationship between tissue 602 

specificity and genetic association of genes. Normalized gene expression values of 53 tissue 603 

types were obtained from GTEx version 7 604 

(http://www.gtexportal.org/home/datasets/GTEx_Analysis_2016-01-605 

15_v7_RNASeQCv1.1.8_gene_rpm.gct.gz), including 11,688 samples and 56,203 genes in 606 

total. This set of genes was filtered that the average TPM per tissue was >1 in at least one of 607 

the 53 tissues. TPM was winsorized at 50 (replaced TPM > 50 with 50). Then average of log 608 

transformed TPM with pseudocount 1 (log2(TPM+1)) per tissue (for either 53 detail or 30 609 

general tissues) was used as the covariates conditioning on the average across all the tissues. 610 

This resulted in 32,335 genes. MAGMA gene-property test was performed by default settings 611 

for both exome chip and EAGLE consortium GWAS summary association results. 612 

 613 

Estimation of SNP-based heritability 614 

 We used the genome-wide complex trait analysis (GCTA) software to calculate the 615 

heritability based on a restricted maximum-likelihood (REML) approach to genotypic 616 

variation across the exome chip72. We estimated the heritability for two LD pruned SNP sets 617 

including common SNPs with MAF ≥ 5 % (n = 14,622) and common and low-frequency 618 

SNPs with MAF ≥ 1 % (n = 20,918). In addition, we calculated the heritability for sets 619 

MAF < 5 % (n = 119,480), low-frequency (1 % ≤ MAF < 5 %, n = 8,705) and rare 620 

(MAF < 1 %, n = 110,903) variants separately (see also Supplementary Table 2). For each 621 
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component we computed genetic relatedness matrices, followed by the calculation of narrow-622 

sense heritability (h2) with 100 iterations of constrained REML fitting, assuming a disease 623 

prevalence of 0.1414. We used the first ten principal components from population structure as 624 

covariates. Furthermore, we estimated single SNP heritability for both DOK2 (rs34215892, 625 

rs56094005) and CD200R1 (rs9865242) using the method of So et al.73.  626 

  627 
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Figure legends 841 

Figure 1 – Exome chip association analysis identified two low-frequency (rs34215892 842 

and rs56094005; 1 % ≤ MAF < 5 %) and ten rare (MAF < 1 %) coding variants 843 

contributing to the genome-wide significant association signal at DOK2 (pDOK2 = 4.23×10-844 

13; Table 2). Minor allele frequency in AD cases (dark blue) and controls (light blue) are 845 

shown from discovery exome chip meta-analysis (see also Supplementary Table 1). 10 out of 846 

12 variants were predicted to be pathogenic (see Methods), suggesting that multiple missense 847 

variants contribute to the gene-based association signal. Both low-frequency lead variants are 848 

LD-independent (r2
rs56094005-rs34215892 = 0.0015). Variant effect predictions (by SIFT and 849 

PolyPhen-2) depicted in red (white or grey) represent amino acid substitutions predicted to be 850 

potentially damaging (probably not damaging or prediction not possible). SNV – single 851 

nucleotide variant; ESS – essential splice site; pos – amino acid position; PP – PolyPhen-2. 852 

PH – Pleckstrin-homology domain; PTB – Phosphotyrosine-binding domain; PRR1 – Prolin-853 

rich region 1; PRR2 – Prolin-rich region 2. A – Alanine; D – Aspatic acid; F – Phenylalanine; 854 

H – Histidine; L – Leucin; N – Asparagine; P – Proline; R – Arginine; S – Serine; T – 855 

Threonine; W – Tryptophan. 856 

857 
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Figure 2 – Hypothetical model constructed from protein sequence and structural 858 

domain analysis suggesting that missense lead variants rs56094005, rs34215892 859 

(p.L138S and p.P274L; DOK2) and rs9865242 (p.E312Q; CD200R1) are located near 860 

functionally important tyrosine phosphorylation sites and may interfere with 861 

CD200/CD200R1 receptor complex and DOK2 function.  862 

We assume a simplified illustration of DOK2 function in response to CD200R1 in human 863 

myeloid cells74 in which CD200/CD200R1 binding leads to tyrosine phosphorylation of the 864 

NPLY motif in the cytoplasmic tail of CD200R1 and the recruitment of the DOK2 adapter 865 

protein 18. DOK2 interaction with CD200R1 leads to DOK2 tyrosine phosphorylation at 866 

positions Y271/Y299 (activating RasGAP) and Y139 (activating DOK1), which leads to the 867 

recruitment of RasGAP and its subsequent activation19. Activated RasGAP inhibits mitogen-868 

activated kinase (MAPK) signalling and subsequenty reduces production of pro-inflammatory 869 

cytokines such as TNFα, INFγ, IL1, IL17, IL6, IL875,76. By means of our protein sequence 870 

and structure analyses we observed that variant rs56094005 (p.L138S) locates within a linker 871 

sequence between the PH and the PTB domain adjacent the Y139 phosphorylation-dependent 872 

DOK1 interaction site and may interfere with heterodimerization of DOK1 and DOK2 873 

required for full phosphorylation of the two proteins and signalling24. Variant rs34215892 874 

(p.P274L), located in the invariant RasGAP-SH2 binding consensus motif YxxPxD24, is likely 875 

affecting local protein structure conformation due to the unique structural rigidity of the 876 

proline side chain and therefore predicted to interfere with RasGAP signalling. Assuming an 877 

important stabilizing structural role of the proline within the binding motif, the variant 878 

p.P274L is likely to disturb the RasGAP activation by DOK2. The amino acid substitution of 879 

E to Q of variant rs9865242 (p.E312Q) causes a loss of positive charge in proximity of the 880 

NPLY motif and protein interaction site and may therefore modify protein-protein contacts 881 

and signalling. 882 
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Interacting CD200 and CD200R1 extracellular domains are visualized as structural models 883 

received from the Protein Databank (PDB ID 4bfi), while CD200R1 transmembrane and 884 

cytoplasmic tail is shown as blue lines. Variants are highlighted in red to indicate their 885 

relative positions within protein domains. The structural effect of protein variants cannot be 886 

modelled in 3D due to the lack of structural templates in the PDB for the concerned regions. 887 

Interactions between proteins are visualized as solid lines, following events as dashed lines. 888 

Cell membranes anchoring the receptors are illustrated in orange-grey. DOK2 domains were 889 

abbreviated as PH: Pleckstrin-homology domain, PTB: Phosphotyrosine-binding domain, 890 

PRR: Proline-rich region. 891 

 892 

 893 

 894 

895 
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Figure 3 – Multiomics-based network interaction analysis unveiled topologically and functionally important AD susceptibility genes and 896 

determined DOK2 as a central hub node interacting with CD200R1 and candidate susceptibility genes identified by previous large AD 897 

consortium GWAS. (A) We developed a functional AD core network depicting the most important functional interactions prioritized from 898 

candidate genes taken from 32 established AD GWAS risk loci8 as well as genes DOK2 and CD200R1 identified in this study. Topological network 899 

(step 1) and functional similarity (step 2) algorithms prioritized 30 core genes from initially 228 gene nodes and 562 interactions (see also 900 

Supplementary Figure 7) based on protein-protein, protein-gene, co-expression, co-localization, and shared protein domain data sets from public 901 

resources (see Methods). We identified DOK2 as a central hub node interacting with CD200R1 as well as main candidate genes (marked with *) 902 

from AD GWAS loci2-8. The majority of core genes (n = 22 out of 30; including DOK2) shows significantly upregulated and downregulated gene 903 

expression levels (depicted by black upwards and downwards arrows) in whole transcriptome mRNA-seq data on lesional and non-lesional skin 904 

samples from AD patients and skin samples from healthy individuals (see also Supplementary Table 9). Grey-striped nodes (n = 10, including 905 

DOK2) represent the most relevant genes from topological network analysis (step 1; see Methods), with two light grey-striped nodes (CLEC16A, 906 

RAD50) representing genes not interacting with DOK2 and seven dark grey-striped nodes (POLR2A, IL6, INPP5D, TRAF3, MICB, CD200R1, 907 

STAT3) representing genes directly interacting with DOK2. Non-striped nodes (n = 20) represent genes additionally added by a functional similarity 908 

search (step 2; see Methods), with 6 light grey non-striped nodes (CD200, NBN, MRE11A, MET, HUWE1, POLR2D) not directly interacting with 909 

DOK2 and 14 dark grey non-striped nodes (IL6, RASGAP, DOK1 among others) directly interacting with DOK2. (B) 17 out of the significantly up- 910 

or downregulated genes (n = 22; including DOK2), depicted with log2-transformed gene expression counts, are interacting with DOK2. 911 
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Figure 4 – Tissue specificity analysis using 53 tissue types from GTEx identifies a 914 

significant positive relationship between skin tissue gene expression profiles and exome 915 

chip association statistics. Exome chip single variant association score statistics (exome chip 916 

data set) and GWAS SNP association summary statistics from the EAGLE Eczema 917 

Consortium (GWAS data set), respectively, were converted to AD-gene association Z scores 918 

using a multiple linear principal components regression model as implemented in MAGMA21 919 

thereby ensuring that LD between SNPs is accounted for (see Methods). We conducted tissue 920 

specificity analysis with FUMA70 to test for a positive relationship between tissue-specific 921 

gene expression profiles constructed from 53 tissue types and 11,688 samples from GTEx v7 922 

and AD-gene associations (either from exome chip or GWAS data set) represented by gene-923 

based Z scores (see Methods). We used Bonferroni correction p < 0.05/53 = 9.43×10-4 as 924 

significance cut-off. (a) The exome chip data set revealed a positive relationship between 925 

gene expression profiles from skin tissues "sun exposed” and “non-sun exposed” and AD-926 

gene associations. (b) In comparison, the GWAS data set showed an association with tissues 927 

“whole blood” and “spleen”.  928 

 929 

 930 
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Tables 933 

Table 1 – Exome chip discovery, replication and UK Biobank single-marker association analysis revealed DOK2 and CD200R1 as genome-934 

wide significant AD susceptibility genes. 935 

dbSNP ID 
AA 

substitution 

Position 
(chr:bp) 

Gene 
Variant 

type 
A1/ 
A2 

AFcases AFcontrols 
Discovery 

ncases/ncontrols 

Discovery  
p-value/OR 
(95 % CI) 

Replication 
ncases/ncontrols 

Replication 
p-value/OR  
(95 % CI) 

Combined  
p-value/OR 
(95 % CI) 

rs34215892 
P274L 

8:21767240 DOK2 missense A/G 0.025 0.039 1,913/14,295 
9.83×10-7; 
0.61 (0.34–

0.86) 
3,962/10,076 

1.35×10-5;  
0.68 (0.56–

0.79) 

2.15×10-10;  
0.64 (0.53–0.76) 

rs9865242 
E312Q 

3:112642568 CD200R1 missense C/G 0.457 0.435 1,913/14,295 
5.80×10-6; 
1.57 (1.49–

1.65) 
4,349/11,724 

3.38×10-3;  
1.14 (1.09–

1.19) 

1.17×10-7;  
1.16 (1.13–1.19) 

 
UK Biobank summary statistics for 

AD, allergic rhinitis and/or hayfever (self-
reported) 

UK Biobank summary statistics for  
AD or dermatitis (self-reported)  

dbSNP ID 
AA 

substitution 

Position 
(chr:bp) 

Gene 
Variant 

type 
A1/ 
A2 

AFcases AFcontrols 
Phenotype 1 
ncases/ncontrols 

p-value AFcases AFcontrols 
Phenotype 2 
ncases/ncontrols 

p-value 

rs34215892 
P274L 

8:21767240 DOK2 missense A/G 0.027 0.029 83,407/277,120 3.35×10-6 0.025 0.029 9,312/351,820 2.50×10-3 

rs9865242 
E312Q 

3:112642568 CD200R1 missense C/G 0.474 0.467 83,407/277,120 1.35×10-8 0.487 0.468 9,312/351,820 8.33×10-8 

 936 

AA, amino acid; chr, chromosome of the marker; bp, genomic position from NCBI dbSNP build v150 (genome build hg19); Gene, candidate gene; 937 

A1, minor allele; A2, major allele; AF, allele frequency of A1; OR, estimated odds ratio; P-values and ORs were calculated with respect to the 938 

minor allele; genome-wide significant p-values (p < 5×10-8) are indicated in bold. All AD cases from discovery and replication panels had been 939 
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diagnosed with AD (eczema) by a dermatologist. Association results of UK Biobank (self-reported phenotypes; see also Supplementary Table 1) 940 

are listed separately.  941 
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Table 2 – Meta-analysis of gene-based aggregation tests for DOK2 increased the genome-wide significant association signal by more than 942 

two orders of magnitude in comparison to single-marker analysis (Table 1), indicating that multiple rare variants (with 10 out of 12 943 

variants predicted to be pathogenic; Figure 1) contribute to the association signal. 944 

Gene dbSNP ID 
Position 
(chr:bp) 

AFmean AA Prediction 
Discovery 

ncases/ncontrols 

pSKATdiscovery 

Replication 
ncases/ncontrols 

pSKATreplication 

Combined 
ncases/ncontrols 

pSKATcombined 

DOK2 

rs2242241# 8:21766881 0.00028 S394A Tolerated, possibly damaging 

1,913/14,295 
 
 

2.61×10-7 

3,932/10,076 
 
 

1.54×10-6 

5,845/24,371 
 
 

4.23×10-13 

rs145725971* 8:21767033 0.00065 H343R Tolerated, possibly damaging 
rs145405180# 8:21767148 0.00139 A305T Tolerated, benign 

rs34215892# 8:21767240 0.03708 P274L 
Damaging, probably 

damaging 

rs74909419* 8:21767265 0.00019 R266W 
Damaging, probably 

damaging 
rs141482665* 8:21767322 0.00012 N247D Tolerated, probably damaging 

rs200168233* 8:21767414 0.00015 R216H 
Damaging, probably 

damaging 

rs200503110# 8:21767417 0.00019 R215H 
Damaging, probably 

damaging 

rs149080191* 8:21768370 0.00009 E.S.S. 
 
 

rs56094005# 8:21769432 0.04026 L138S 
Damaging, probably 

damaging 

rs201025320# 8:21770011 0.00003 R25H 
Damaging, probably 

damaging 

rs142660088# 8:21771080 0.00043 L11F 
Damaging, probably 

damaging 
 945 
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AA, amino acid substitution; E.S.S., essential splice site; Gene, candidate gene; Chr, chromosome of the marker; Bp, genomic position from NCBI 946 

dbSNP build v150 (genome build hg19); AFmean, mean allele frequency of minor allele from discovery panels (see also Supplementary Table 5); 947 

Prediction, SIFT prediction, PolyPhen-2 prediction; pSKAT, p of Sequence Kernel Association Test; Bonferroni-corrected exome chip significant 948 

gene-based p-values (pgene < 0.05/15,998=3×10-6; 15,998 genes) are indicated in bold. Cohort specific association details are given in 949 

Supplementary Table 6. *, risk variant (in context of the odds ratio); #, protective variant 950 
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