
Supplemental information
breakpointR: an R/Bioconductor package to localize strand state
changes in Strand-seq data

David Porubsky​1†*​, Ashley D. Sanders​2†​, Aaron Taudt​1​, Maria Colomé-Tatché​1​, Peter M.
Lansdorp​1,2,3‡​, Victor Guryev​1‡

1) European Research Institute for the Biology of Ageing, University of Groningen,

University Medical Center Groningen, Groningen, The Netherlands.
2) Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, Canada.
3) Department of Medical Genetics, University of British Columbia, Vancouver, BC,

Canada.

Content:

Overview of the breakpointR workflow 2
BreakpointR detects template-strand-state changes in Strand-seq data. 2
Read-based binning 4
∆W calculation 4
Peak calling 4
Strand-state assignment 5
Breakpoint refining 6
Confidence interval calculation 6
BreakpointR results 7

Comparison of SCE detection between BAIT and breakpointR 9

Library selection criteria 12

Filtering repetitive and complex genomic regions 13

References 13

1

Overview of the breakpointR workflow

BreakpointR detects template-strand-state changes in Strand-seq data.
Strand-seq sequences only template strands for each homologous chromosome in every
single cell. In a diploid organism each template strand originates from a maternal and
paternal chromosome. Template strands originating from each parental homologue are
segregated in daughter cells following random inheritance patterns. Each template strand
can be identified based on the directionality it maps to the reference genome, and defined as
either Watson template (‘W’ - maps to negative strand) or Crick template (‘C’ - maps to
positive strand). For a given chromosome, when a daughter cell inherits two Watson
templates from both parental homologues we observe reads mapping exclusively in a
negative orientation (designated as ‘WW’ state). Conservely, reads mapping exclusively in
the opposite (positive) orientation are observed if both Crick templates were inherited
(designated as ‘CC’ state). Last, in a situation when Watson and Crick template strands are
inherited from either parental homologue we observe a mixture of W and C reads aligned to
the given chromosome (designated as ‘WC’ state). The expected frequencies of WW and
CC states are 25%, and 50% for the WC state. Because each inherited template strand
represents a single parental homologue, localized changes in template-strand-states
represent biological features (described below) that can be mapped to one of the
homologues.

Template-strand-state changes in Strand-seq data can result from large structural changes
in genome organization (​e.g. such as inversions) or sister chromatid exchange (SCE)
events. Inversions change the directionality of a piece of DNA, which is reflected in a
localized template-strand-state change on the inverted homologue ​(Sanders et al. 2016)​.
Similarly, SCEs cause a template-strand-change in single cells as a cause of a double
strand break repair occurring during DNA replication ​(van Wietmarschen and Lansdorp
2016; Claussin et al. 2017)​. The breakpoints of these rearrangements are seen as transition
points between the three strand states described above (​i.e. the template-strand-state will
change from ​e.g. WW to WC). As a result, each breakpoint will exhibit a defined change in
the proportion of Watson and Crick reads between segments upstream (3’ to) and
downstream (5’ to) of the transition point. Consequently, by measuring the proportions of
Watson and Crick reads along a chromosome breakpoints can be detected.

2

https://paperpile.com/c/lVSJEr/5mWn
https://paperpile.com/c/lVSJEr/Y3HS+U3No
https://paperpile.com/c/lVSJEr/Y3HS+U3No

Figure S1: A bi-directional sliding window algorithm implemented in breakpointR
A) To illustrate how the breakpointR algorithm works we will follow breakpoint mapping between a WC to CC
template state. (i) Example of binned read counts for a chromosome. Each vertical bar denotes number of 'Crick'
(C; teal) and 'Watson' (W; orange) reads in each bin. (ii) breakpointR starts with a user-defined bin of 20 reads in
total. Each bin is split in half such that there are 10 reads in the left and 10 in the right portion of the bin (red
arrows). The number of Watson (W) reads in the left portion of the bin are subtracted from the number of W
reads in the right portion, and the absolute value is reported as the ∆W. The algorithm then slides the bin forward,
advancing one read at a time while keeping the total number of reads (i.e.. 20) in each bin. Consequently, the bin
is dynamically resized (see lengths of red arrows) to accommodate changes in read density and sequencing
coverage seen for the chromosome. (iii) A ∆W value is recorded for each bin (see numeric vector). Peak calling is
then applied to search for high-confidence peaks in the ∆W. Peak confidence is determined using z-score
statistics to test for significance above a user-defined threshold (default: 1/3 of the highest ∆W). (iv) Significant
peaks are considered putative breakpoints that mark the location of template-strand-state changes. Using these
breakpoints to define segments for strand state assignment. The strand state is tested between all putative
breakpoints by measuring the total number of W and C reads in the segment and assigning the most-probable
template-strand-state using the Fisher’s exact test. A breakpoint is retained only if two neighboring segments
show different template-strand-state; otherwise the breakpoint is removed and the two segments are merged. B)
UCSC Genome Browser view of ∆W distribution (black bars) measured as an example region on chromosome 4.
Individual Strand-seq reads are shown as teal (Crick) and orange (Watson) colored ranges along the
chromosome.

3

Read-based binning
breakpointR takes as an input strand-specific sequencing reads aligned to the reference
genome in BAM file format. To calculate regional proportions of W and C reads, the
chromosome data are first binned. In breakpointR, we have implemented a bi-directional
read-based binning approach. We have previously shown that template-strand-state
changes can be determined by calculating the ratio of W and C reads within defined
genomic regions (bins) using the open-source software BAIT (Hills et al. 2013). However,
BAIT fragments the genome into uniform and fixed-sized bins and, therefore, breakpoint
resolution depends on selected bin length. Our read-based binning strategy scales each bin
dynamically to accommodate a user-defined number of reads and slides the window position
one read at a time to preserve the genomic context of each individual sequenced fragment.
Importantly, this approach accounts for biases that are caused by genome mappability
(Baslan et al. 2012; Navin and Hicks 2011) and variable or sparse sequence coverage
typical to single-cell data. This also ensures that every read is independently considered to
offer the highest possible breakpoint resolution for each single cell analyzed.

∆W calculation
In addition to a sensitive binning strategy, breakpointR implements a ‘∆W function’ to
calculate regional changes in the relative abundance of W and C reads. For a given
bi-directional bin, a delta W (∆W) value is calculated as the absolute difference in the total
number of W reads found in the first half of the bin to the total number of W reads found in
the second half of the bin. This produces a ∆W value, which is assigned to the end position
of last read in the left portion of a given bin and to the start position of the first read in the
right portion io that bin. Bin then slides forward by one read to repeat the calculation. By
sliding across the whole chromosome, a vector of ∆W values is created, which is then
interrogated to locate any change in the proportion of W and C reads along the
chromosome. In simple terms, the ∆W represents the template-strand-state of the region; a
consistent (‘unchanged’) template-strand-state will produce a low ∆W value, whereas a
template-strand-state change will produce a high ∆W value. Thus, by calculating ∆W values
for each sliding bin, template-strand-state changes, referred to as ‘breakpoints’, can be
located as peaks in the ∆W values.

Peak calling
High confidence peaks in the ∆W are determined by z-score statistics based on a
user-defined threshold. The threshold is input as a fraction of the highest detected peak
(highest ∆W) for the given chromosome. By default this threshold is set as 1/3 of the highest
∆W value. In order to avoid skewing calculation of standard deviation of ∆W we ‘trim’ user
defined percentage of extreme ∆W values (default: 10%). Standard z-score for each ∆W
value is calculated as follows.

z-score = ∆W - (∆W*threshold) / sd(∆W)

4

High confidence peaks are considered those with z-score >= 3.29, which correspond to a
99.9% confidence interval that the given ∆W value lies above the set threshold. Such high
confidence peaks are considered as putative breakpoints of a change in
template-strand-state. breakpointR assigns boundaries of the putative breakpoint to the end
position of the first read in the peak and the start position of the last read in the peak. Given
these breakpoint boundaries, the chromosome is split into individual segments, each
marking a location of a predicted template-strand-state change. To confirm the
template-strand-state change breakpointR then performs a strand state assignment for each
bin.

Strand-state assignment
For each segment defined during peak calling, the number of W and C reads are counted to
assign the most-likely template-strand-state using the Fisher Exact Test or binomial test. In
the Fisher Exact Test we consider W and C reads as two categorical variables and test how
likely the observed W and C read counts are, given the expected values if the segment was
WW, CC or WC. To do this, the expected number of W and C reads is calculated separately
for WW, CC and WC strand states based on the total number of reads in the segment and
given a user-defined fraction of ‘background’ reads (​i.e. proportion of reads expected to map
in the opposite direction in WW or CC strand-states). The background accounts for the
normal low-level noise seen in a typical Strand-seq library, which is on average ~5% for any
given cell. These values are used to fill contingency tables that test the most-probable state
given the observed W and C counts for the segment. An example showing the Fisher Exact
Tests is shown in Figure S2. Depicted are the contingency tables for a segment containing
57 total reads, where the observed C count is 50 and W count is 7, and where the
background level (​α​) is set to 0.05. The output are three p-values and the most-probable
strand-state is CC.

Figure S2: Fisher Exact Test contingency tables.
Fisher Exact Test results in the following p-values for each tested strand state: WC = 0.9999850; CC =
0.9530812; WW = 1.0000000, T​he smallest p-value is selected as the most likely strand state in a given region.

In addition, breakpointR implements strand state assignment using binomial test. Here
strand state probability ​p​t is calculated as the probability of observing a given number of W
reads in a genomic region with a strand-state ​t​ and is defined as follows:

5

In this definition, the level of background reads are represented as a constant parameter ​α​.
To account for large counts of W and C reads we operate in a logarithmic space. For both,
Fisher Exact Test and binomial test no multiple testing correction is applied as for each
genomic segment we merely try to assign the most likely strand state given the observed
read counts. Method to assign strand state to a genomic interval is defined by a ‘genoT’
parameter set to either ‘fisher’ or ‘binom’ what refers to Fisher Exact Test or binomial test
respectively.
To set the accuracy of strand state assignment for both Fisher Exact Test and binomial test
we considered various combinations of W and C reads for a total of 1000 reads (Figure S3).
In comparison both Fisher Exact Test and binomial test performs equally well in most cases.
Strand states predicted by Fisher Exact Test and binomial test agrees in 91% of all tested
combinations of W and C reads (Figure S3). Remaining 9% of cases represent a borderline
counts of W and C reads where it is difficult to decide if a given read counts belong to WC
state or pure WW and CC state. In such cases Fisher Exact Test leans towards WC state
while binomial test leans towards pure WW or CC state.

Breakpoint refining
Based on the results from the strand state assignment test the putative breakpoints that
were defined during peak calling are re-evaluated. For any two neighbouring segments that
are on either side of a putative breakpoint, the most-probable strand states are compared.
The breakpoint is retained only if the two strand states differ (​i.e. the strand state of the
segment upstream (3’) of the breakpoint is ​different to the strand state of the segment
downstream (5’) of the breakpoint). The different states suggests the predicted breakpoint
accurately located a template-strand-state change in the chromosome. Alternatively the
breakpoint is removed if the two neighboring segments do not differ in strand state (​i.e. the
strand state of the segment upstream (3’) of the breakpoint is ​the same as the strand state of
the segment downstream (5’) of the breakpoint). In this scenario the predicted breakpoint is
considered false as it does not represent a ​bonafide template-strand-state change in the
chromosome, and thus the two segments are merged. After testing each neighbouring
segment and merging the false breakpoint predictions, breakpointR reiterates the strand
state assignment test (for a maximum of 10 times) to confirm all remaining breakpoints
accurately predict template-strand-state changes in the chromosome. The results are a list
of breakpoints and strand states assigned to all neighbouring segments.

Confidence interval calculation
Once breakpoints are refined the breakpoint region is then expanded to encompass a
confidence interval. Confidence intervals are calculated with read-resolution by going
outwards from a breakpoint read by read (e.g. to the left), and testing the probability that the
reads within the tested interval belong to the other side of the breakpoint (e.g. to the right)
(this is equivalent to saying that the breakpoint is falsely positioned). Obviously, in doing so
we calculate two confidence intervals, one for the left side and one for the right side of the
breakpoint. The following example illustrates the procedure:
We have a breakpoint strand state assigned as ww-wc (watson/watson - watson/crick). Now,
for the left side of the breakpoint with ww-strand-strand, the probability of finding watson and
crick reads, if the breakpoint was falsely positioned and the reads actually belonged to the

6

right side with wc-strand-state, is and . Conversely, for the right .5probwatson = 0 .5probcrick = 0
side with wc-strand-state, the probability of finding watson and crick reads, if the breakpoint
was falsely positioned and the reads actually belonged to the left side with ww-strand-state,
is and . We can now employ a binomial test ackgroundprobcrick = b ackgroundprobwatson = 1 − b
for finding the probability p telling us how likely it is that the watson- and crick-read counts in
the tested interval actually belong to the other side of the breakpoint.
Another way to describe this is to say that for both left and right side of the breakpoint, we
test the null hypotheses that the reads within the tested interval are generated by a binomial
distribution with parameters from the other side of the breakpoint. A (left-sided) confidence
interval with threshold p = 0.01 would mean that the probability is 1% that the reads within
the confidence interval belong to the other (right) side of the breakpoint, and thus the
confidence is 99% that the true breakpoint lies within that interval.

BreakpointR results
The outputs of a breakpointR analysis include a ‘BreakPoint’ class object that stores the raw
directional reads, the vector of ∆W values, as well as all detected breakpoints for the input
file. Additionally, breakpointR prepares bed-formatted files of these data, which enables the
user to visualize their results directly in the UCSC Genome Browser. Last, breakpointR
outputs genome-wide and chromosome-specific plots of all the template-strand-state
changes located per input single cell, as well as a population-scale heatmap representing a
summary of all template-strand-states detected in the input dataset. Accordingly,
breakpointR provides the user with ample ways to interpret the Strand-seq data for biological
discoveries.

7

Figure S3: Strand state assignment using Fisher’s exact test in comparison to
binomial distribution test.
Left column: Distribution of Fisher probabilities calculated for all possible combinations of W and C reads given
the total of 1000 reads. X axis shows counts of C reads from 0 to 1000 and counts of W reads from 1000 to 0.
Right column: Distribution of binomial probabilities calculated for all possible combinations of W and C reads
given the total of 1000 reads. Combinations of directional reads are shown on x-axis. From 1000 to 0 for Watson
reads and from 0 to 1000 for Crick reads. For each combination of Watson and Crick reads the most likely strand
state (WW, WC or CC) and corresponding probability is reported on y-axis.

8

Comparison of SCE detection between BAIT and
breakpointR
We establish accuracy of strand-state-change detection using BAIT and breakpointR using
simulated set of Strand-seq libraries sampling, we simulated libraries containing various
fractions (1, 2.5, 5 and 7.5% of genome coverage, using GRCh38 reference) in order to
mimic range of genome coverage of real Strand-seq libraries ​(Chaisson et al. 2019)​. We
used our custom PERL script to simulate single-end Strand-seq libraries with 76bp long
reads by cutting the reference genome
(GCA_000001405.15_GRCh38_no_alt_analysis_set.fna) into 150bp (+/- 10SD around the
mean fragment size) long fragments (​https://github.com/daewoooo/breakpointR_paper​). The
simulated reads have then been mapped to the reference genome using BWA (version
0.17.17-r1188). Aligned reads have been sorted by SAMtools (version 1.4.1) and duplicated
reads have been marked by sambamba (version 0.6.6). In total 10 single-end Strand-seq
libraries have been simulated for each above mentioned fraction of the genome coverage
(Table S1). For each library we have simulated 5-7 randomly distributed
strand-state-changes around the genome (reflecting typical rate of sister chromatid
exchange in our studies). All simulated BAM files are freely available at zenodo site
(​https://doi.org/10.5281/zenodo.3359715​).
To compare BAIT and breakpointR we have downloaded the latest version of BAIT (v1.4)
available at Sourceforge (​https://sourceforge.net/p/bait/wiki/Home/​). We note that this
version of BAIT doesn’t work properly with the latest version of SAMtools (v1.9) and
therefore older version of SAMtools (version 1.4.1) have been used instead. All simulated
Strand-seq libraries were analyzed by both BAIT and breakpointR using 200kb and 1Mb
long genomic window. We kept constant BAIT parameters (BAIT -a -r -6 200000 and
1000000). Likewise, we analyzed all simulated data were analyzed using breakpointR
function called ‘breakpointr’ with the following parameters: windowsize = 200000 and
1000000, binMethod = 'size', pairedEndReads = FALSE, min.mapq = 10, filtAlt = TRUE,
background = 0.05, minReads = 100, conf=95. Our results of simulated strand-state-change
detection are freely available for both BAIT and breakpointR on github
(​https://github.com/daewoooo/breakpointR_paper​).
To compare BAIT and breakpointR we have assessed the fraction of simulated
strand-state-changes (n=247, by simulation of 5-7 events per 10 cells for 4 different genome
coverage levels) that overlaps with predicted strand-state-change by both tools either
directly or within a specified range of 10kb, 100kb or 500kb distance from the simulated
breakpoint (Figure S4, Table S2). Overall we found breakpointR to be able to detect more
simulated strand-state-changes than BAIT using both 200kb and 1Mb size genomic window.
Another important advantage of breakpointR over BAIT is that apart from calling breakpoint
as range between two consecutive reads assigned to different strand states, it also
calculates user defined confidence intervals (CI) for each detected breakpoint and thus
accounts for various levels of noise in single-cell Strand-seq data (see Calculation of
confidence intervals). In summary, 46.56% and 49.8% breakpoints predicted by breakpointR
overlap directly with simulated breakpoints using 200kb and 1MB window, respectively.

9

https://paperpile.com/c/lVSJEr/HDYq
https://github.com/daewoooo/breakpointR_paper
https://doi.org/10.5281/zenodo.3359715
https://sourceforge.net/p/bait/wiki/Home/
https://github.com/daewoooo/breakpointR_paper

Notably, more than 92% of simulated breakpoints falls within predicted confidence intervals
(CI = 0.95) of each breakpoint. In contrast, BAIT was able to directly detect only 27.13% and
21,86% simulated breakpoints using 200kb and 1MB window, respectively. The number of
detected breakpoints increases when we allow for overlap within 10kb, 100kb and 500kb
away from the simulated breakpoint. This true for both, breakpointR and BAIT while
breakpointR consistently provides more detected breakpoints than BAIT. Notably, using
larger window size (1Mb) BAIT was able to detect less than 68% of simulated breakpoints
(Figure S4, Table S2). While BAIT provides higher breakpoint resolution than breakpointR, it
does so at costs of missing the real breakpoint position. This is shown by consistently larger
distances of BAIT breakpoints from the simulated ones (Figure S4A.B, ii and iii). In this tool
comparison only 4 out 247 simulated breakpoints were missed by breakpointR. All of these
missed breakpoints lied within 1Mb from the start of the chromosome and therefore are
difficult to detect using window size used in this comparison. Overall, breakpointR achieved
a better precision and recall of simulated breakpoints, at both tested window sizes (200kb
and 1Mb), than BAIT (Figure S4C).

Table S1: Summary read mapping statistics of simulated Strand-seq libraries

10

Figure S4: Comparison of breakpoint detection between breakpointR and BAIT on
simulated data

A) Comparison of BAIT and breakpointR for 200kb genomic window. (i) Distance of the detected
breakpoint boundaries either by BAIT or breakpointR (BreakPR and BreakPR.CI - 95% confidence
intervals) to the simulated breakpoint. (ii) Shows a median width (bp) of breakpoints predicted by BAIT
and breakpointR.

B) Comparison of BAIT and breakpointR for 1Mb genomic window.
C) Precision-recall curve comparing performance of BAIT and breakpointR for 200kb (i) and 1Mb (ii) long

genomic window. This plot evaluates how many simulated SCEs (‘simul’) overlap directly
(‘overlap.direct’, that is when simulated breakpoint falls within predicted breakpoint range), with
breakpoint calls made by BAIT, breakpointR (‘breakPR’) and breakpointR confidence intervals
(‘breakPR.CI’). In addition predicted breakpoints that are within 10kb (‘overlap.10kb’), 100kb
(‘overlap.100kb’) and 500kb (‘overlap.500kb’) away from the simulated SCE breakpoint are counted.
The total number of SCE breakpoints detected by both tools (‘total.sce’) is shown as well.

11

Table S2: Summary of simulated breakpoint detection
Column ‘Overlap’ distinguishes ‘overlap.direct’ meaning that a simulated breakpoint falls directly within predicted
breakpoint range either by BAIT or breakpointR. ‘overlap.10kb’ allows predicted breakpoint to be within 10kb
distance from the simulated breakpoint. Similarly ‘overlap.100kb’ and ‘overlap.500kb’ allow for even larger
distance.

Library selection criteria
Low quality single cell libraries should be discarded prior to breakpointR analysis to ensure
specificity of breakpoint detection. This is because variations in BrdU labeling, BrdU
removal, cell sorting efficiency and library preparation can all result in variability in the
number and distribution of reads seen for a single Strand-seq cell. Such poor quality
Strand-seq data can result in false-positive breakpoint calls, and therefore we recommend a
strict library selection step prior to breakpointR analysis. Library selection criteria have been
described in detail in ​(Porubský et al. 2016; Sanders et al. 2017)​. Briefly, this involves
discarding cells that exhibit low sequence coverage (​i.e. libraries containing less than 50,000
reads), cells that contain ‘noisy’ Strand-seq data (​i.e. libraries containing more than 10%
background reads on WW or CC chromosomes), or cells that show non-uniform read
distribution (​i.e. libraries with patchy or puntate read coverage). By evaluating the aligned
Strand-seq data, selection of input cells should be performed prior to analysis to ensure only
high quality libraries are considered during breakpoint detection.

12

https://paperpile.com/c/lVSJEr/6XveF+6cWaK

Filtering repetitive and complex genomic regions
It is worth noting that imperfections such as repeated sequences that are collapsed to a
single locus in reference genome might cause false positive calls. For instance, centromeric
regions or regions with spurious mapping of short-reads in regions such as segmental
duplications (as judged by higher coverage and/or regional WC patterns invariant across all
single cells) can result in measurable template-strand-state changes that do not reflect
biological features. To account for this breakpointR contains a parameter called
‘maskRegions’ where the user can specify genomic regions that should be excluded in the
analysis, such as (peri-) centromeric regions, regions with unexpectedly high read coverage,
or regions that show WC state in all libraries. This feature should eliminate potential artefacts
that might arise in such structurally complex regions of the human or other genomes.

References
Chaisson, Mark J. P., Ashley D. Sanders, Xuefang Zhao, Ankit Malhotra, David Porubsky,

Tobias Rausch, Eugene J. Gardner, et al. 2019. “Multi-Platform Discovery of
Haplotype-Resolved Structural Variation in Human Genomes.” ​Nature Communications
10 (1): 1784.

Claussin, Clémence, David Porubský, Diana Cj Spierings, Nancy Halsema, Stefan Rentas,
Victor Guryev, Peter M. Lansdorp, and Michael Chang. 2017. “Genome-Wide Mapping
of Sister Chromatid Exchange Events in Single Yeast Cells Using Strand-Seq.” ​eLife​ 6
(December). https://doi.org/​10.7554/eLife.30560​.

Porubský, David, Ashley D. Sanders, Niek van Wietmarschen, Ester Falconer, Mark Hills,
Diana C. J. Spierings, Marianna R. Bevova, Victor Guryev, and Peter M. Lansdorp.
2016. “Direct Chromosome-Length Haplotyping by Single-Cell Sequencing.” ​Genome
Research​ 26 (11): 1565–74.

Sanders, Ashley D., Ester Falconer, Mark Hills, Diana C. J. Spierings, and Peter M.
Lansdorp. 2017. “Single-Cell Template Strand Sequencing by Strand-Seq Enables the
Characterization of Individual Homologs.” ​Nature Protocols​ 12 (6): 1151–76.

Sanders, Ashley D., Mark Hills, David Porubský, Victor Guryev, Ester Falconer, and Peter M.
Lansdorp. 2016. “Characterizing Polymorphic Inversions in Human Genomes by
Single-Cell Sequencing.” ​Genome Research​ 26 (11): 1575–87.

Wietmarschen, Niek van, and Peter M. Lansdorp. 2016. “Bromodeoxyuridine Does Not
Contribute to Sister Chromatid Exchange Events in Normal or Bloom Syndrome Cells.”
Nucleic Acids Research​ 44 (14): 6787–93.

13

http://paperpile.com/b/lVSJEr/HDYq
http://paperpile.com/b/lVSJEr/HDYq
http://paperpile.com/b/lVSJEr/HDYq
http://paperpile.com/b/lVSJEr/HDYq
http://paperpile.com/b/lVSJEr/HDYq
http://paperpile.com/b/lVSJEr/HDYq
http://paperpile.com/b/lVSJEr/U3No
http://paperpile.com/b/lVSJEr/U3No
http://paperpile.com/b/lVSJEr/U3No
http://paperpile.com/b/lVSJEr/U3No
http://paperpile.com/b/lVSJEr/U3No
http://paperpile.com/b/lVSJEr/U3No
http://dx.doi.org/10.7554/eLife.30560
http://paperpile.com/b/lVSJEr/U3No
http://paperpile.com/b/lVSJEr/6XveF
http://paperpile.com/b/lVSJEr/6XveF
http://paperpile.com/b/lVSJEr/6XveF
http://paperpile.com/b/lVSJEr/6XveF
http://paperpile.com/b/lVSJEr/6XveF
http://paperpile.com/b/lVSJEr/6XveF
http://paperpile.com/b/lVSJEr/6cWaK
http://paperpile.com/b/lVSJEr/6cWaK
http://paperpile.com/b/lVSJEr/6cWaK
http://paperpile.com/b/lVSJEr/6cWaK
http://paperpile.com/b/lVSJEr/6cWaK
http://paperpile.com/b/lVSJEr/5mWn
http://paperpile.com/b/lVSJEr/5mWn
http://paperpile.com/b/lVSJEr/5mWn
http://paperpile.com/b/lVSJEr/5mWn
http://paperpile.com/b/lVSJEr/5mWn
http://paperpile.com/b/lVSJEr/Y3HS
http://paperpile.com/b/lVSJEr/Y3HS
http://paperpile.com/b/lVSJEr/Y3HS
http://paperpile.com/b/lVSJEr/Y3HS

