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Abstract

Measurements achieved with ptychographic imaging are a special case of diffrac-

tion measurements. They are generated by illuminating small parts of a sample

with, e.g., a focused X-ray beam. By shifting the sample, a set of far-field

diffraction patterns of the whole sample are then obtained. From a mathemati-

cal point of view those measurements are the squared modulus of the windowed

Fourier transform of the sample. Thus, we have a phase retrieval problem for

local Fourier measurements. A direct solver for this problem was introduced by

Iwen, Viswanathan and Wang in 2016 and improved by Iwen, Preskitt, Saab and

Viswanathan in 2018. Motivated by the applied perspective of ptychographic

imaging, we present a generalization of this method and compare the different

versions in numerical experiments. The new method proposed herein turns out

to be more stable, particularly in the case of missing data.
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1. Introduction

Ptychography refers to a diffraction imaging technique which collects a num-

ber of diffraction patterns of an object in the far-field, where each pattern is

generated by illuminating a small subregion one at a time [1, 2, 3, 4]. The se-

lection of the small and necessarily overlapping subregions is managed by using

a mask, or window, placed between the X-ray beam and the object. For every

shift of the mask, a diffraction pattern is recorded and the imaging task con-

sists of reconstructing the object function from this collection of measurements.

Since the measurement takes place in the far-field it is given as the squared

modulus of the windowed Fourier transform of the object. This, in particular,

results in a loss of the phase information of the signal. For the image formation

we therefore have to reconstruct the object function from phaseless localized

Fourier transform data. The imaging task in ptychography can thus be formu-

lated in mathematical terms as follows. For an unknown object modeled as a

complex-valued function f ∈ L2(Rd) supported on a compact set Ω ⊂ Rd we

measure

y(τ, ω) =
∣∣F [f Tτw](ω)

∣∣2 =
∣∣F [T ∗τ f w](ω)

∣∣2, (1)

where w ∈ L2(Rd) is a compactly supported window function, Tτf(x) = f(x−τ)

is the translation operator with adjoint T ∗τ f(x) = f(x+τ), and F is the Fourier

transform defined as Ff(ω) =
∫
Rd f(x) e−2πiω·x dx. We have to invert the non-

linear mapping f → y. Note that the latter formulation in (1) more closely

represents the real experimental situation where the object is shifted instead

of the window. Of course, in concrete applications we are given only samples

{y(τ`, ξk)} and the inversion problem has to be formulated in a fully discrete

regime. Discretization of (1) on a grid {n/N : n = 0, . . . , N − 1} leads to

y`,k = |〈f ,MkT`w〉|2, (2)

where f = (f(0), . . . , f(N − 1))T and w = (w(0), . . . , w(N − 1))T ∈ CN are

vectors containing the sampled values of the function f resp. w. The translation
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operator T` and modulation operator Mk are acting on the entries of the vectors

by T`f(n) = f(n−` mod N) resp. Mkf(n) = e2πink/Nf(n). They have obvious5

matrix representations. Recovery of f from data (2) falls in the class of problems

where a vector x has to be recovered from data of the form |〈x,ϕm〉| with {ϕm}

being a frame for CN . We are considering here the case where frame is given as

a discrete Gabor frame {MkT`w} for k = 0, . . . ,K and ` ∈ L ⊆ {0, . . . , N − 1}

with card(L) = L+ 1 for K, L ≤ N − 1.10

The general Phase Retrieval Problem has a long history and it was tackled

in many different ways and under various assumptions. We will make no at-

tempt to review these developments and the history in full detail here, but we

give a short overview over the in our opinion three main approaches. For more

detailed discussions we refer to [5, 6, 7] and references cited there.15

The first group is the one of iterative methods that are used in practice. Among

the diverse techniques one method seems to be particularly popular among

practitioners. In the physics literature this method is known as the Ptycho-

graphic Interative Engine (PIE), and is regarded as a standard approach for

image formation from ptychographic data within the physics community [8, 9].20

Mathematically this approach is an alternating projection method which goes

back to the work of Gerchberg and Saxton [10] and Fienup [11]. The method

projects alternately on the set which consists of functions with support in Ω and

the set of functions which agree with the measurement [12]. The latter set is

non-convex which makes the problem notoriously difficult to analyze theoreti-25

cally. Due to the non-convexity, the alternating projection method can converge

to a stationary point that differs from the true solution. Determining a good

starting point in general is also not easy and some attempts were made to come

up with a good initial guess, see for example [13] for a recent approach in this

regard. Nevertheless, up to now there exist no global recovery guarantees for30

this group of approaches, i.e., alternating projection techniques.

As a second group, we would like to mention (non-)convex optimization meth-

ods; in particular, the convex PhaseLift [14] and the nonconvex Wirtinger Flow

[15]. When O(N log4N) masked Fourier coded diffraction pattern measure-
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ments are considered there exist theoretical recovery guarantees for a number35

of algorithms including Wirtinger Flow [15] and PhaseLift [16, 17]. However, to

the authors knowledge there are no theoretical results in this group concerning

the ptychographic setup. It also seems to be difficult to adapt these algorithms

to this setup. However, recently, a version of the Wirtinger Flow for ptychog-

raphy was introduced [18].40

The third group comprises direct methods which is also the group in which

the method discussed here belongs. The former direct methods, especially,

those based on the continuous Wigner distribution deconvolution [19, 20], seem

to require a high number of measurements. In addition, theoretical recovery

guarantees in the noisy setting are not analysed. Quite recently, a new direct45

algorithm combining a discrete version of the Wigner distribution deconvolution

with angular synchronization was introduced in the 1D case [21].

The method we present in this paper is an adoption of a fast direct solver

for the phase retrieval problem (2) as it was developed by Iwen et. al. in [22,

23]. The modifications, i.e., reconstruction using a different basis and different50

windows as as described in Section 2.1 allow to apply the algorithm to practical

data..

The method is based on a lifting scheme as used in the PhaseLift algorithm

[14] which transforms the discretized non-linear problem (2) into an equivalent

linear problem for the lifted variables ff∗. Due to the small local support of the55

window this lifted linear system reveals a banded structure. Thus, fewer overall

measurements are necessary to solve the problem at hand. After recovering

some of the entries of the lifted variables ff∗ the phase of the individual entries

of f can be determined by an angular synchronization approach. This finally

results in the reconstruction of the function f on the grid up to a global phase60

multiple provided that the measurements are sufficiently informative.

In this paper we will demonstrate how to apply a new algorithm for phase

retrieval from short-time Fourier measurements to the concrete experimental

setup of ptychography. The paper is organized as follows. We state the Algo-

rithm in the Section 2. Here, we first introduce the 1D case and later give its65
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2D version. In Section 3 we demonstrate the method with numerical examples.

Finally, Section 4 concludes with a discussion of the proposed technique.

2. Phase Retrieval from Localized Fourier Measurements

2.1. Description of the Algorithm

Let f, w ∈ L2(Rd) be compactly supported functions. Without loss of gen-

erality we may assume supp(f) ⊆ [0, 1]d. The short-time Fourier transform of

f with window w is defined as

Vwf(τ, ω) :=

∫
Rd
f(t) w̄(t− τ) e−2πiωt dt = 〈f,MωTτw〉L2(Rn), (3)

where Tτw(t) = w(t− τ), Mωw(t) = e2πiωtw(t) are the translation resp. mod-

ulation operator. We concentrate on the cases d ∈ {1, 2}. For clarity of pre-

sentation, we first restrict ourselves to the case d = 1. The case d = 2 will be

addressed in Subsection 2.2. For discretization let N ∈ N and consider the grid

Γ = {n/N : n = 0, . . . N − 1}. Discretization of the Fourier integral in (3) on

Γ and subsequential evaluation of the resulting semi-discrete transform w.r.t. τ

on the grid Γ leads to the fully discretized transform which can be considered

as a short-time Fourier transform on the cyclic group ZN . It is given as

Vwf(`, k) =
1

N

∑
n∈ZN

f(n)w̄(n− `) e−2πik·n/N , `, k ∈ ZN . (4)

This can be expressed in a more condensed form as

Vwf(`, k) =
1

N
〈f ,MkT`w〉CN . (5)

where f , w ∈ CN , T`f(n) = f(n− ` mod N), and Mkf(n) = e2πink/Nf(n) as

already defined after (2). The scaling factor 1/N in (5) is of no relevance for

our consideration and will therefore be neglected henceforth.

The reconstruction problem can now be formulated as follows. We have to

reconstruct the vector f from data

y`,k =
∣∣〈f , T`w̄k〉CN

∣∣2, k = 0, . . . ,K, ` ∈ L ⊆ {0, . . . , N − 1}, (6)
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with card(L) = L + 1 and K,L ≤ N − 1, where wk = Mkw is the modulation

of the vector of window w. We will henceforth assume that w is supported on

the first s entries, i.e., w(n) 6= 0 for 0 ≤ n < s and 0 elsewhere.

These nonlinear measurements can be “lifted” to linear measurements on the

space of matrices as follows∣∣〈f , T`w̄k〉CN
∣∣2 = 〈f , T`w̄k〉CN 〈f , T`w̄k〉CN = 〈ff∗, T`w̄k(T`w̄k)∗〉HS . (7)

Here 〈·, ·〉HS is the Hilbert-Schmidt inner product 〈A,B〉HS = trace(A∗B).

For X ∈ CN×N we arrange the numbers 〈X, T`w̄k(T`w̄k)∗〉HS as a vector in

CD for D = (K + 1) (L+ 1) and define a linear operator A : CN×N → CD by

A(X) =
(
〈X, T`w̄k(T`w̄k)∗〉HS

)D
α=1

, α = k + 1 + `(K + 1) (8)

and we will call this operator the measurement operator as it coincides with the

vector of measurements if X = ff∗ according to (7). The operator (8) can not

be injective on CN×N when w is supported on the first s entries of N . But,

depending on the choice of w, it might be stably invertible if we restrict it to

the space

span{T`w̄kw̄
∗
kT
∗
` : ` ∈ L, k = 0, . . . ,K} =: PLK . (9)

We denote the corresponding projection operator by TLK : CN×N → PLK . We

will refer to this operator as the tight projector. Let ALK = A|PLK be the

restriction of A to the space PLK . Depending of the choice of w, the matrix

of this linear operator with respect to the generating system {T`w̄kw̄
∗
kT
∗
` }`,k is

a symmetric positive definite matrix. Hence, the operator is (stably) invertible

and we can determine X = TLK(ff∗) from the data uniquely solving

ALK(X) = y, y = (y`,k) (10)

since

y`,k = 〈TLK(ff∗), T`w̄kw̄
∗
kT
∗
` 〉HS . (11)

Note that for L = N − 1 we have

PLK = span{Ei,j : |i− j mod N | < s} =: Vs,
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where the Ei,j ’s constitute the standard basis of CN×N . This case coincides70

with the projection considered in [23]. We have dimVs = (2s − 1)N . Thus,

invertibility can only be achieved in general for K + 1 = 2s− 1. If L < N − 1,

PLK can not be expressed in terms of (L + 1)(K + 1) standard basis vectors

Ei,j . Therefore, the algorithm in [23] needs to be adapted in our context. In

Section 3 we will compare the two methods where we will refer to the projection75

operator given in terms of Ei,j ’s in (10) and (11) as pattern projector PLK , since

the projector reflects the zero pattern generated by the support of the windows.

In order to determine an approximation of the vector f from X = TLK(ff∗)

we consider the representation Z of X in the standard basis. The amplitudes

can now be determined by taking the square-roots of the main-diagonal of Z.80

To reconstruct the phases we can use the following angular synchronization

technique: Let z ∈ CN with zn = |zn|eiΘn , let z̃ := z/|z| = (eiΘn)n and define

Z̃ := Z/|Z|, where the operations are considered elementwise for the non-zero

entries. The phases of z are then given by the first eigenvector of Z̃. In case of

L = N −1 it can be shown [24] that the reconstruction is exact. In other words,85

up to a global phase shift, the phases of z coincide with the phases of f . For

L < N − 1 this process can be stabilized by considering the first eigenvector of

D−1/2Z̃D−1/2. Here D is the degree matrix which is a diagonal matrix whose

diagonal entries coincide with the number of non-zero entries in the correspond-

ing row of Z̃ (see [7] for more details).90

The algorithm for recovering f from measurements y`,k consists of five steps

which can be summarized as follows.
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Algorithm

Input: Measurements y = (y`,k) ∈ CD

Output: f̃ ≈ f

1. Compute X = A−1
LK(y).

2. Calculate Z, the representation of X in the standard basis.

3. Form Z̃ = Z/|Z|, normalizing non-zero entries of Z.

4. Compute the eigenvector z̃ of Z̃ corresponding to the largest

eigenvalue.

5. Form f̃ via fn =
√
Zn,n z̃n.

95

The crucial step of the algorithm is the first, i.e., we have to ensure by a

suitable choice of the window w that (10) has a unique solution which can be

computed in a stable manner. In [22, 23] it has been shown that this is the case

for the following choice for w:

wa(n) =


(2s− 1)−1/4 e−n/a, n < s,

0, otherwise,
(12)

where a ∈ [4,∞). In the numerical examples we will call these exponential

windows (EW).

However, this window does not reflect the concrete experimental situation.

Closer to physical reality is a shape of the window function which is given by

an Airy function, i.e., w(t) = (J1(t)/t)2 where J1 is the Bessel function of first

order. Experiments show that a Gaussian function seems to be an acceptable

approximation to this type of window function (see, e.g., [3]). Further, the

Gaussian function should be (i) centered at the midpoint of the support and

(ii) normalized such that the norm coincides the number of photons in the ex-

periment denoted by n(p). Therefore, we propose to use the Gaussian windows

(GW) constructed as follows: we consider a Gaussian window function with nor-

malization cn(p) such that (ii) is satisfied. To ensure (i), we choose the support

according to an α-quantile tα for some α ∈ (0, 1), i.e., the continuous window
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function is given by wα(t) = cn(p) e
−t2/2 · χ([−tα, tα]). By uniform sampling on

[−tα, tα] we get w with entries

wα(n) =

cn(p) e
− t2α

2(s−1)2
(2n−s+1)2

for n < s

0 for n ≥ s
. (13)

In Section 3 we will compare reconstructions using the exponential window

(EW) and Gaussian window (GW) as well as the use of the pattern projector

and tight projector for 2D data. Thus, we first give some remarks on the 2D100

case.

2.2. The 2D Case

The discretization of (3) for the case d = 2 uses the cartesian grid Γ×Γ and

finally leads in an analogous manner as for the 1D case to

Vwf(`, k) =
1

N2

∑
n1,n2∈ZN

f(n1, n2)w(n1− `1, n2− `2) e−2πi(k1n1+k2n2)/N2

, (14)

with ` = (`1, `2), k = (k1, k2) ∈ ZN × ZN . Analogously to (5) we can express

this as

Vwf(`, k) =
1

N2
〈F ,MkT`W 〉HS , (15)

where F =
(
f(n1, n2)

)N−1

n1,n2=0
, W =

(
w(n1, n2)

)N−1

n1,n2=0
∈ CN×N and with the

usual convention that the translation resp. modulation operators are acting

entrywise. As in the 1D case we will ignore the factor 1/N2 henceforth.

Following [25], for the 2D case we make the assumption that the window function

w in (3) separates w.r.t. the variables, i.e., w(t) = w(t1, t2) = u(t1) v(t2).

We assume moreover that supp(u) = supp(v). Clearly, the Gaussian window

w(t) = e−|t|
2

satisfies this assumption, but note that the Airy function does

not. With this assumption we have W = uv∗ with u,v ∈ CN and, moreover,

MkT`W = (Mk1T`1u) (Mk2T`2v)∗. In order to recover F from measurements

Y`,k =
∣∣〈F ,MkT`W 〉HS

∣∣2 =
∣∣〈F , T`W k〉HS

∣∣2 (16)

with W k = MkW we adapt the algorithm for the 1D case as follows. For

X ∈ CN×N let ~X = vec(X) be its vectorization. Note that for X,Y ∈ CN×N
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we have 〈X,Y 〉HS = 〈 ~X, ~Y 〉CN2 . With this preparation it is now obvious how

to transfer the algorithm presented in Section 2.1 to the 2D case. Applying the

same lifting step as in (7) we obtain

Y`,k =
〈
~F ~F

∗
,
−−−−→
(T`W k)

−−−−→
(T`W k)∗

〉
HS

(17)

where according to W = uv∗, T`W k = (T`1Mk1u) (T`2M−k2v)∗.

3. Numerical examples

We test the proposed method on simulated ptychographic data using the105

object shown in Figure 1. For an easier comparison the color range of all plots

has been set to [0, 1] for amplitudes and [−π, π] for phases. However, keep

in mind that the phase is only reconstructed up to a global shift. For the

experiments we use an object size of 128 × 128 pixels and each pixel is about

30 × 30 nm. The size of the Fourier measurements per shift was chosen to be110

15 × 15 pixels, i.e., K + 1 = 15 frequencies in both directions. This coincides

to a window size of 8 × 8 pixels (s = 8 in each direction). To generate the

measurement data a Gaussian beam with main-focus over the support of the

window was simulated.

Figure 1: Original amplitude (left) and original phase (right) of the simulated object

In a first experiment we reconstruct the object using all shifts of the window115

function that fit into the 128× 128 pattern of the object. Given a window size

of 8 × 8 pixels, this corresponds to L = 121 shifts for each dimension. Thus,

we reconstruct the object from (122 · 15)2 measurements in total. Note that

this already differs from the setup given in [23] where also circulant shifts are
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considered, i.e., L = N − 1 = 127. We compare the reconstruction quality120

using the exponential window (12) analyzed in [22, 23] against the Gaussian

window (13) with α = 0.99, which more closely approximates experimental

setups. The results are shown in Figure 2. Since we do not consider circulant

shifts, both reconstructions show artifacts at the sides of the images. Because

the exponential window is not centered, these artifacts concentrate at the lower125

and left side of the reconstruction. Moreover, the exponential window shows

strong artifacts especially in the phase of the reconstruction as it does not fit

the window form given in applications.

Figure 2: Reconstructed amplitude (left) and phase (right) using exponential window (top)

and Gaussian window (bottom)

In our next experiment we compare the proposed tight projector against the

pattern projector used in [23]. We already know that both projection spaces

coincide if all shifts are taken into account. Thus, we now consider the case

where only every κ shift is used for the reconstruction. Therefore let T κLK be

the projector onto the subspace

span{Tκ`w̄kw̄
∗
kT
∗
κ` : ` = 0, . . . , L, k = 0, . . . ,K},

and PκLK the corresponding pattern projector. Note that the pattern projector
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does not necessarily return Hermitian matrices as required for the angular syn-130

chronization. Thus, the algorithm has to be extended to include an update step

Z ← (Z +Z∗)/2. A careful analysis regarding this approximation with respect

to the phase retrieval problem was made by Iwen et.al. in [23].

For the experiment, we set L, K as above, and κ = 4. This reduces the

number of shifts to d122/4e = 31 and, therefore, we reconstruct the full object135

in this case from only (31 · 15)2 measurements. The results are illustrated in

Figure 3. For both projectors a Gaussian window (13) with α = 0.99 is used. As

seen before, the reconstructed amplitude of both projectors is similar. However,

the phase reconstruction is much more stable using the proposed tight projector.

The pattern projector reconstruction shows strong artifacts almost dominating140

the original phase.

Figure 3: Reconstructed amplitude (left) and phase (right) using the pattern projector (top)

and tight projector (bottom)

We verified these observations with extensive numerical experiments apply-

ing the reconstruction technique with both projectors using different window

functions. We simulated measurements of the object in Figure 1 using seven

different Gaussian windows. For the reconstruction we used four window func-145

tions, one exponential window (12) and three Gaussian windows (13) that dif-
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fer from the windows used for simulation. Figure 4 shows the mean squared

error (MSE) averaged over all 28 combinations. Here we define the MSE as

‖F − F̃ ‖2F /N2. The original data has an amplitude range of [0.2, 0.7], a phase

range of [0, π/2] and a Frobenius norm of ‖F ‖F = 65.31. Clearly, the tight pro-150

jector leads to a much more stable technique. As was expected, when the shift

is equal to the support size of the windows (i.e., κ = s = 8) both methods fail.

In Figure 4 the total error and the error considering only the reconstruction of

the phase is shown. The error in amplitude is not illustrated since it basically

coincides for both methods. Thus, the tight operator especially stabilizes the155

phase reconstruction.

2 4 6 8

shift 
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Figure 4: Reconstruction error using pattern and tight projector for different shift sizes κ.

Left: total error, right: phase error.

Next, we compare the reconstruction error of the tight projector for different

types of window functions. The mean squared error for different shift sizes κ is

shown in Figure 5. Here we used Gaussian windows (13) with α = 0.9, 0.95, 0.99

and an exponential window (12). We observe that the reconstruction is stable160

up to a shift of κ = s = 8 independent of the window. The clipped Gaussian

windows (13) result in a smaller error since they more closely approximate the

ptychographic windows used to generate the measurements.

Note that some window functions, such as GW with α = 0.9, even seem to

perform better when not all shifts are taken into account. (Also compare the165

results shown in Figure 4.) This is possibly due to the the hard cut-off of the
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window function for small parameters α < 0.95 which appears to contribute to

Gibbs-like oscillations in the reconstructions. This effect appears to diminish

when the shift increases slightly.

2 4 6 8

shift 

0.05

0.1

0.15

0.2

0.25

M
S

E

Error

GW =0.9

GW =0.95

GW =0.99

EW

Figure 5: Reconstruction error for different types of window functions using the tight projector.

4. Conclusion170

We presented a direct algorithm for ptychographic reconstruction for known

windows. We have shown numerically that using a window based on the normal

distribution results in good reconstructions even if the real window is not fully

known but is assumed to be approximately Gaussian. In addition, although

the algorithm was originally designed for reconstructions based on full circulant175

shifts, i.e., L = N−1, we have also shown that our proposed modifications result

in good reconstructions of phase and amplitude when fewer shifts are used.
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