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19 ABSTRACT

20 Epidemiological studies have indicated the thyroid-disrupting effects of persistent organic 

21 pollutants (POPs). However, the associations of low-exposure POPs with thyroid hormones (THs) 

22 remain unclear. Here we aim to assess the associations of low exposure of POPs, including 

23 polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), polychlorinated 

24 dibenzo-p-dioxins and furans (PCDD/Fs), and polybrominated dibenzo-p-dioxins and furans 

25 (PBDD/Fs), with THs (total L-thyroxine (TT4), total 3,3’,5-triiodo-L-thyronine (TT3), and total 

26 3,3’,5’-triiodo-L-thyronine (TrT3)) measured in human breast milk. Ninety-nine breast milk 

27 samples were collected from the LUPE cohort (2015–2016, Bavaria, Germany). Fourteen PBDEs, 

28 17 PCBs, and 5 PCDD/Fs had quantification rates of > 80%. Nonmonotonic associations were 

29 observed. In adjusted single-pollutant models: (1) TT4 was inversely associated with BDE-99, -

30 154, and -196; (2) TT3 was inversely associated with BDE-47, -99, -100, -197, -203, -207, and 

31 OCDD; (3) TrT3 was inversely associated with BDE-47, -99, -183, and -203. Multipollutant 

32 analysis using principal component analysis and hierarchical clustering revealed inverse 

33 associations of PBDEs (BDE-28, -47, -99, -100, -154, -183, and -197) with TT4 and TrT3. These 

34 results indicate that POPs at low levels might be related to reduced THs. This study shows that 

35 human breast milk might be an appropriate specimen to evaluate the thyroid-disruption of POPs.

36
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37 1. Introduction

38 Persistent organic pollutants (POPs) are a group of chemicals with environmental persistence, 

39 bioaccumulation, and toxicity. They occur as a result of industrial and commercial applications, 

40 incomplete incineration, traffic, and industrial processes 1. Common POPs include polybrominated 

41 diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins 

42 and furans (PCDD/Fs), and polybrominated dibenzo-p-dioxins and furans (PBDD/Fs). Humans 

43 are exposed to POPs through diet, air, house dust, and drinking water. Although many POP 

44 congeners have been strictly limited or banned, exposure to these compounds continues because 

45 of their long half-lives 2. POPs have been detected in the environment and humans all over the 

46 world 3, 4.

47 Certain POPs have chemical structures similar to thyroid hormones (THs) leading to concerns 

48 about their potential of thyroid disruption. TH homeostasis is crucial for down-stream 

49 physiological processes such as metabolism, growth, bone remodeling, cardiac function and 

50 mental status 5. POPs can interact with any aspect of the hypothalamus-pituitary-thyroid (HPT) 

51 axis, TH biosynthesis, metabolism, and release, feedback regulation, transport, agonist or 

52 antagonist thyroid hormone receptor (TR), and regulation of uridine diphosphate 

53 glucuronosyltransferases (UDPGTs) and sulfotransferases (SULTs) 5-7. POP exposures may 

54 partially contribute to the rapid increasing incidence of thyroid diseases such as hypothyroidism, 

55 hyperthyroidism, and thyroid cancer 8-10.

56 In vitro and animal studies have proved TH disruption following POP exposures 11, 12. Human 

57 studies also observed associations between THs and POPs using peripheral/cord blood 13-16 and 

58 placenta 17, 18. Conflicting results regarding the direction of associations have been reported 15, 19-

59 21. Possible reasons include the low-dose effects and non-monotonic effects of endocrine-
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60 disrupting chemicals (EDCs) 22. For example, positive association between PBDEs and THs was 

61 found in a high-exposure population (median ΣPBDEs: 38.4 ng/g lipid weight (lw)) 21, whereas 

62 negative association was reported in a low-exposure population (median ΣPBDEs: 3.49 ng/g lw) 

63 23. The thyroid-disrupting effects of POPs at low levels are of concern since most of the current 

64 studies were conducted in high-exposure populations. However, the detection of POPs in blood of 

65 low-exposure population requires high sensitivity or large sample volume to obtain sufficient 

66 detection frequencies (DFs) 24, which can be limiting for certain age groups.

67 Human breast milk is a complex and constantly changing mixture of endogenous and exogenous 

68 substances including THs and POPs 3, 25. Due to its high lipid content, breast milk has been 

69 considered as an appropriate specimen to provide improved sensitivity for POP monitoring 3, 26. 

70 Besides, the serum TH homeostasis may be evaluated by examining THs in breast milk because 

71 of the significant positive correlations between milk THs and serum THs 27. Several studies have 

72 assessed the associations between POPs in milk and serum TH parameters 28, 29. Darnerud et al. 

73 found that low chlorinated PCBs in breast milk were inversely associated with total 3,3’,5-triiodo-

74 L-thyronine (TT3) in serum of 3-week old children, while PCDD/Fs in breast milk showed negative 

75 associations with maternal serum TT3 29. However, no study has been conducted to evaluate the 

76 associations of THs with POPs both measured in human breast milk.

77 The primary goal of the current study was to evaluate the associations of POPs (PBDEs, PCBs, 

78 PCDD/Fs, and PBDD/Fs) with THs (total L-thyroxine (TT4), TT3, and total 3,3’,5’-triiodo-L-

79 thyronine (TrT3)) measured in human breast milk. Samples were collected from the LUPE cohort 

80 (2015–2016, Bavaria, Germany), which is exposed to low levels of POPs from a global 

81 perspective. Single-pollutant and multipollutant models were applied to evaluate the relationship 

82 between THs and POPs.
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83 2. Materials and methods

84 2.1 Sample collection

85 We included 99 human breast milk samples in this study. Approximately 150 mL of sample was 

86 collected from each participating woman within 10 months after delivery. Samples were collected 

87 into sample cups (AVENT VIA) using a manual breast pump (AVENT ISIS) after breastfeeding. 

88 Afterwards, samples were transported to the Bavarian Health and Food Safety Authority (Munich, 

89 Germany) for POP determination. An aliquot of 2 mL was delivered to the Helmholtz Center 

90 Munich (Munich, Germany) for TH analysis. Samples were stored at -80 ℃ until processing.

91 The ethics committee of the Bavarian Chamber of Physician approved this study. Informed 

92 written consent was obtained from each participant.

93 2.2 POP analysis

94 Detailed analytical methods regarding POP quantificaiton are available elsewhere 30, 31. The 

95 materials are shown in the Supporting Method. Briefly, milk lipid was extracted with n-

96 hexane/propane-2-ol and applied on a column composed of Isolute HM-N/sodium chloride. The 

97 concentrated lipid extract was dried on an anhydrous sodium sulphate column and extracted with 

98 n-pentane. After further automated clean-up and fractionation with DEXTech (3 columns setup), 

99 the final extracts were analyzed by two gas chromatographs/high resolution mass spectrometer 

100 (2GC/HRMS) on a Thermo DFS system with three different columns. The World Health 

101 Organization Toxicant Equivalent Quotient (WHO2005-TEQ) of dioxins and dioxin-like PCBs (dl-

102 PCBs) was calculated 32. The average method quantification limits (MQLs) were 0.125 pg/g lw 

103 for PCDD/Fs, 2.63 pg/g lw for dl-PCBs, 4.71 pg/g lw for non-dl-PCBs, 4.16 pg/g lw for PBDD/Fs, 

104 and 3.99 pg/g lw for PBDEs. The recoveries of these POPs ranged overall from 50% to 140% and 

105 comply with the requirements of Regulation (EU) No. 589/2014.
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106 2.3 TH measurement

107 Total levels of T4, T3, rT3, 3,3’-diiodo-L-thyronine (3,3’-T2), 3,5-diiodo-L-thyronine (3,5-T2), 3-

108 iodo-L-thyronine (T1) and 3-iodothyronamine (3-T1AM) were targeted for analysis in breast milk 

109 using isotope-dilution liquid chromatography tandem mass spectrometry (LC-MS/MS). The 

110 method was based on our previous technology with some modifications 33. Complete details can 

111 be found in the Supporting Method, Table S1, and Fig. S1-2. The method detection limits (MDLs) 

112 and MQLs were 0.01–0.13 ng/mL and 0.10–0.42 ng/mL, respectively. The matrix effects were 

113 between -9.67% and 14.7%. The overall recoveries ranged from 102% to 125%. The spike-

114 recoveries were in the range of 98.4%–122%. The intra-day and inter-day variations were 0.47%–

115 6.91% and 1.37%–7.71%, respectively (Table S2).

116 2.4 Statistics

117 The statistical analyses were conducted on POP congeners with DF of > 80%, measurements 

118 below the LOQ were replaced by LOQ × DF 34. Normality was tested using Shapiro-Wilk test. 

119 The distributions of biomarkers were log-normal and therefore transformed by the natural 

120 logarithm. We examined the bivariate associations between biomarkers and a set of demographic 

121 variables using t-test or analysis of variance (ANOVA). Afterwards, Spearman’s rank correlation 

122 was applied to evaluate the correlation of biomarkers. Statistical analyses were conducted using R 

123 (version 3.4.2; R Foundation for Statistical Computing, Vienna, Austria) and DAGitty v2.3 35 for 

124 constructing directed acyclic graph (DAG). Statistical significance was defined as p-value < 0.05.

125 Potential confounders considered for inclusion in models were maternal age, educational level, 

126 parity, smoking, diet, infant gender, infant age at sampling. Data on most covariates were 

127 complete. Confounders were identified based on previous reports and a DAG framework (Fig. S3). 
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128 Body mass index (BMI) was not controlled because BMI might be a consequence of thyroid 

129 dysfunction 36, 37.

130 Single-pollutant models were conducted to investigate the associations between THs and each 

131 POP congener. Generalized additive models (GAM) were used to examine the linearity of the 

132 relationship between POPs and THs. Some of the POP congeners showed significant non-linear 

133 associations with THs (data not shown), thus we modeled all exposure biomarkers in categories 

134 defined by tertiles.

135 Principal component analysis

136 Due to the structural and biological similarity within and across the classes, interpretation of the 

137 effect of individual POP congeners can be misleading. We assessed the multiple collinearity by 

138 the eigen values of the correlation and the variable inflation factor (VIF). Principal component 

139 analysis (PCA) was then conducted to convert the correlated variables into a small number of 

140 principal components (PCs). Afterwards, varimax rotation was applied to calculate factor scores 

141 for each participant. The number of factors was decided based on the scree plot 38. The factor 

142 scores were categorized into tertiles and included in the regression models. Regressions were 

143 performed including factors simultaneously and separately.

144 Hierarchical clustering

145 We used the partial least squares (PLS) regression to evaluate the impact of all POPs and 

146 covariates on THs simultaneously. Only variables with variable importance to projection (VIP) 

147 values > 0.4 were included in the final model to reduce data and increase the model predictive 

148 ability 14. The score of each participant on PC1 was included in multiple linear regression models 

149 as a common vector to avoid collinearity while adjusting for these factors. In order to minimize 

150 the number of POPs to be included in linear regression models, we conducted hierarchical 
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151 clustering analysis of POPs based on correlations (method: complete linkage). Groupings 

152 according to clusters were subsequently performed by simple addition of POP concentrations.

153 Sensitivity analyses

154 Previous studies measuring serum POPs typically adjusted for lipid content. However, there is 

155 controversy regarding the best approach 39. In this study we performed the analyses including POPs 

156 in units of ng/g lipid. In sensitivity analysis we repeated the analyses with POPs in units of ng/L 

157 milk while controlling for lipid content as a covariate. Additional sensitivity analysis included the 

158 adjustment of BMI.

159 3. Results

160 3.1 Biomarker concentrations and their correlations

161 An LC-MS/MS method was optimized and validated for TH quantification in human breast milk. 

162 The mean ± SD concentrations of TT4, TT3, and TrT3 were 0.57 ± 0.20, 0.13 ± 0.03, and 0.02 ± 

163 0.01 ng/mL, respectively (Table S3).

164 As shown in Tables 1 & S4, 14 PBDEs had DFs of > 80%. The median concentrations of these 

165 PBDEs were 8.25–440 pg/g lw, in which BDE-209 was the dominating congener, followed by 

166 BDE-153, -47, -197, -99, -207, -100, -28, -206, -183, -208, -196, -203, and -154. Seventeen PCBs 

167 were detected in > 80% of the samples with median concentrations in the range of 0.14–3619 pg/g 

168 lw. The dominating congener was PCB-118 followed by PCB-156, -167, -105, -157, -114, -189, -

169 123, -153, -126, -138, -169, -180, -77, -28, -101, and -52. Five PCDD/Fs were quantified in > 80% 

170 of the samples with median concentrations between 1.03 and 17.0 pg/g lw. The dominating 

171 congener was OCDD followed by 2,3,4,7,8-PeCDF, 1,2,3,6,7,8-HxCDD, 1,2,3,4,6,7,8-HpCDD, 

172 and 1,2,3,6,7,8-HxCDF. The DFs of all the PBDD/Fs were ≤ 38% and therefore not included in 

173 the statistical analyses. As shown in Table S5, the highest WHO2005-TEQ levels in dl-PCBs and 
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174 PCDD/Fs were found for PCB-126 (1.81 pg/g lw) and 2,3,4,7,8-PeCDF (1.12 pg/g lw), 

175 respectively. The median values of Σmono-ortho PCBs, Σnon-ortho PCBs, ΣPCBs, ΣPCDD/Fs, 

176 ΣPBDD/Fs, and ΣPOPs were 2.78, 0.33, 3.11, 4.37, 0.93, and 8.22 pg/g lw, respectively. Table 

177 S6-S8 show the comparison of POP levels in human breast milk reported here with recent studies 

178 from different regions. POP levels in this study were generally lower, especially compared with 

179 those measured in North America.

180 Table 1 Descriptive statistics of PBDEs, PCBs, PCDD/Fs, and PBDD/Fs with DFs > 80% in 

181 human breast milk from LUPE study (2015–2016, Bavaria, Germany).

POPs N (%) Mean 
(pg/g lw)

Range (pg/g lw) Q1 (pg/g 
lw)

Median 
(pg/g lw)

Q3 (pg/g 
lw)

BDE-28 95 (96) 31.7 <LOQ–122 20.2 29.3 37.7

BDE-47 99 (100) 307 61.6-2419 136 204 299

BDE-99 98 (99) 85.8 <LOQ-419 46.1 62.5 93.9

BDE-100 97 (98) 73.7 <LOQ–364 31.3 54.3 92.5

BDE-153 99 (100) 460 112–1979 304 377 545

BDE-154 82 (83) 9.42 <LOQ–28.5 5.58 8.25 11.1

BDE-183 97 (98) 33.7 <LOQ–182 19.4 28.4 42.2

BDE-196 89 (90) 22.4 <LOQ–146 12.4 16.8 24.1

BDE-197 99 (100) 83.2 19.3–224 53.6 73.1 103

BDE-203 91 (92) 22.8 <LOQ–265 12.8 16.7 24.4

BDE-206 86 (87) 176 <LOQ–3545 19.1 28.9 57.3

BDE-207 98 (99) 147 <LOQ–2842 39.7 56.3 82.0

BDE-208 98 (99) 67.5 <LOQ–1540 13.3 19.3 34.0

BDE-209 95 (96) 4444 <LOQ–104000 287 440 1074

PCB-28 99 (100) 0.99 0.24–4.36 0.61 0.81 1.16
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PCB-52 99 (100) 0.18 0.06–1.62 0.11 0.14 0.19

PCB-77 82 (83) 3.55 <LOQ–17.2 2.37 2.97 3.83

PCB-101 99 (100) 0.37 0.10–6.20 0.18 0.25 0.34

PCB-105 99 (100) 666 177–2067 459 591 785

PCB-114 99 (100) 251 54.8–810 159 224 330

PCB-118 99 (100) 3955 1044–9635 2821 3619 4881

PCB-123 97 (98) 42.5 <LOQ–110 28.7 37.6 55.1

PCB-126 99 (100) 20.1 4.40–58.5 14.1 18.1 23.5

PCB-138 99 (100) 15.2 3.93–35.6 10.1 14.0 18.2

PCB-153 99 (100) 26.3 5.76–70.0 17.6 23.3 34.7

PCB-156 99 (100) 2668 526–8664 1633 2128 3573

PCB-157 99 (100) 393 78.3–1143 241 344 528

PCB-167 99 (100) 688 157–1481 447 662 877

PCB-169 98 (99) 12.6 <LOQ–34.1 7.88 10.9 15.2

PCB-180 99 (100) 15.7 2.69–91.8 8.76 13.2 21.3

PCB-189 99 (100) 251 36.1–1339 133 219 351

1,2,3,6,7,8-
HxCDD

87 (88) 3.26 <LOQ–14.2 2.22 2.94 3.99

1,2,3,4,6,7,8-
HpCDD

91 (92) 3.26 <LOQ–14.7 1.96 2.62 3.89

OCDD 98 (99) 21.2 <LOQ–75.0 12.9 17.0 24.4

2,3,4,7,8-
PeCDF

94 (95) 4.21 <LOQ–10.8 3.01 3.80 5.15

1,2,3,6,7,8-
HxCDF

80 (81) 1.18 <LOQ–7.86 0.72 1.03 1.41

ΣPBDEs 99 (100) 5753 511–112998 1123 1731 2727

ΣPCBs 99 (100) 9090 2222–20225 6238 8322 11211

ΣPCDD/Fs 99 (100) 35.7 0.00–115 24.3 30.2 41.6

Page 11 of 35

ACS Paragon Plus Environment

Environmental Science & Technology



12

ΣPBDD/Fs 99 (100) 43.2 0.00–1352 0.00 4.53 11.5

182 Abbreviations: LOQ, limit of quantification. lw, lipid weight. Q1, Q3: first and third quantile.

183 As shown in Fig. S4, THs showed weak negative to weak positive correlations with most of the 

184 POPs (T4: -0.25–0.17, T3: -0.34–0.01, rT3: -0.28–0.11). The intragroup correlations of PBDEs, 

185 PCBs, and PCDD/Fs were -0.05–0.90, 0.0001–0.98, and 0.18–0.68, respectively.

186 3.2 Population characteristics

187 Table S9 summarizes the sociodemographic characteristics of all the participants. The mean ± 

188 SD age was 33.9 ± 4.4 years. Among them, 84 (84.8%) of them were > 30 years old; 66 (66.7%) 

189 had a BMI value of < 25 kg/m2; majority (95.0%) did not smoke; 45 (45.5%) were nullipara. The 

190 mean ± SD infant age at sampling was 114 ± 57 days. As shown in Tables S9-S12, we observed 

191 significant correlations between demographic variables and biomarkers.

192 3.3 Single-pollutant model

193 As shown in Fig. 1 and Table S13, single-pollutant, crude models for the 36 POPs showed a 

194 significant decrease in TT4 with increasing exposure to BDE-99, -154, -169, -196, -203, PCB-169, 

195 and 1,2,3,6,7,8-HxCDD. After adjustment, TT4 showed significant inverse associations with BDE-

196 99 [adjusted (adj) β tertile 2 vs. 1: -0.12; 95% CI: -0.24, -0.01. adj β tertile 3 vs. 1: -0.16; 95% CI: 

197 -0.28, -0.04], BDE-154 (adj β tertile 3 vs. 1: -0.14; 95% CI: -0.25, -0.02), and BDE-196 (adj β 

198 tertile 3 vs. 1: -0.13; 95% CI: -0.25, -0.003).

199 Single pollutant, crude models revealed a significant decrease in TT3 with increasing BDE-47, -

200 100, -197, -203, -207, -208, ΣPBDEs, PCB-101, -156, -169, OCDD, ΣPCDD/Fs, and ΣPOPs 

201 (Table S13). After adjustment, TT3 showed significant negative associations with BDE-47 (adj β 

202 tertile 3 vs. 1: -0.12; 95% CI: -0.22, -0.02), BDE-99 (adj β tertile 3 vs. 1: -0.10; 95% CI: -0.21, -

203 0.002), BDE-100 (adj β tertile 3 vs. 1: -0.12; 95% CI: -0.22, -0.02), BDE-197 (adj β tertile 3 vs. 1: 

204 -0.11; 95% CI: -0.21, -0.01), BDE-203 (adj β tertile 3 vs. 1: -0.14; 95% CI: -0.24, -0.03), BDE-
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205 207 (adj β tertile 3 vs. 1: -0.11; 95% CI: -0.20, -0.01), and OCDD (adj β tertile 3 vs. 1: -0.10; 95% 

206 CI: -0.20, -0.003) (Fig. 1).

207 Single-pollutant, crude models showed a significant decrease in TrT3 with increasing BDE-47, 

208 -99, -100, -154, -183, -203, and 1,2,3,4,6,7,8-HpCDD (Table S13). In adjusted models, TrT3 was 

209 significantly inversely associated with BDE-47 (adj β tertile 2 vs. 1: -0.24; 95% CI: -0.44, -0.04), 

210 BDE-99 (adj β tertile 3 vs. 1: -0.27; 95% CI: -0.48, -0.06), BDE-183 (adj β tertile 3 vs. 1: -0.21; 

211 95% CI: -0.41, -0.01), and BDE-203 (adj β tertile 3 vs. 1: -0.24; 95% CI: -0.46, -0.02) (Fig. 1).
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212

213 Fig. 1 Adjusted single pollutant models show the associations between exposure to tertiles of 36 

214 POPs and THs in human breast milk. Dashed lines represent the associations of tertile 2 vs. 1 while 

215 the straight lines represent the associations of tertile 3 vs. 1. The estimated effects and 

216 corresponding confidence intervals (95% CI) are shown by dots and error bars, respectively.
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217 3.4 Multi-pollutant model

218 Factor analysis

219 Using PCA on the 36 POPs, we generated five factors that sufficiently accounted for the total 

220 variance inherent in the data. Table S14 presents the factor loadings. As shown in Table 2, in the 

221 model that simultaneously included all five factors, exposure to tertile 3 of factor 3 (highly loaded 

222 with BDE-28, -47, -99, -100, -154, -183, and -197) was associated with significant decreases in 

223 TT4 (adj β: -0.16; 95% CI: -0.29, -0.04) and TrT3 (adj β: -0.29; 95% CI: -0.52, -0.06). However, 

224 TT3 demonstrated a nonsignificant decrease (adj β: -0.10; 95% CI: -0.22, 0.01) in tertile 3 of factor 

225 3. Similar results were observed in single-factor models, in which TT4 (adj β: -0.12; 95% CI: -

226 0.23, 0.00) and TrT3 (adj β: -0.21; 95% CI: -0.41, 0.00) were significantly negatively associated 

227 with factor 3 in tertile 3, whereas nonsignificant association was found for TT3 (adj β: -0.10; 95% 

228 CI: -0.19, 0.00). Besides, exposure to factor 4 (highly loaded with PCB-28, -105, -118, -123, -126, 

229 1,2,3,4,6,7,8-HpCDD, OCDD, 2,3,4,7,8-PeCDF, and 1,2,3,6,7,8-HxCDF) was significantly 

230 positively associated with TT4 (adj β: 0.13; 95% CI: 0.00, 0.26) and TrT3 (adj β: 0.26; 95% CI: 

231 0.03, 0.49) in tertile 2.

232 Table 2 Associations between exposure to tertiles of five factors from principal component 

233 analysis and TH levels based on single- and multiple-factor models.

Single-factor model β (95% CI) Multi-factor model β (95% CI)

TT4 TT3 TrT3 TT4 TT3 TrT3

Factor 1

1 Reference Reference Reference Reference Reference Reference

2 0.02 (-0.10–
0.14)

0.04 (-0.07–
0.14)

0.00 (-0.21–
0.21)

0.02 (-0.10–
0.14)

0.05 (-0.06–
0.15)

-0.02 (-0.24–
0.20)
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3 0.05 (-0.08–
0.19)

0.07 (-0.04–
0.19)

0.02 (-0.22–
0.26)

0.05 (-0.09–
0.19)

0.08 (-0.04–
0.20)

-0.02 (-0.28–
0.23)

Factor 2

1 Reference Reference Reference Reference Reference Reference

2 0.00 (-0.12–
0.12)

-0.01 (-0.12–
0.09)

0.02 (-0.20–
0.24)

0.03 (-0.10–
0.17)

0.00 (-0.12–
0.12)

0.12 (-0.12–
0.37)

3 0.01 (-0.11–
0.14)

-0.04 (-0.15–
0.06)

-0.05 (-0.27–
0.17)

0.09 (-0.04–
0.22)

0.00 (-0.12–
0.11)

0.08 (-0.16–
0.32)

Factor 3

1 Reference Reference Reference Reference Reference Reference

2 -0.03 (-0.14–
0.09)

-0.02 (-0.12–
0.08)

-0.08 (-0.29–
0.12)

-0.07 (-0.19–
0.06)

-0.04 (-0.14–
0.07)

-0.16 (-0.38–
0.07)

3 -0.12 (-0.23–
0.00)*

-0.10 (-0.19–
0.00)#

-0.21 (-0.41–
0.00)*

-0.16 (-0.29–
-0.04)*

-0.10 (-0.22–
0.01)#

-0.29 (-0.52–
-0.06)*

Factor 4

1 Reference Reference Reference Reference Reference Reference

2 0.09 (-0.03–
0.21)

0.04 (-0.06–
0.15)

0.20 (-0.01–
0.42)#

0.13 (0.00–
0.26)*

0.06 (-0.06–
0.17)

0.26 (0.03–
0.49)*

3 -0.02 (-0.14–
0.10)

-0.04 (-0.14–
0.06)

0.10 (-0.11–
0.30)

-0.01 (-0.13–
0.11)

-0.03 (-0.14–
0.07)

0.12 (-0.10–
0.33)

Factor 5

1 Reference Reference Reference Reference Reference Reference

2 -0.05 (-0.17–
0.07)

-0.07 (-0.18–
0.03)

-0.04 (-0.26–
0.17)

-0.03 (-0.15–
0.09)

-0.05 (-0.16–
0.06)

-0.02 (-0.24–
0.21)

3 0.03 (-0.09–
0.15)

0.01 (-0.10–
0.11)

0.08 (-0.13–
0.29)

0.01 (-0.11–
0.13)

-0.01 (-0.11–
0.10)

0.05 (-0.17–
0.27)

234 All models were adjusted for maternal age, education level, parity, ethnicity, smoking, diet, and 
235 breastfeeding duration. Factor 1 loaded with PCB-114, -138, -153, -156, -157, -167, -169, -180, -
236 189, BDE-153, and 1,2,3,6,7,8-HxCDD. Factor 2 loaded with BDE-196, -203, -206, -207, -208, 
237 and -209. Factor 3 loaded with BDE-28, -47, -99, -100, -154, -183, and -197. Factor 4 loaded with 
238 PCB-28, -105, -118, -123, -126, 1,2,3,4,6,7,8-HpCDD, OCDD, 2,3,4,7,8-PeCDF, and 1,2,3,6,7,8-
239 HxCDF. Factor 5 loaded with PCB-52, -77, and -101.

240 Hierarchical clustering

Page 16 of 35

ACS Paragon Plus Environment

Environmental Science & Technology



17

241 POPs were categorized into four groups using hierarchical clustering (Table 3 & Fig. S5). Group 

242 1 included PCB-114, -138, -153, -156, -157, -167, -169, -180, and -189; Group 2 included PCB-

243 28, -118, -126, 1,2,3,6,7,8-HxCDD, 1,2,3,4,6,7,8-HpCDD, OCDD, 2,3,4,7,8-PeCDD, and 

244 1,2,3,6,7,8-HxCDF; Group 3 included BDE-28, -47, -99, -100, -153, -154, -183, and -197; Group 

245 4 included BDE-196, -203, -207, and -208. Multiple linear regression models demonstrated that 

246 TT4 (adj β: -0.13; 95% CI: -0.23, -0.02) and TrT3 (adj β: -0.21; 95% CI: -0.42, 0.00) were 

247 significantly negatively associated with Group 3 in tertile 3. Besides, TT3 was significantly 

248 inversely associated with Group 4 in tertile 3 (adj β: -0.12; 95% CI: -0.23, -0.01).

249 Table 3 Associations between POPs and THs. POPs were categorized based on hierarchical 

250 clustering.

TT4 β (95% CI) TT3 β (95% CI) TrT3 β (95% CI)

Group 1

1 Reference Reference Reference

2 0.01 (-0.12–0.13) -0.02 (-0.13–0.08) -0.04 (-0.25–0.18)

3 0.07 (-0.08–0.22) 0.08 (-0.04–0.21) -0.02 (-0.28–0.24)

Group 2

1 Reference Reference Reference

2 0.04 (-0.09–0.17) -0.02 (-0.13–0.09) -0.04 (-0.26–0.18)

3 0.05 (-0.10–0.19) 0.02 (-0.10–0.15) 0.17 (-0.08–0.42)

Group 3

1 Reference Reference Reference

2 -0.04 (-0.16–0.08) -0.02 (-0.12–0.09) -0.06 (-0.27–0.15)

3 -0.13 (-0.23–-0.02)* -0.06 (-0.17–0.04) -0.21 (-0.42–0.00)*

Group 4

1 Reference Reference Reference
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2 0.01 (-0.12–0.14) -0.02 (-0.12–0.09) -0.01 (-0.23–0.22)

3 -0.05 (-0.18–0.09) -0.12 (-0.23–-0.01)* -0.16 (-0.39–0.07)

251 All models were adjusted for maternal age, education level, parity, ethnicity, smoking, diet, and 
252 breastfeeding duration. Group 1 included PCB-114, -138, -153, -156, -157, -167, -169, -180, and 
253 -189. Group 2 included PCB-28, -118, -126, 1,2,3,6,7,8-HxCDD, 1,2,3,4,6,7,8-HpCDD, OCDD, 
254 2,3,4,7,8-PeCDD, and 1,2,3,6,7,8-HxCDF. Group 3 included BDE-28, 47, -99, -100, -153, -154, -
255 183, and -197. Group 4 included BDE-196, -203, -207, and -208.

256 3.5 Sensitivity analysis

257 Similar results were obtained when POPs were modeled in ng/g lw or in ng/L milk. The models 

258 kept robust when BMI was further controlled. As shown in Table S15, in multifactor model, 

259 exposure to tertile 3 of factor 3 was significantly inversely associated with TT4 (adj β: -0.16; 95% 

260 CI: -0.29, -0.03) and TrT3 (adj β: -0.30; 95% CI: -0.53, -0.07). Similar results were observed in 

261 single-factor models, in which TT4 (adj β: -0.12; 95% CI: -0.24, 0.00) and TrT3 (adj β: -0.21; 95% 

262 CI: -0.41, 0.00) showed significant negative associations with factor 3 in tertile 3. Exposure to 

263 factor 4 was significantly positively associated with TT4 (adj β: 0.15; 95% CI: 0.01, 0.29) and TrT3 

264 (adj β: 0.26; 95% CI: 0.02, 0.51) in tertile 2.

265 4. Discussion

266 THs were quantified in human breast milk using LC-MS/MS for the first time. TT4 and TT3 

267 levels measured here were similar to a previous report measured in preterm breast milk using 

268 radioimmunoassay (RIA), while higher TT4 was found in term breast milk (see Table S3) 25. This 

269 is probably due to the differences in the time of sampling. However, our results might be more 

270 reliable and accurate since IA technology is prone to nonspecific interferences. Additionally, due 

271 to their low concentrations, THs in human breast milk is not an adequate source for infants with 

272 congenital hypothyroidism 25.

273 Compared with BAMBI data from 2007–2008, this cohort had substantially lower exposure to 

274 POPs, with PCDD/Fs and dl-PCBs decreased for 52% and 44%, respectively 30. Besides, the POP 
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275 levels were generally lower compared with values reported in other regions. For example, PBDE 

276 and PCB levels measured here were lower than those reported in the North America 3, while 

277 PCDD/Fs were lower than those measured in India 40. Therefore, our study represents a low-

278 exposure population.

279 4.1 Associations of PBDEs with THs

280 We observed the highest thyroid-disrupting potencies for PBDEs among the POPs examined. 

281 Single pollutant models revealed significant inverse associations of THs with BDE-47, -99, -100, 

282 -154, -183, -196, -197, -203, and -207. Similar and robust results were obtained in multipollutant 

283 models using PCA and hierarchical clustering, which proved a significant association of increasing 

284 PBDEs (including BDE-28, -47, -99, -100, -154, -183, and -197) with depressed TT4 and TrT3. 

285 These findings are consistent with previous epidemiologic studies 13, 20, 41. Animals studies using 

286 rats 42, fish 43, kestrels 44, and minks 45 also proved decreased THs following PBDE exposure. 

287 Putative mechanisms include the interference of PBDEs with TH transport and metabolism. For 

288 example, in vitro studies demonstrated that lower-brominated OH-PBDEs are structurally similar 

289 to THs and can competitively bind with TR 46, 47. Enhanced TH metabolism, in combination with 

290 elevated cytochrome P450 enzymes 2B (CYP2B) expression, deiodinase I (DIO1) enzyme 

291 activity, as well as the gene expression of Cyp2b1/2, dio1, and hepatic efflux transporters were 

292 observed in rats following DE-71 (predominately composed of BDE-47, 99, -100, -153, and -154) 

293 exposure 48. In addition, PBDEs may disrupt the HPT axis by interfering with the TSHβ expression 

294 43.

295 In contrast, others observed positive or nonsignificant associations, and the associations might 

296 be differed by sex 15, 17, 49. The inconsistence is probably the results of random error given the 

297 intraindividual and inter-individual variability in TH set-points. For example, Stapleton et al. 15 
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298 and Zota et al. 49 employed serum samples from women during pregnancy when marked 

299 fluctuations in HPT axis homeostasis occur 50. Our samples were collected post-partum when HPT 

300 axis tends to be more stable 50.

301 Another possibility is that the relationship between PBDEs and THs may vary by exposure level. 

302 THs act at quite low concentrations (free serum T4 (FT4) level: 8–20 ng/L 51) while low-dose 

303 effects and non-monotonic responses are remarkably common in studies of EDC (low-dose cutoff 

304 of BDE-99: 0.3 mg/kg d) 22. Abdelouahab et al. observed significant decreases in TT4 and TT3 in 

305 lambs following low-dose exposure of BDE-47 52. A meta-analysis suggested that the relationship 

306 between THs and PBDEs might be an inverted U-shape curve 19. Inverse association was found in 

307 populations with low- 23, 41 and high-dose PBDE exposures 20, while positive association was 

308 reported in a population exposed with middle-level PBDEs 53. This is generally in agreement with 

309 our findings because of the low exposure levels of POPs in this study. Our results proved negative 

310 associations of low level PBDE exposure with THs. However, caution should be taken when 

311 comparing our results to previous findings, given variation in study design, population 

312 susceptibility, exposure level, biomarker measurement, as well as sample type which contain 

313 different contents of lipid, TH-binding proteins, and enzymes. Further studies are warranted to 

314 clarify the underlying mechanisms.

315 4.2 Associations of PCBs with THs

316 Dl-PCBs and dioxins may upregulate UDPGA by binding with aryl hydrocarbon receptor 

317 (AhR), leading to enhanced excretion of T4. Non-dl-PCBs, however, may interfere with the 

318 activities of CYP enzymes (i.e., CYP 2B1 and CYP 3A1) which may also reduce circulating T4 54, 

319 55. A substantial body of animal and epidemiologic studies have reported decreased THs with 

320 increasing exposure of PCBs, despite the literature is inconsistent 18, 56-58. Langer et al. reported 
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321 negative associations of FT4 and TT3 with PCBs at low exposure levels (serum level: < 530 ng/g 

322 lw), but positive relations at higher levels 59. A recent study also observed inverse associations 

323 between low-dose PCBs and TT3, Free T3, and FT4 in a Chinese population 8. These findings are 

324 in line with our results of single-pollutant crude models, which revealed significant inverse 

325 associations of PCB-101, -156, and -169 with THs, although they were insignificant after 

326 adjustment. In contrast, multipollutant analysis revealed significant positive associations of TT4 

327 and TrT3 with Factor 4, which was mainly loaded with PCBs and PCDD/Fs. This probably 

328 indicates that the relationship between PCBs and THs can be influenced by PCDD/Fs. Similarly, 

329 in a population highly exposed with polybrominated biphenyls (PBBs) from Michigan, serum 

330 PCBs were found to be positively associated with THs 36.

331 4.3 Associations of PCDD/Fs and PBDD/Fs with THs

332 1,2,3,6,7,8-HxCDD, OCDD, and 1,2,3,4,6,7,8-HpCDD showed significant inverse associations 

333 with TT4 and TT3 in crude single-pollutant models. After adjustment, only the association of 

334 OCDD with TT3 remained. Our previous study observed that placental TT4 was significantly 

335 inversely associated with 2,3,7,8-TCDD, but significantly positively associated with 1,2,3,6,7,8-

336 HpCDF, TT3 was significantly positively associated with 2,3,7,8-TCDF and 1,2,3,7,8-PeCDF, 

337 while TrT3 was significantly positively associated with 1,2,3,7,8-PeCDF and 2,3,4,6,7,8-HxCDF 

338 18. Other studies also reported inconsistent results 60, 61. The probable reasons include the presence 

339 of different pollutant mixtures, varying timing of sampling, exposure level, and uncontrolled bias.

340 PBDD/Fs are brominated dioxins found as impurities of PBDEs and formed during the 

341 incineration and degradation of brominated chemicals 62. Similar to previous reports 63, 64, we 

342 observed low DFs for PBDD/Fs. Therefore, the thyroid-disrupting properties of these chemicals 

343 were not assessed here.
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344 4.4 Strengths and limitations

345 Our study has several strengths: (1) THs in human breast milk was measured for the first time 

346 to investigate the thyroid-disrupting effects of POPs. Compared with serum, we obtained much 

347 higher detection frequencies for POPs. This is because it is easier to obtain large sample amount, 

348 as well as the high lipid content in milk; (2) A wide variety of POPs and potential confounders 

349 were measured and included in the statistical analysis, which can provide an overview of possible 

350 relationships between POPs and THs. Furthermore, multipollutant approaches enabled us to 

351 evaluate the integrated effects of POP mixtures. This is critical because many POP congeners show 

352 similar chemical and biological properties; (3) The low exposure of POPs in this population 

353 enabled us to estimate the thyroid-disrupting effects of POPs in background low-exposure 

354 population. Our study also has certain limitations. For example, we did not measure serum TH 

355 levels of infants that are more susceptible to thyroid disruption. Besides, with human breast milk 

356 we can only assess the maternal TH homeostasis, and therefore we are not able to estimate the sex-

357 specific associations between POPs and THs. Additional limitations include the lack of thyroid-

358 binding protein levels and the OH-PBDEs and OH-PCBs, which in general show higher potencies 

359 of thyroid-disruption. Lastly, this study was limited by the small sample size which may reduce 

360 the statistical power.
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