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ABSTRACT

Background: The availability of human pancreatic islets with characteristics closely resembling those present in vivo is instrumental for ex vivo
studies in diabetes research.
Scope of review: In this review we propose metabolically phenotyped surgical patients as a novel source of pancreatic tissue for islet research.
Laser Capture Microdissection from snap frozen surgical specimens is a relatively simple, reproducible and scalable method to isolate islets of
highest purity for many types of “omics” analyses. Fresh pancreatic tissue slices enable the functional characterization of living islet cells in situ
through dynamic experiments. Access to complete medical history and laboratory values for each donor offers the opportunity of direct cor-
relations with different “omics” data and detailed metabolic profiling prior to pancreas surgery. Peripheral blood samples complete the picture of
each patient and represent a platform for pursuit of biomarkers with uniquely comprehensive background information in regard to the donor’s islet
cells.
Major conclusions: Living donors provide the scientific community with a steady and abundant supply of excellent material to study islets
closest to their in situ environment, thus advancing our understanding of their physiology in health and diseases.
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1. INTRODUCTION

Acquisition of knowledge about the insulin producing beta cells began
with the discovery of pancreatic islets by Paul Langerhans in the late
19th century [1]. For almost a century the morphological and functional
characterization of these highly specialized endocrine cells was able to
almost exclusively rely on the application of histological methods to
fixed pancreatic tissue sections of human or animal origin. Therefore,
our early knowledge about beta cells and other islet cells in health and
diseases, such as diabetes, was mostly restricted to static snapshots.
The investigation of living islet cells was especially limited by the
particular vulnerability of the pancreatic tissue to autolysis following
the release of digestive enzymes by the surrounding exocrine cells. A
leap forwards in our understanding of the physiology and patho-
physiology of beta cells came in the second half of the 20th century
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with the development of protocols for the isolation of islets of Lang-
erhans from the pancreas of animals and human cadavers or organ
donors [2e5]. In the decades to follow and to this day, enzymatically
isolated islets have therefore been a most valuable in vitro model
system to study in a dynamic fashion the function of islet cells and their
dysfunctioning in diabetes [6].
With the remarkable progress of imaging and “omics” technologies,
however, alternative approaches have emerged which allow the
investigation of islet cells without their prior enucleation from the
surrounding pancreatic tissue, i.e. in a more physiological context. In
this short review we will briefly summarize how exploiting surgical
specimens from metabolically phenotyped pancreatectomized patients
as the source of pancreatic tissue for the study of islets in situ rep-
resents a paradigmatic shift for elucidating the cell biology and
pathophysiology of beta cells.
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2. ENZYMATICALLY ISOLATED ISLETS e THE WORKHORSE OF
RESEARCH IN DIABETES

The first successful attempts to purify pancreatic endocrine cells were
made by Hellerström, who in 1964 reported the isolation of islets using
microdissection techniques [2]. A year later, Moskalewski published
the use of collagenase digestion and mechanical disruption to
“release” the islets from the surrounding tissue [3]. The islets would
thereafter be picked by hand under a stereomicroscope. Even though
this method yielded viable, insulin secreting islets, it was plagued by
relatively high exocrine tissue contamination. This protocol was shortly
afterwards optimized by Paul Lacey, who introduced additional steps of
acinar tissue disruption prior to collagenase digestion and, most
notably, sucrose gradient centrifugation. The fraction of islets of
Langerhans in the final preparation was greatly increased, although
still between 40 and 90% [4]. It took another 20 years of modifying and
improving this initial protocol to finally succeed in making viable
preparations of human islets with sufficient efficiency. Ricordi et al.
first described the protocol and equipment setup that would enable,
through an automatized process, the isolation of islets of Langerhans
from an entire human pancreas [5]. This method greatly reduced
enzymatic and mechanical damage done to the islets during the
isolation procedure, but also facilitated an otherwise very labour-
intensive process. It also reduced the amount of necessary tissue
input to obtain a meaningful number of human islets, which also
enabled their collection from organs derived from partial pancreatec-
tomies [7]. Despite the various improvements to the protocol intro-
duced by numerous researchers throughout the following decades,
purity of the islet preparation remains one of the significant setbacks of
this method of obtaining islets for diabetes research.
Due to the tendency of pancreatic tissue to undergo autolysis and
suffer extensive damage ascribable to intrinsic digestive enzymes in a
matter of hours after death, the source of organs for islet isolation are
brain-dead, i.e. heart-beating, organ donors or, to a much lesser
extent, subjects who have died following cardiocirculatory arrest.
Frequently, medical and legal indications require these patients who
have experienced a catastrophic brain injury to spend several days in
the Intensive Care Unit (ICU) prior to organ donation. In order to improve
severely aggravated homeostasis, aiming at preserving life, or ulti-
mately to preserve organs for donation, these patients are subjected to
extensive procedures and therapies in the days ante finem. Most
receive some form of parenteral nutrition, continuous insulin infusions,
as well as corticosteroid therapy. These therapeutic interventions
affect endocrine axes, and in addition to the events that led to hos-
pitalization in the ICU, perturb islet cells, with altered glucose ho-
meostasis and metabolism. In addition to the metabolic stress induced
by medical interventions, there are reports of islet inflammation and
infiltration by macrophages in brain-dead rodents, while islets in situ
harvested from brain dead human donors exhibit markers of beta cell
stress [8,9]. Further alterations can be induced by varying periods of
warm and cold ischaemia that ensue during organ harvesting and by
exposure of islets to physical and chemical damaging factors during
the islet isolation procedure, which in essence represents a controlled
form of induced pancreatitis and can elicit a wound response. Finally,
isolated islets are usually cultured in an enriched medium for 24e48
hours after isolation before being subjected to analysis.
While the events prior to isolation contribute significantly to variability
among islet preparations from donors to donors, the period of in vitro
culture in a standardized milieu may mask some of the biologically
relevant differences between islets coming from donors with different
metabolic profiles. Furthermore, preparations of islets tend to vary
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substantially in purity, viability and functional capacity of the cells,
which can affect downstream usage in various perturbation experi-
ments. The availability of this precious resource for research has al-
ways posed a limitation, which has been further exacerbated in the
past several years by rerouting of the islets to newly developed, more
successful endocrine pancreas replacement therapies using human
isolated islets. In order to maximise the usability of the islets that
indeed are assigned to research, islets obtained from a single donor
are divided into several portions and dispatched to the laboratories
working with the particular islet isolation centre. The question of
quality, viability and reproducibility of islet preparations after isolation
and subsequent handling has been addressed in articles recently
published in leading journals in the field such as Diabetologia and
Diabetes [10,11]. Identification of biological phenomena using this
experimental model is hindered by limited clinical data available about
the donors due to stringent legal requirements in regard to protection
of personal information. In addition, restricted number of medical
centres with the logistics and expertise in transplantation medicine and
islet isolation limits the availability of isolated human islets.

3. PANCREATIC TISSUE FROM LIVING DONORS e A RESOURCE
FOR THE FUTURE OF DIABETES RESEARCH

In order to overcome some of the limits described above, during the
last decade we have resorted to surgical specimens of pancreatec-
tomized patients as a complementary source of human islet tissue.
Patients with varying indications for pancreatic surgery are recruited
according to predefined criteria and metabolically profiled preopera-
tively (routine clinical biochemistry, oral glucose tolerance test (OGTT)
including insulin, proinsulin, c-peptide and glucagon measurements).
Despite its limitations in painting a complete metabolic picture of these
living donors, the OGTT remains the gold standard clinical approach for
assessing glucose tolerance and still offers very valuable information
for downstream use [12]. This strategy in particular allows the
recruitment not only of non-diabetic and subjects with overt type 2
diabetes but also of prediabetic subjects, hence opening up the pos-
sibility of cross sectional characterization of islets/beta cells in the full
spectrum from normoglycaemia to type 2 diabetes (Fig. 1).
In the same procedure, additional peripheral blood samples are
collected and promptly stored at �80 �C. The surgical specimen is at
shortest notice delivered to a pathologist who excises healthy
pancreatic tissue fragments, which are promptly snap frozen in liquid
nitrogen thereby instantly stopping biological processes, and thereby
minimizing artefacts in comparison to the perifused tissue in vivo.
Owing to a streamlined routine process and privileged processing of
research samples, total warm and cold ischaemia time is reduced to
less than one hour. After freezing samples can be stored at �80 �C or
lower temperatures for extended periods of time without risk of
degradation and depletion of molecules relevant in contemporary
research.
From the frozen pancreatic tissue fragments, serial sections are made
in a cryostat and mounted on specialty slides. As part of the efforts in
the IMI consortia IMIDIA and RHAPSODY we developed an improved
protocol for retrieval of islets from frozen sections of pancreatic tissue
using Laser Capture Microdissection (LCM) [13]. This technique, first
introduced to the field of islet transcriptomic research by Lorella
Marselli, Piero Marchetti and Gordon Weir, relies on the detection of
lipofuscin autofluorescence in beta cells of human pancreatic speci-
mens [14,15]. Islets are then separated from the surrounding tissue by
the cutting laser guided by a manually drawn path and catapulted from
the slide into the collection cap by the catapulting laser (Fig. 2). Islet
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure. 1: Criteria for stratification of surgical patients according to their preoperative glucose tolerance (adapted according to ADA Standards of Medical Care in Diabetes - 2018).

Figure. 2: Identification of islets of Langerhans using autofluorescence, snapshot of LCM isolation.
preparation obtained in this way is of highest purity and biomolecules
are preserved virtually in the same state they had been prior to freezing
of the samples very shortly after surgical removal. Tissue collected
with this methodology is fully compatible with high throughput biology
techniques such as DNA and RNA sequencing and microarrays [16].
A concern about this approach pertains to the suitability of surgical
specimens from subjects with pancreatic disorders, mainly of the
exocrine tissue, for research on islets and diabetes pathophysiology.
This question can be addressed on several levels schematically
shown in Fig. 3. First, in the cohort of non-diabetic and type 2 dia-
betic surgical patients that we reported on recently, the prevalence of
the most common disorders accounting for pancreatectomy, namely
malignant and benign pancreatic tumours or chronic pancreatitis,
was comparable [17]. Hence, the impact that these disorders might
have on islet specificities should have been equivalent in the two
groups. Key parameters such as age, gender and BMI of non-diabetic
and type 2 diabetic surgical patients were overlapping with those of
the corresponding groups among brain-dead organ donors whose
islets had been retrieved post-mortem by enzymatic digestion.
Principal component analysis indicated that the transcriptomes of
islets isolated by LCM from snap frozen pancreatic tissue sections of
several organ donors free from known pancreatic disorders clustered
together with the transcriptome of LCM islets from pancreatecto-
mized patients rather than with the transcriptome of enzymatically
isolated from the same organ donors. Conversely, the transcriptomes
of islets isolated enzymatically from surgical specimens clustered
together with the transcriptomes of islets isolated enzymatically from
organ donors rather than with the transcriptome of islets isolated by
LCM from the same surgical patients. Hence, the phenotypic char-
acteristics of the isolated islets are more driven by the method for
their retrieval than by presence or absence of a concurrent disorder
of the exocrine pancreas.
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Transcriptomic analyses also revealed that islets recovered by LCM
from surgical specimens were only minimally contaminated by
pancreatic exocrine tissue, possibly less than those isolated enzy-
matically from the pancreas of organ donors. Most importantly LCM
islets did not display transcriptomic signatures of neoplastic tissues,
which is particularly of note considering that surgical indication for the
majority of patients was some type of pancreatic neoplasm [17].
Likewise, pathological examination did not reveal infiltration of tumour
cells in the islets of any of the surgical patients with pancreatic cancer.
Nonetheless a strong association between recent onset diabetes and
pancreatic cancer has been observed for several decades [18,19].
However, the neoplastic processes in the pancreas do not seem to
directly affect the biology of the islets, but rather impose a sudden rise
in peripheral insulin resistance, leading in turn to impaired glucose
tolerance and the clinical presentation of type 2 diabetes. The most
likely cause for these alterations is cholestasis followed by post-
hepatic hyperbilirubinemia and impaired liver function due to the
compression exerted on the common bile duct by a tumour in the head
of the pancreas. Indeed, cholestasis with insulin resistance and
hyperglycaemia are uncommon among patients with cancers in the tail
and body of the pancreas. Further support for this interpretation is the
evidence of rapid improved glycaemic control in the majority of the
patients who underwent resection of a tumour in the pancreas head,
with amelioration of bile flow and liver parameters and despite the
decreased total pancreas mass and insulin secretion [20,21].
Remarkably, improved glycaemic control with reduced insulin resis-
tance has been observed even in patients without cancer who un-
derwent resection of the pancreas head in the context of
pancreatoduodenectomy [22]. Additionally, islets isolated from rodents
subjected to mechanical cholestasis in vivo did not exhibit impaired
function in vitro [23]. The relationship between cholestasis and insulin
resistance is further corroborated by evidence of metabolic like-
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Figure. 3: Considerations regarding potential pitfalls in the use of surgical specimens from pancreatectomized patients as a source of LCM islets for research on diabetes.

Review
syndrome and increased HOMA-IR in patients with intrahepatic
cholestasis [24,25]. Taken together, these considerations argue
against glucose intolerance in patients with pancreatic cancer resulting
from a remote effect of neoplastic cells on islets. On the contrary, it
appears that also in subjects with pancreatic cancer decompensation
of beta cell function occurs in the context of exacerbated insulin
resistance, although the origin of the latter is mechanic rather than
metabolic, which is the case for most other individuals with type 2
diabetes.
Another critical aspect to be considered whenever a new approach is
introduced in scientific practice is its degree of reproducibilitye a topic
of particular relevance in the field of islet research. In the realm of the
research activities of the German Center for Diabetes Research (DZD
e.V.) and following our standard operating procedures for LCM of islets
from surgical specimens, colleagues in Tübingen have been able to
profile the islet transcriptome of an independent cohort of pancrea-
tectomized patients who underwent surgery at their University Hos-
pital. Despite the comparatively small number of patients,
bioinformatic analyses of the transcriptomes obtained from these
samples yielded remarkably similar results to those we had already
observed in our cohort [26].
A further issue to be addressed by our approach is the limited
availability of islets for research applications due to the limited
number of organ donors as well as centres for pancreas trans-
plantation and islet isolation in each microregion, further compli-
cated by the special expertise and infrastructures required for such
procedures. Despite being one of the most complex operations,
pancreatectomy is on the other hand an elective surgical procedure
that is performed on a routine basis at most university hospitals
worldwide. In Germany, for instance, >10,000 pancreatectomies
are carried out each year, with an average of >100 at each major
hospital. Surgical pancreatic specimens from living donors could
therefore represent a large and reliable local source of islets for
research. The technique of LCM to obtain pure islets is, given the
availability of a suitable microscopy system, not a limiting factor as
it can be easily carried out with relatively little expertise. Snap
frozen samples can alternatively be forwarded to interested
investigators at remote locations with limited cost and time
restrictions.
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The reliance on surgical patients as donors of pancreatic tissue by-
passes the stringent legal requirements regarding protection of per-
sonal data, that are in place for organ donors. This in practice means
that, with appropriate consent and necessary deidentification pro-
cedures, personal and family history can be made readily available to
researchers. Access to the patient before surgery offers the invaluable
opportunity to collect preoperative blood samples and conduct
necessary tests for full metabolic profiling. Hence, a comprehensive
biobank can be established in each centre, containing not only the
biological samples, but also complete clinical data and biochemical
measurements needed for deep phenotypic characterisation of each
donor.
The potential applications of surgical specimens for islet research have
increased following the seminal work of the Speier lab, which pio-
neered protocols to conduct ex vivo dynamic imaging and physiological
measurements in perifused pancreatic tissue slices [27]. This major
advancement, in particular, tackles one of the critical limitations in the
use of surgical specimens relative to enzymatically isolated islets, i.e.
the possibility to analyse secretion of insulin and conceivably other islet
hormones, all the while keeping the islets in situ without perturbing
their anatomical and functional interactions [28].
The issue of validation of data acquired using different high-throughput
methods can be addressed through preservation of not only the snap
frozen specimens from which the islets were retrieved by LCM but also
additional formalin fixed paraffin embedded (FFPE) tissue samples.
Snap frozen tissue samples can, with appropriate handling, be pre-
served for many years and still retain their integrity and serve as a
source for new methods to be developed in the future. FFPE samples
are inherently very durable and offer the possibility of revisions and
validations using more traditional methods as well as novel microscopy
techniques for decades after collection (Fig. 4). Access to histopath-
ological reports completes the picture of the donor, enabling retro-
spective and prospective comprehensive investigations.
Finally, to complete the molecular and metabolic profile of living do-
nors, peripheral blood samples are also routinely collected. These can,
at the time of writing this review, be used for genomic profiling as well
as plasma lipidomics, metabolomics and proteomics measurements.
We believe that in the pursuit of circulating biomarkers predictive for
beta cell failure, this resource is of utmost importance, especially given
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure. 4: Left: Confocal image of a human islet from FFPE tissue; insulin immunofluorescence (in green), nuclear staining with DAPI (in blue). Right: Beta cell region in
superresolution (Structured Illumination) from a FFPE human tissue; insulin immunofluorescence.
the possibility to integrate this data with those obtained from in situ
islets of the same metabolically phenotyped donors.

4. CONCLUSIONS

Ever since their discovery and implication in diabetes, the cells of the
islets of Langerhans have remained the focus of research for gener-
ations of scientists. Basic knowledge of structure and function of these
cells has been established in static conditions using traditional his-
tology techniques and methods and was a cornerstone for the many
years of research that will follow. In the years to follow, owing to
advances in the methodology for islet isolation and general de-
velopments in molecular biology, dynamic experiments and insight into
the cell function in real time became possible. Despite the indicated
disadvantages, the study of enzymatically isolated islets has provided a
wealth of knowledge for the treatment and prevention of diabetes. The
human model of primary islet cells remains therefore an asset to
investigate their physiology and pathology [6].
In view of the background presented in this review, metabolically
phenotyped surgical patients represent a novel and complementary
source of pancreatic tissue and peripheral blood for diabetes research.
The wealth of information and deep phenotyping of biological samples
obtained from these donors are of particular interest, especially
considering that this approach can be implemented in virtually any
medical centre performing pancreatic surgery and with access to
appropriately equipped laboratories.
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