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Highlights

• Generalizes hierarchical population model to various distribution assumptions

• Provides framework for efficient calibration of the hierarchical population model

• Simulation study and application to experimental data reveal improved robustness and op-
timization performance

Abstract

Cellular heterogeneity is known to have important effects on signal processing and cellular decision
making. To understand these processes, multiple classes of mathematical models have been intro-
duced. The hierarchical population model builds a novel class which allows for the mechanistic
description of heterogeneity and explicitly takes into account subpopulation structures. However,
this model requires a parametric distribution assumption for the cell population and, so far, only
the normal distribution has been employed. Here, we incorporate alternative distribution assump-
tions into the model, assess their robustness against outliers and evaluate their influence on the
performance of model calibration in a simulation study and a real-world application example. We
found that alternative distributions provide reliable parameter estimates even in the presence of
outliers, and can in fact increase the convergence of model calibration.

Keywords: Single-cell data; Heterogeneity; Population model; Skew normal distribution; Student’s
t distribution; Mechanistic Modeling; Dynamic Modeling
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1 Introduction

An important goal of systems biology is to obtain insights into the mechanisms and sources of
cellular heterogeneity. This heterogeneity is critical for cellular decision making (Balázsi et al.,
2011) and studied for various diseases and biological systems. To study heterogeneity, data at the
single-cell level, e.g., time-lapse or snapshot data, are collected with experimental techniques such
as fluorescent microscopy or flow cytometry.

To mechanistically study single-cell snapshot data, a variety of modeling approaches have been
introduced. Ensemble models describe individual cells and model the overall population as a col-
lection of many cells (Henson, 2003; Kuepfer et al., 2007). These models are often computationally
expensive. To circumvent this, the cell population can be approximated by its statistical moments.
Approximation approaches depend on assumptions about the contribution of intrinsic and extrinsic
noise sources. While intrinsic noise is often defined as the stochasticity of gene expression, extrinsic
noise is assumed to influence the reaction rates (Swain et al., 2002). Therefore, the statistical mo-
ments are obtained using the moment-closure approximation (Engblom, 2006), when intrinsic noise
is assumed to be important, or Dirac-mixture approximations (Wang et al., 2019), when hetero-
geneity occurs mainly due to extrinsic noise. For the case of extrinsic noise, modeling approaches
have been developed which infer the distribution of cellular properties using maximum entropy
principles (Waldherr et al., 2009; Dixit et al., 2019). However, the aforementioned methods do not
explicitly take into account subpopulation structures, which are omnipresent in heterogeneous cell
populations (Altschuler and Wu, 2010). We recently introduced the hierarchical population model
(Loos et al., 2018). This model describes subpopulation structures using mixture modeling, and
ensures computational efficiency by employing approximations for statistical moments of the bio-
logical species of individual subpopulations. However, the model relies on a parametric assumption
for the distribution of the subpopulations and only the multivariate normal distribution has been
employed. This is a substantial limitation as the distribution of properties within subpopulations
is often not normal (Pyne et al., 2009; Mar, 2019).

As the measured distribution reflects not only cellular heterogeneity, but also the variability of
the measurement process, measurement noise and outliers might result in additional deviations
from a normal distribution. In the analysis of ordinary differential equation (ODE) models, it has
been shown that distributions with heavier tails than the normal distribution yield more robust
parameter estimates in the presence of outliers (Maier et al., 2017). For single-cell snapshot data,
the probability of observing outliers in the data is even higher due to the high number of data points
(Pyne et al., 2009; Ilicic et al., 2016). Thus, heavy-tailed and skewed distributions are employed
when studying flow cytometry (Pyne et al., 2009) or scRNA-seq data (Ding et al., 2019). However,
the incorporation and assessment of distribution assumptions for the hierarchical population model
is missing. Ideally, the employed distribution should not only provide reliable parameter estimates,
but also yield a reasonable performance of model calibration.

In this manuscript, we describe the hierarchical population model and generalize it to different
distribution assumptions. We derive the equations for the mathematical formulation of the model
with alternative distribution assumptions. These equations, including the likelihood function and
its gradient, are required to perform efficient model calibration using gradient-based maximum
likelihood estimation. We analyze the influence of the distribution assumptions for simulated data
of three biological motifs and three outlier scenarios. Finally, we apply the hierarchical population
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model with the different distribution assumptions to analyze experimental data of NGF-induced
Erk1/2 signaling.

2 Methods

2.1 Hierarchical population model

We consider single-cell snapshot data,

D = {(ȳck, tk,u)}c,k , (1)

with indices c for the cell and k for the time point, stimulus vector u ∈ Rnu and a vector of
measurements ȳck ∈ Rny of the cell. The measured quantities might be, e.g., (relative) protein
abundances. For a better readability, we neglected the index for varying stimuli.

In the hierarchical population model as introduced in Loos et al. (2018) the measured property of
an individual cell is assumed to be distributed according to

ȳ ∼
∑
s

wsφ(ȳ|ϕs) , (2)

with relative subpopulation sizes ws of subpopulations s = 1, . . . , ns and parametric distribution φ
which depends on the vector of distribution parameters ϕs (Fig. 1A). The relative subpopulation
sizes ws are positive and sum up to one. The distribution parameters ϕs arise from the single-cell
dynamics and models for cell-to-cell variability. Individual single-cell trajectories can be obtained
using Markov jump processes (Gillespie, 1977), ordinary (Klipp et al., 2005) or stochastic differ-
ential equations (Gillespie, 2000). Instead of simulating the cells individually, which can become
time-consuming, we compute the temporal evolution of the statistical moments, i.e., means mx

s

and covariances Cx
s , of biochemical species x. The temporal evolution is defined by a function gz,

e.g., obtained by moment-closure (Engblom, 2006), sigma-point (van der Merwe, 2004) or Dirac
mixture approximations (Wang et al., 2019), depending on the assumptions about intrinsic and
extrinsic noise. This yields

żs = gz (zs, ξs,u) , zs(0) = z0 (ξs,u) , (3)

with zs = (mx
s ,C

x
s )T , initial conditions z0 and subpopulation parameters ξs = (βs,Ds). These

parameters are given by

βs,i =


βi

βi

βs,i

βs,i

and Ds,ii =


0 homogeneous ,
Dii cell-to-cell variable ,
0 subpopulation variable ,
Ds,ii inter- and intra-subpopulation variable .

The parameter βs,i encodes the mean of the cellular property, while the parameter Ds,ii encodes its
spread within a subpopulation. Homogeneous parameters are assumed to be the same for all cells
of the whole cell population; cell-to-cell variable parameters differ between cells of the same sub-
population; subpopulation variable parameters differ between but not within a subpopulation; and
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Figure 1: Illustration of the hierarchical population model. (A) Means and covariances of
the species for each subpopulation are linked to a mixture distribution. (B) Heterogeneity
is captured by assuming each parameter/cellular property to be distributed according to
one of the indicated cases.

inter- and intra-subpopulation variable parameters differ both between and within subpopulations
(Fig. 1B).

The moments for a subpopulation are mapped to the distribution parameters,

ϕs = gϕ (zs, ξs,u) , (4)

of a distribution φ. Thus, gϕ encodes the mapping from the biochemical species to the observables,
i.e., the measurable output of the system, as well as the mapping of the observables to the distri-
bution parameters (see Appendix C.1 for an example). So far, the multivariate normal distribution
has been employed,

φnorm(ȳ|ϕ) =
1

(2π)
ny
2 det(Σ)

1
2

e−
1
2 (ȳ−µ)TΣ−1(ȳ−µ) , (5)

with distribution parameters ϕ = (µ,Σ), comprising mean µ ∈ Rny and covariance matrix Σ ∈
Rny×ny . This yields

ϕs = (µs,Σs) = gϕ((mx
s ,C

x
s ), ξs,u) = (my

s ,C
y
s + Γ) , (6)

including measurement noise Γ, which is generally assumed to be the same for all subpopulations.

2.1.1 Calibration of the hierarchical population model

The parameters of the model, including relative subpopulation sizes ws, subpopulation parameters
ξs and parameters for the measurement noise need to be estimated from data. For this, we denote
the overall parameter object by θ (see Appendix C.1 for an example). The model is calibrated by
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maximizing the likelihood function,

L (θ) =
∏
k,c

∑
s

ws (tk,θ,u)φ (ȳck|ϕs(tk,θ,u)) (7)

with żs = gz (zs, ξs(θ),u) , zs(0) = z0 (ξs(θ),u) ,

ϕs = gϕ (zs, ξs(θ),u) .

This can efficiently be done by multi-start local optimization employing the gradient of the likeli-
hood function (Raue et al., 2013; Loos et al., 2016).

In the following, we provide the likelihood functions for several distribution assumptions which
can be incorporated into the hierarchical population model. For each distribution, we derive
the function gϕ introduced in (4), which maps the mean and covariances of the species to the
distribution parameters ϕs.

2.2 Alternative distribution assumptions for the hierarchical population
model

We considered three alternatives to the normal distribution: the skew normal, the Student’s t
and the negative binomial distribution (Fig. 2). In the following, we discuss these distributions
and provide the equations which are required to incorporate the distributions in the hierarchical
population model.

2.2.1 Multivariate skew normal distribution

A challenge in the analysis of single-cell data is that the observed cell population is often skewed
(Pyne et al., 2009). Therefore, distributions which account for skewness are often employed in
the analysis of, e.g., flow cytometry data (Johnsson et al., 2016). The multivariate skew normal
distribution has distribution parameters ϕ = (µ,Σ, δ), with location µ ∈ Rny , covariance matrix
Σ ∈ Rny×ny and skew parameter δ ∈ Rny . The probability density function is

φskewnorm(ȳ|ϕ) = 2φnorm(ȳ|µ,Ω)Φnorm(α(ȳ − µ)|0, 1) , (8)

with Ω = Σ + δδT , α = δTΩ−1/(1 − δTΩ−1δ)
1
2 ∈ R1×ny and Φnorm denoting the cumulative

distribution function of a univariate standard normal distribution. If δ = 0, the distribution equals
a multivariate normal distribution. As provided by Pyne et al. (2009) and Sahu et al. (2003), the
mean and covariance matrix of the multivariate skew normal distribution are

m = µ+

√
2

π
δ ,

C = Σ +

(
1− 2

π

)
δδT .

(9)
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This yields for ϕs(θ) = (µs(θ),Σs(θ), δ(θ)) the relation

µs(θ) = my
s(θ)−

√
2

π
δ(θ) ,

Σs(θ) = Cy
s(θ)−

(
1− 2

π

)
δ(θ)δ(θ)T + Γ(θ) ,

(10)

with measurement noise matrix Γ. The entries of the skew parameter vector δ are allowed to differ
in each dimension. However, they are restricted in a way that Σs needs to be positive definite.
The derivatives of the probability density (8) and the distribution parameters (10) are provided in
Appendix A.2.

2.2.2 Multivariate Student’s t distribution

The Student’s t distribution is often employed as a robust alternative to the normal distribution
in regression (Lange et al., 1989), modeling of population-average data (Maier et al., 2017), and
in the analysis of single-cell data (Lo et al., 2008; Pyne et al., 2009; Ding et al., 2019). The tails
of the Student’s t distribution are heavier than the tails of a normal distribution, and thus the
distribution can better cope with outliers in the data. The multivariate Student’s t distribution
has distribution parameters ϕ = (µ,Σ, ν) with location µ ∈ Rny , shape matrix Σ ∈ Rny×ny and
degree of freedom ν ∈ R+. The probability density function reads

φstud(ȳ|ϕ) =
Γ(

ν+ny
2 )|Σ|− 1

2

(πν)
ny
2 Γ(ν2 )

(
1 + 1

ν (ȳ − µ)TΣ−1(ȳ − µ)
) ν+ny

2

. (11)

For ν > 2, the mean and covariance matrix of the multivariate Student’s t distribution are given
by

m = µ ,

C =
ν

ν − 2
Σ .

(12)

This yields ϕs(θ) = (µs(θ),Σs(θ), ν(θ)) with

µs(θ) = my
s(θ) ,

Σs(θ) =
ν(θ)− 2

ν(θ)
Cy
s(θ) + Γ(θ) .

(13)

For ν → ∞, the Student’s t distribution equals a normal distribution. The derivatives of the
probability density (11) and the distribution parameters (13) are provided in Appendix A.3.

2.2.3 Negative binomial distribution

A further distribution assumption which is often employed in the analysis of single-cell data is
the negative binomial distribution (Grün et al., 2014; Amrhein et al., 2019), which is a count
distribution in contrast to the other distributions. For a two-stage model of gene expression, the
protein number in steady state only follows a negative binomial distribution if the ratio of mRNA
degradation to protein degradation is high (Shahrezaei and Swain, 2008), or if the mRNA molecules
are produced in bursts (Amrhein et al., 2019). This distribution has the parameters ϕ = (τ, ρ)
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Figure 2: Distributions assumptions for the hierarchical population model. The visual-
ized distributions (normal, skew normal, Student’s t and negative binomial) for ȳ ∈ R+

have mean m = 50 and variance C = 60. The skew normal and Student’s t distributions
are visualized for different skewness parameters δ and degree of freedom ν, respectively.

with τ > 0 and ρ ∈ [0, 1]. In contrast to the other distributions, this distribution can not take into
account correlation structures between the dimensions of multivariate data. We considered the
univariate case and multivariate data could be modeled by the product distribution which neglects
correlations. The probability mass function reads

φnbin(ȳ|ϕ) =

(
ȳ + τ − 1

ȳ

)
(1− ρ)ȳρτ . (14)

The mean and variance of the negative binomial distribution are

m =
(1− ρ)τ

ρ
,

C =
(1− ρ)τ

ρ2
.

(15)

Thus, the distribution parameters ϕs(θ) = (ρs(θ), τs(θ)) are mapped to the moments via

ρs(θ) =
my
s(θ)

Cys (θ) + Γ(θ)
,

τs(θ) =
my
s(θ)2

Cys (θ) + Γ(θ)−my
s(θ)

.

(16)

The derivatives of the probability density (14) and the distribution parameters (16) are provided in
Appendix A.4. For large τ , the negative binomial distribution approaches a normal distribution.

3 Results

3.1 Evaluation of influence of distribution assumptions for simulated data

To assess the performance of model calibration under the different distribution assumptions in the
hierarchical population model, we simulated data for three different motifs: a conversion process,
a two-stage gene expression and a birth-death process (Fig. 3 and Appendix C). The first motif
is frequently found in signal transduction networks, and the last two motifs models are commonly
used for the description of gene expression.

7

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/718270doi: bioRxiv preprint first posted online Jul. 29, 2019; 

http://dx.doi.org/10.1101/718270
http://creativecommons.org/licenses/by/4.0/


measured
not measured
stimulation
homogeneous
subpopulation variable

conversion two-stage birth-death

k2,s

k1 k4

k3 k5

u

mA A

k2,s

k1

k3

A

u

k1

k3

k2,s

A B

u

Figure 3: Three motifs for the simulation study. We considered a conversion process, a
two-stage gene expression and a birth-death process. For each motif, we assumed two
subpopulations which differ in their response to stimulus u. All other reaction rate
constants were assumed to be homogeneous, i.e., the same for all cells.

All systems were assumed to be in steady state before the stimulus u was added at time point 0.
For each motif, we chose three parameter vectors, three numbers of time points and four numbers
of cells per time point (50, 100, 500, 1000). This yielded 108 data sets which were simulated using
the stochastic simulation algorithm (Gillespie, 1977). The differences in the measurements for cells
within a subpopulation arose solely due to intrinsic noise and no additional measurement noise
was added to the data.

We perturbed the data according to different outlier scenarios (Fig. 4):

• No outliers: no outliers were included in the data.

• Zeros: the measured concentration at a certain time point tk is zero, e.g., due to a missing
label or entry. Consequently, we measured ȳj = 0 for randomly chosen cells.

• Doublets: one measurement includes the summed informatin of. As a simplified simulation
approach, the measured value of randomly chosen cell was doubled.

• Uniform: Randomly chosen cells have uniformly distributed values in a defined regime (B.19)
instead of the real measurement.

The amount of outliers in the data has a different influence for the different scenarios. The intro-
duction of zero measurements is, for example, a bigger perturbation of the data as the uniform
scenario. To obtain a comparable perturbation, we used different percentages of outliers for the
scenarios and assumed 2%, 5% and 10% of the cells to be outliers for scenarios zeros, doublets, and
uniform, respectively.

We calibrated the hierarchical population models based on all data sets for the different distribution
assumptions with 30 optimization runs which were started at randomly chosen parameter values.
For this simulation study, the measurements were count data and the continuous distributions were
evaluated for the untransformed measured counts. The subpopulation sizes were fitted in linear
space and the parameters required for the simulation of the statistical moments in log10 space. We
assumed the true underlying sources of heterogeneity to be known and allowed for measurement
noise. The moments of the subpopulations were obtained using the moment-closure approximation.
For the birth-death process the first time point follows a Poisson distribution, for which the mean
equals the variance. This violates the restriction of the negative binomial distribution that the
variance needs to be higher than the mean. Thus, the negative binomial distribution can not be
applied to study this motif without accounting for measurement noise, while the other distributions
could in principle also be applied without measurement noise.
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Figure 4: Outlier scenarios for single-cell snapshot data. (A) Example data sets of a con-
version process with (B) corresponding fits with different distribution assumptions. The
arrows in (A) illustrate the outlier-generating mechanisms.

The fits for the different distribution assumptions are shown for three example data sets in Fig. 4B.
The negative binomial distribution did not provide reasonable fits for all the displayed scenarios and
did not capture the subpopulation structure of the cell population. The remaining distributions
accurately fitted the data for the uniform outlier scenario. However, for the zeros and doublets
scenarios, only the Student’s t distribution was not deviated by the outliers, potentially because it
has the heaviest tails of the considered distributions.

To compare the different models quantitatively, we used the Bayesian Information Criterion (BIC)
(Schwarz, 1978), for which low values are preferable. We compared the differences in BIC values to
the minimal BIC value found for the given data set (=∆BIC) (Fig. 5A). In the case of outlier-free
data, the best distribution assumption differed between the studied motifs. For the conversion
process the normal distribution was most appropriate, while for the two-stage gene expression and
the birth-death motif the negative binomial distribution was chosen. It is to be expected that
the negative binomial distribution fits well for the birth-death motif, since this process follows a
negative binomial distribution in steady state if the ratio between mRNA and protein degradation
rate is high (Shahrezaei and Swain, 2008). As soon as outliers were introduced to the data, the
Student’s t distribution provided in average the lowest BIC value for all considered motifs and was
therefore selected as most suited model.

The mean squared error (MSE) provides a measure for the accuracy of the parameter estimates.
We considered the MSE in the logarithmic/linear space in which the parameters were fitted and
summed the errors of the parameter estimates to obtain a single value for each data set and dis-
tribution. The true parameters which were used to generate the data for the simulation study
are known, and we compared the MSEs of the parameter estimates obtained with the different
models (Fig. 5B). For the cases of no-outliers, the MSE for all distributions were similar, with
the exception of the negative binomial distribution for the conversion motif. Here, the negative
binomial distribution could not reliably reconstruct the parameters even in the absence of outliers.

9

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/718270doi: bioRxiv preprint first posted online Jul. 29, 2019; 

http://dx.doi.org/10.1101/718270
http://creativecommons.org/licenses/by/4.0/


A

normal                              skew normal                           Student’s t                         negative binomial                 

B

C

two-stage birth-death

M
SE

Δ
BI

C
+1

 C
PU

 ti
m

e
pe

r s
ta

rt
co

nv
er

ge
d 

st
ar

ts
 [%

]

104

102

100

102

100

10-2

10-4

102

101

100

10-1

100

50

0
no outliers with outliers no outliers with outliers no outliers with outliers

D

conversion

Figure 5: Results for the simulation study. Comparison of (A) ∆BIC values, (B) MSE, (C)
CPU time per optimization start and (D) number of converged starts for the distribution
assumptions for the motifs conversion process, two-stage gene expression and birth-death
process. We considered outlier-free and outlier-corrupted data. Each boxplot in (C) has
1080 points (36 data sets and 30 optimization runs) and the other boxplots (A, B, D)
comprise 36 points.

In the presence of outliers, the Student’s t distribution still provided low MSEs which were compa-
rable to the those obtained in the outlier-free scenario. However, the MSE obtained by the other
distributions substantially increased with the introduction of outliers.

A further important aspect to consider is the robustness and efficiency of model calibration. Often
many models which represent different biological hypotheses need to be calibrated. Therefore, the
optimization of each individual model should be fast and robust. To assess the performance of
model calibration using the distribution assumptions, we considered the computation time and
number of converged starts (Fig. 5C-D). We considered an optimizer start to be converged, if the
difference between the obtained likelihood value and the best likelihood function for this distribu-
tion assumption and the considered motif is below 10−3. For most of the here considered motifs and
data sets the computation time and convergence were not substantially influenced by the presence
of outliers. Interestingly, for the outlier-free data of the conversion process, the negative binomial
distribution did not converge at all. On average, the normal and negative binomial distributions
required the lowest computation time. An explanation for this could be that the optimization
problem using these two distributions is lower than the problem using the skew normal and the
Student’s t distribution, since no additional parameters were estimated from the data. In terms of
converged starts, we observed some differences between the considered motifs. For the conversion
process the negative binomial distribution and for the remaining motifs the skew normal distribu-
tion provided the lowest number of converged starts, while the normal and Student’s t distribution
did not suffer from convergence problems.

The simulation study showed that the consideration of alternative distribution assumptions was
beneficial and the normal distribution was often outperformed by the other distributions. The
heavier tails of the distributions allowed for a compensation of the outliers in the data, but did
not generate substantial computational overhead in the outlier-free case. Overall, the Student’s t
distribution provided reliable parameter estimates and, at the same time, enabled an efficient

10

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/718270doi: bioRxiv preprint first posted online Jul. 29, 2019; 

http://dx.doi.org/10.1101/718270
http://creativecommons.org/licenses/by/4.0/


calibration of the corresponding model.

3.2 NGF-induced Erk1/2 signaling

To test the distributions in a real application setting, we reanalyzed the data and hierarchical
population model studied in (Loos et al., 2018). The model describes binding of NGF to its
receptor TrkA, which then induces the phosphorylation of Erk1/2 (Fig. 6A), an important process
involved in pain sensitization. The measurements were obtained from primary sensory neurons
using fluorescent microscopy. For more details on the model and data, we refer to Loos et al.
(2018).

For the data considered here, we could not apply the negative binomial distribution, since this dis-
tribution requires integer valued measurements and is only defined for univariate measurements.
For this analysis, we log-transformed the simulation and data. Calibrating the hierarchical pop-
ulation models using the normal distribution, the skew normal distribution and the Student’s t
distribution, we found that for the univariate data of the pErk1/2 kinetics, the model fits cannot
visually be distinguished (Fig. 6B and Fig. C1). The skew normal distribution fitted the bivariate
data the best (Fig. 6C,D and Fig. C1). We could not assess the MSE since the true parameters are
not known. Visualizing the likelihood waterfall plots (Fig. 6D) and analyzing the performance of
the optimization (Fig. 6E), we found that the Student’s t distribution substantially outperformed
the other distributions in terms of converged optimizer starts (per minute). Interestingly, the skew
normal which showed bad convergence for the simulation study even had a higher convergence than
the normal distribution for this application problem. The skew normal provided the best likeli-
hood and BIC value. However, it also has the highest number of parameters since for the bivariate
measurements each dimension is allowed to have different skewness parameters. To summarize, the
incorporation of the alternative distribution assumptions into the hierarchical population model
demonstrated their robustness and efficiency not only for the simulation study, but also for real
experimental data.

4 Discussion

The hierarchical population model is a suitable tool for studying cellular heterogeneity. The model
requires a distribution assumption for the cellular subpopulations and incorporated various distri-
butions for the subpopulations. We also provided the equations to perform gradient-based model
calibration, which previously has been shown to be highly efficient (e.g., Loos et al. (2016)) and,
thus, also enhances optimization-based uncertainty analysis using profile likelihoods (Raue et al.,
2009). Furthermore, we studied the influence of the choice of distribution on the estimation results
and the performance of model calibration for artificial and real experimental data.

We found that the normal distribution assumption is appropriate when not many outliers are
to be expected. The negative binomial distribution did not provide appropriate results for all
scenarios and neglects correlations between the dimensions. Multivariate extensions which account
for correlations could be incorporated (Shi and Valdez, 2014). If the data is outlier-corrupted,
robust alternatives such as the Student’s t distribution are more reasonable. This distribution
provided reliable results when the data is outlier-free and could be considered as default distribution
assumption. If more information is available about the precise type of outliers, e.g., if they arise
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Figure 6: Robust distributions for NGF-induced Erk1/2 signaling. (A) Model for NGF-
induced Erk1/2 signaling. (B,C) Data and model fits for (A) univariate measurements of
pErk1/2 levels and (C) bivariate measurements for pErk/TrkA and pErk/Erk levels. (D)
Likelihood waterfall plot for the three different distribution assumptions. The best 80
values are shown and in total 500 optimization runs started at randomly drawn parameter
values were performed. (E) The performance of the optimization measured as number
of converged starts per minute.

due to dropout events in scRNA-seq data, computational methods can be adapted accordingly
(Pierson and Yau, 2015; Eraslan et al., 2019). While the Student’s t distribution suffered from
problems of over-fitting in the case of population-average data (Maier et al., 2017), the number of
measurements in single-cell data sets is usually much higher and we do not expect to face the same
problems as for population-average data. To allow for different degrees of freedom in multivariate
measurements, a t copula could be employed (Luo and Shevchenko, 2010). Also, a skewed version
of the Student’s t distribution as, e.g., used by Pyne et al. (2009) could be incorporated.

In summary, we introduced the use of different distribution assumptions for the hierarchical popu-
lation model and evaluated their performance. Our results on simulation and application examples
suggested that these distribution assumptions substantially improve the hierarchical population
model and, thus, enhance the study of cellular heterogeneity.

Implementation and code availability

The alternative distribution assumptions are implemented in the MATLAB toolbox ODEMM (Loos
et al., 2018) available under https://github.com/ICB-DCM/ODEMM. The model calibration was
performed using the toolbox PESTO (Stapor et al., 2018). The ODE models were simulated using
the toolbox AMICI (Fröhlich et al., 2017). The sigma-point approximation was obtained by the
SPToolbox. These toolboxes can be found under https://github.com/ICB-DCM. For the moment-
closure approximation, we employed the toolbox CERENA (Kazeroonian et al., 2016) available
under https://cerenadevelopers.github.io/CERENA/. The whole analysis was performed using
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MATLAB 2017b. The code to reproduce the results of this study is available under http://doi.
org/10.5281/zenodo.3354136.
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A Gradient of the likelihood functions

A.1 Multivariate normal distribution

The probability density function for the multivariate normal distribution is defined in (5). The
log-density function is given by

log φnorm(ȳ|µ,Σ) = −1

2

(
ny log (2π) + log(det Σ) + (ȳ − µ)

T
Σ−1 (ȳ − µ)

)
. (A.17)

Assuming that the distribution parameters depend on parameter vector θ, the derivative of the
multivariate normal density is given by

∂ log φnorm (ȳ|ϕ(θ))

∂θi
=− 1

2

(
Tr
(

(Σ(θ))
−1 ∂Σ(θ)

∂θi

)
+ (µ(θ)− ȳ)

T
Σ(θ)−1

(
∂µ(θ)

∂θi

)T
+

(
∂µ(θ)

∂θi

)T
Σ(θ)−1 (µ(θ)− ȳ) + (µ(θ)− ȳ)

T ∂Σ(θ)−1

∂θi
(µ(θ)− ȳ)

)
,

(A.18)

with derivatives for the distribution parameters for subpopulation s

∂µs(θ)

∂θi
=
∂my

s(θ)

∂θi
,

∂Σs(θ)

∂θi
=
∂Cy

s(θ)

∂θi
+
∂Γ(θ)

∂θi
.

A.2 Multivariate skew normal distribution

The probability density function for the multivariate skew normal distribution is defined in (8).
The log-density function is given by

log φskewnorm(ȳ|ϕ) = log(2) + log φnorm(ȳ|µ,Ω) + log(Φnorm(α(ȳ − µ)|0, 1)) .

Assuming that the distribution parameters depend on parameter vector θ, the gradient is given
by

∂ log φskewnorm(ȳ|ϕ(θ))

∂θi
=
∂ log φnorm(ȳ|µ(θ),Ω(θ))

∂θi
+

1

Φ(α(θ)(ȳµ(θ)))
φnorm(α(θ)(ȳ − µ(θ))|0, 1) ·(

α(θ)
∂(ȳ − µ(θ))

∂θi
+ (ȳ − µ(θ))

∂α(θ)

∂θi

)
,
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with

∂α(θ)

∂θi
=

∂

∂θi

δ(θ)TΩ(θ)−1
(
1− δ(θ)TΩ(θ)−1δ(θ)

)− 1
2︸ ︷︷ ︸

a(θ)


=

(
∂δ(θ)T

∂θi
Ω(θ)−1 + δ(θ)T

∂Ω(θ)−1

∂θi

)
a(θ) + δ(θ)TΩ(θ)−1 ∂a(θ)

∂θi
,

∂Ω(θ)−1

∂θi
= −Ω(θ)−1 ∂Ω(θ)

∂θi
Ω(θ)−1

= −
(

Σ(θ) +
√
δ(θ)δ(θ)T

)−1
(
∂Σ(θ)

∂θi
+

1

2
(δ(θ)δ(θ)T )−

1
2 ·

(
∂δ(θ)

∂θi
δT + δ(θ)

∂δ(θ)T

∂θi

))
·
(

Σ(θ) +
√
δ(θ)δ(θ)T

)−1

,

∂a(θ)

∂θi
=

1

2

(
1− δ(θ)TΩ(θ)−1δ(θ)

)− 3
2
∂δ(θ)TΩ(θ)−1δ(θ)

∂θi

=
1

2

(
1− δ(θ)TΩ(θ)−1δ(θ)

)− 3
2

(
∂δ(θ)T

∂θi
Ω(θ)−1δ(θ) +

δ(θ)T
(
∂Ω(θ)−1

∂θi
δ(θ) + Ω(θ)−1 ∂δ(θ)

∂θi

))
.

The derivatives for the distribution parameters (10) for subpopulation s are given by

∂µs(θ)

∂θi
=
∂my

s(θ)

∂θi
−
√

2

π

∂δ(θ)

∂θi
,

∂Σs(θ)

∂θi
=
∂Cy

s(θ)

∂θi
−
(

1− 2

π

)(
∂δ(θ)

∂θi
δ(θ)T + δ(θ)

∂δ(θ)T

∂θi

)
+
∂Γ(θ)

∂θi
.

A.3 Multivariate Student’s t distribution

The probability density function for the multivariate Student’s t distribution is defined in (11).
The log-density function is

log φstud(ȳ|ϕ) = log Γ

(
ν + ny

2

)
− log Γ

(ν
2

)
+ log(|Σ|− 1

2 )− ny
2

log(πν)− ν + ny
2

log

(
1 +

1

ν
Z

)
,

with Z = (ȳ − µ)TΣ−1(ȳ − µ). The gradient is given by

∂ log φstud(ȳ|ϕ(θ))

∂θi
=

1

2

((
Ψ

(
ν(θ) + ny

2

)
−Ψ

(
ν(θ)

2

)
− ny
ν(θ)

+

Z(θ)(ν(θ) + ny)− ν(θ)(ν(θ) + Z(θ)) log(1 + 1
ν(θ)Z(θ))

ν(θ)(ν(θ) + Z(θ))

)
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∂θi

− Tr
(
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with

∂Z(θ)

∂θi
=(y − µ(θ))TΣ(θ)−1

(
∂µ(θ)

∂θi

)T
+

(
∂µ(θ)

∂θi

)T
Σ(θ)−1(y − µ(θ)) +

(y − µ(θ))T
∂Σ(θ)−1

∂θi
(y − µ(θ)) ,

and digamma function denoted by Ψ. The derivatives for the distribution parameters (13) for
subpopulation s are

∂µs(θ)

∂θi
=
∂my

s(θ)

∂θi
,

∂Σs(θ)

∂θi
=
ν(θ)− 2

ν(θ)

∂Cy
s(θ)

∂θi
+ Cy

s(θ)
2

ν(θ)2

∂ν(θ)

∂θi
+
∂Γ(θ)

∂θi
.

A.4 Negative binomial distribution

The probability density function for the negative binomial distribution is defined in (14). The
log-density function reads

log φnbin(ȳ|ϕ) = log

((
ȳ + τ − 1

ȳ

)
(1− ρ)ȳρτ

)
= log(Γ(ȳ + τ))− log(Γ(ȳ + 1))− log(Γ(τ)) + ȳ log(1− ρ) + τ log(ρ) .

The derivative of the log-density function is

∂ log φnbin(ȳ|ϕ(θ))

∂θi
= Ψ(ȳ + τ(θ))

∂τ(θ)

∂θi
−Ψ(τ(θ))

∂τ(θ)

∂θi
−

y

1− ρ(θ)

∂ρ(θ)

∂θi
+
∂τ(θ)

∂θi
log(ρ(θ)) +

τ(θ)

ρ

∂ρ(θ)

∂θi
.

The derivatives of the distribution parameters (16) for subpopulation s are

∂ρs(θ)

∂θi
=

1

Cys (θ)

∂my
s(θ)

∂θi
− my

s(θ)

Cys (θ)

∂Cys (θ)

∂θi
,

∂τs(θ)

∂θi
=
my
s(θ)(2Cys (θ)−my

s(θ))

(Cys (θ)−my
s(θ))2

∂my
s(θ)

∂θi
− my

s(θ)2

(Cys (θ)−my
s(θ))2

∂Cys (θ)

∂θi
.

B Uniform outlier scenario

In the uniform outlier scenario, the measured values of the outlier cells were assigned to the rounded
value of uniformly distributed values on the interval

[max(0,min
c

(ȳck)− 0.25 · I),max
c

(ȳck) + 0.25 · I] (B.19)

with I denoting the length of the interval without outliers.
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C Models

C.1 Conversion process

The conversion process is described by the following reactions:

R1 : A→ B , rate = k1[A] ,

R2 : A→ B , rate = k2,su[A] ,

R3 : B→ A , rate = k3[B] .

Reaction R1 describes the basal conversion from A to B and reaction R2 the stimulus-dependent
conversion. The conversion from B to A, reaction R3, does not depend on stimulus u. We assumed
mass conservation with [A] + [B] = 1000.

The moment-closure approximation provides the temporal evolution of the moments,

zs =


mx

1

mx
2

Cx11

Cx12

Cx11

 ,

with mx
1 denoting the mean of species A, mx

2 denoting the mean of species B and Cxij denoting the
corresponding entries of the covariance matrix. The measurement noise is defined as Γ = σnoise.
The subpopulation parameter vector for subpopulation s = 1, 2 is given by ξs = (βs,Ds) with

βs =


k1

k2,s

k3

σnoise


homogeneous ,
subpopulation variable ,
homogeneous ,
homogeneous ,

and Ds = 0.

The mapping gϕ introduced in (4) then encodes the mapping from the biochemical species A and
B to its observable B, as well as the mapping to the distribution parameters as in (6, 10, 13, 16).
The overall parameter object which is estimated from the data is given by

θ = (k1, k2,1, k2,2, k3, σnoise) ,

for the normal and negative binomial distribution,

θ = (k1, k2,1, k2,2, k3, σnoise, δ) ,

for the skew normal distribution, and

θ = (k1, k2,1, k2,2, k3, σnoise, ν) ,

for the Student’s t distribution,
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C.2 Two-stage gene expression

The two-stage gene expression is described by the following reactions:

R1 : ∅ → mA , rate = k1 ,

R2 : ∅ → mA , rate = k2,su ,

R3 : mA→ ∅ , rate = k3[mA] ,

R4 : mA→ mA + A , rate = k4[mA] ,

R5 : A→ ∅ , rate = k5[A] .

Reactions R1 and R2 describe the stimulus-independent and stimulus-dependent mRNA expres-
sion, respectively. Reaction R3 describes mRNA degradation, reaction R4 protein expression and
reaction R5 protein degradation.

C.3 Birth-death process

The birth-death process is described by the following reactions:

R1 : ∅ → A , rate = k1 ,

R2 : ∅ → A , rate = k2,su ,

R3 : A→ ∅ , rate = k3[A] .

Reactions R1 and R2 describe the stimulus-independent and stimulus-dependent production of A
and reaction R3 its degradation.

C.4 NGF-induced Erk1/2 signaling

We used the model proposed in Loos et al. (2018), assuming cell-to-cell variability in total Erk1/2
levels and inter- and intra-subpopulation variability in cellular TrkA activity. The moments of the
system were obtained using the sigma-point approximation. The whole data set with the model
fits is shown in Fig. C1.
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Figure C1: Data and model fits for NGF-induced Erk1/2 signaling. pErk1/2 kinetics and
dose responses, and multivariate measurements of pErk/TrkA levels and pErk/Erk
levels. The upper rows illustrate the data together with a kernel density estimate.
The bottom rows visualize the data together with the contour lines of the hierarchical
models.
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