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11 Abstract
12 The hypothalamus is a brain region in charge of many vital functions. Among them, BAT thermogenesis represents an essential
13 physiological function to maintain body temperature. In the metabolic context, it has now been established that energy expen-
14 diture attributed to BAT function can contribute to the energy balance in a substantial extent. Thus, therapeutic interest in this
15 regard has increased in the last years and some studies have shown that BAT function in humans can make a real contribution to
16 improve diabetes and obesity-associated diseases. Nevertheless, how the hypothalamus controls BAT activity is still not fully
17 understood. Despite the fact that much has been known about the mechanisms that regulate BATactivity in recent years, and that
18 the central regulation of thermogenesis offers a very promising target, many questions remain still unsolved. Among them, the
19 possible human application of knowledge obtained from rodent studies, and drug administration strategies able to specifically
20 target the hypothalamus. Here, we review the current knowledge of homeostatic regulation of BAT, including the molecular
21 insights of brown adipocytes, its central control, and its implication in the development of obesity.

22 Keywords Thermogenesis . Hypothalamus . Obesity . Brown adipose tissue . Browning .White adipose tissue

23

24 Introduction: brown adipose tissue
25 through history

26 Firstly anatomically described byKonradGessner in 1551 in the
27 inter-scapular region of marmots, the brown fat was originally
28 termed “hibernating gland” due to its presumed role during the
29 hibernation phase of these animals. However, it was only in
30 1961 that the brown adipose tissue (BAT) was really identified
31 as a thermogenic organ responsible for non-shivering thermo-
32 genesis generating heat through several metabolic processes [1].

33BAT differs from the white adipose tissue (WAT) in terms of
34function and morphology. While BAT adipocytes contain large
35number of small lipid droplets within their cytoplasm providing
36the required energy fuel for thermogenic processes, WATadipo-
37cytes are composed of one single lipid droplet that accounts for
38more than 90% of their volume and are implicated mainly in the
39lipid storage and endocrine control [2–4]. Until recently, the
40widely held view was that BAT was only encountered in new-
41born infants [5–7] and that BATwas disappearing quickly over
42the first few years of postnatal life. However, some studies sug-
43gested that BATcould also be encountered in adults [8]. Indeed,
4410 years ago, when research considerably focused on BAT ther-
45apeutic potential in several diseases, such as metabolic related
46ones, numerous studies—notably using fluoro-deoxyglucose
47positron emission tomography (FDG-PET; an approach usually
48employed to track cancermetastasis)—identified regions of high
49glucose uptake areas very similar to the presumed brown fat,
50confirming that active BAT could also be detected in adults
51subjects [9–12]. These first statements opened a wide avenue
52on the study of BAT therapeutic implication in humans.

53Inside the brown adipocyte: thermogenesis Q2

54Brown fat is a high metabolically active tissue responsible for
55heat production, a process known as thermogenesis that uses
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56 lipids as energy fuel [13, 14]. Thermogenesis is mainly medi-
57 ated by the inner mitochondrion membrane uncoupling pro-
58 tein 1 (UCP1) that dissipates the proton gradient by allowing
59 them to be transported back to the mitochondrion, short-
60 circuiting ATP synthase processes, generating heat, and over-
61 all activating thermogenesis [15].
62 Adrenergic stimulation is known to activate the thermogenic
63 program in BAT through the binding of norepinephrine (NE) to
64 ß3-adrenoreceptors (ß3-AR). ß3-AR are located on the brown
65 adipocyte membrane and are coupled to excitatory G-protein,
66 structurally formed by ɑ, β, and ɣ subunits. Following the
67 binding of norepinephrine to ß3-AR, the G-protein ɑ-subunit
68 is translocated to adenylate cyclase (AC) inducing AMPc syn-
69 thesis activating protein kinase A (PKA) [16, 17]. PKA pro-
70 motes thermogenesis in two independent manners. (i) Firstly,
71 an acute effect, increasing the lipolytic activity through the
72 activation of adipose triglyceride lipase (ATGL), hormone-
73 sensitive lipase (HSL), and monoacylglycerol lipase (MGL)
74 hydrolyzing triglycerides increasing free fatty acids (FFAs)
75 levels, that will be later imported into the mitochondria by the
76 carnitine palmitoyltransferase 1a (CPT1a) [17–21], where they
77 will be used fuel to provide energy to thermogenic process.
78 However, recent evidence suggests that lipolysis is not essential
79 for the thermogenic process that can be produced by using
80 circulating nutrients supply [22, 23]. UCP1 facilitates the trans-
81 port of protons—expelled to the intermembrane space along the
82 respiratory chain—back to the mitochondrial matrix leading to
83 heat production avoiding ATP synthesis through the ATP-
84 synthase [24–27]. Thus, UCP1 uses FFAs originating from
85 BAT surrounding lipid droplets to generate heat through cata-
86 bolic mechanisms [28]. Besides FFAs, glucose can also be used
87 as energy supply for thermogenesis. Uptaken by the BAT glu-
88 cose transporters 1 and 4 (GLUT 1/4), glucose will undergo
89 glycolysis, generating metabolites involved in the formation
90 of FFAs; these FFAs being used by mitochondria for the ther-
91 mogenic process [28] (Fig. 1). (ii) Secondly, PKA can trigger a
92 chronic activation of thermogenesis following longer sympa-
93 thetic stimulations through the activation of p38-mitogen-
94 activated protein kinase (MAPK), which is implicated in mito-
95 genic effects, gene transcription, and protein synthesis, stimu-
96 lating UCP1 synthesis and brown adipocytes proliferation and
97 differentiation [29] .

98 Browning of WAT and whitening of BAT

99 More recently, a new type of adipocytes was described in
100 WAT sections following sympathetic stimuli, as cold acclima-
101 tion or stimulation with adrenergic agonists. Due to its brown-
102 like profile exhibiting thermogenic properties, it was named
103 beige or brite (“brown in white”) adipose tissue. Interestingly,
104 the process consisting in the enhancement of thermogenesis
105 process within white adipocytes, namely browning of WAT

106(i.e., increased expression and activity of UCP1 in what are
107normally considered WAT depots) was described in both ro-
108dents and humans [13, 30–36]. Brown and white adipocytes
109originate from different lineages; while brown adipocytes are
110derived from a Myf5-precursor shared with myocytes, white
111adipose cells originate from Myf5-negative precursors [37,
11238]. Numerous evidences have shown that Pr domain contain-
113ing 16 (PRDM16) is an important transcriptional factor in-
114volved in the browning of WAT [39, 40]. Moreover, it has
115been demonstrated that ß-adrenergic stimulations could pro-
116mote de novo productions of beige adipocytes [41] as well as
117“trans-differentiation” of preexisting mature white adipocytes
118in beige ones [38]. However, this last point remains unclear as
119some studies have suggested that some adipocytes could ex-
120hibit a morphologically white phenotype while originating
121from a beige lineage, thus bearing the potential to initiate the
122thermogenic program in response to thermogenic stimulus
123instead of the proposed ability of “trans-differentiation.”
124Therefore, it is suggested that cold exposure could unmask
125the thermogenic properties of preexisting beige adipocytes
126[42, 43].
127Although the role of beige fat on the modulation of energy
128balance has been questioned [44, 45], its presence and activity
129in humans has been widely demonstrated [31, 35, 46, 47],
130opening a new avenue in the development of anti-obesity
131drugs focusing on BAT thermogenesis and WAT browning
132to increase energy expenditure [48, 49].
133Current evidences have also suggested that the opposite
134process to browning could also occur. Known as the “whiten-
135ing of BAT”, brown adipocytes, in response to elevated tem-
136peratures, can be differentiated in white adipocytes. However,
137a recent study using brown, beige, and white cell cultures
138exposed or not to cold, and subsequently re-warmed, has dem-
139onstrated that only beige adipocytes, but not brown, could
140reverse their phenotype toward a white one, suggesting a cel-
141lular plasticity in response to preexisting environmental sig-
142nals and status [50]. Whitening process has been associated to
143BAT dysfunction in obesity and insulin resistance states in
144animal models [51, 52]. Indeed, the BAT of obese mice dis-
145plays large lipid droplets with augmented amount of fatty
146acids associated to reduced ß-adrenergic signaling, as well as
147mitochondrial dysfunction, mirroring white fat [51].
148Whitening of brown fat is also associated with peripheral loss
149of vascularity and development of hypoxia correlating with a
150significant reduction of vascular endothelial growth factor
151(VEGF) leading to endothelial dysfunction in BAT [53].
152Therefore, WAT and BAT, in spite of their opposite func-
153tions, share the ability for reciprocal reversible trans-
154differentiation in response to physiologic needs. Thus, chronic
155positive energy balance and obesity are related with whitening
156induction, while chronic needs for thermogenesis, associated
157to lean and overstimulation of sympathetic activity, has been
158suggested to induce browning [54–56].
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159 Thermogenesis inducers

160 Numerous crucial transcriptional factors playing a key role in
161 the thermogenic capacity of the adipocyte have been de-
162 scribed. Peroxisome proliferator-activated receptor ɣ (PPAR
163 ɣ) is a nuclear factor essential for the activation ofUCP1 gene
164 transcription and other thermogenic markers of brown pheno-
165 type, as well for the differentiation of brown/beige adipocytes
166 [57, 58]. Conversely, PPARα is only expressed in BAT, not in
167 WAT, and is considered to be a specific BAT-phenotype mark-
168 er due to its involvement in the induction of lipid catabolism
169 and mitochondrial uncoupling [59, 60]. PRDM16 and the per-
170 oxisome proliferator-activated receptor γ coactivator 1ɑ
171 (PGC1ɑ) are shared by both brown and beige adipocytes,
172 and are implicated in mitochondrial biogenesis and strongly
173 associated to brown-like phenotype, and not to the white one.
174 All of these transcriptional factors are considered as the main
175 thermogenic markers along with UCP1 [61–63].

176Apart from transcription factors, cold exposure is con-
177sidered as one of the main factor in the increase of thermo-
178genesis, in the recruitment of BAT and in the induction of
179browning, and overall in the increase of energy expendi-
180ture associated to lipid catabolism to finally induce a re-
181duction of body weight [64–66]. Newborns are exposed to
182a reduced ambient temperature just after birth, requiring
183non-shivering thermogenesis processes to adapt to the
184new conditions. This adaptation process is mediated by
185metabolic hormones such as thyroid hormones (THs), cor-
186tisol, leptin, or insulin, all involved in the induction of
187thermogenic mechanisms. Thus, cold exposure plays a
188key role as a main inducer of BAT. In response to low
189temperature, NE is released by sympathetic fibers, binds
190to ß3-AR inducing lipolysis and thermogenesis. More re-
191cent data show that cold exposure during winter also in-
192duces browning of WAT, inducing the expression of UCP1
193and PGC1 mRNA in subcutaneous white fat [67].

Fig. 1 The molecular events during the thermogenesis inside the brown
and beige adipocyte. Sympathetic stimulus release norepinephrine (NE)
that binds toβ3 adrenoreceptor (β3-AR) in the brown/beige adipocyte. It
is coupled to excitatory G protein (Gs), formed by subunits ɑ, β, and ɣ. ɑ
subunit moves to activate adenilate cyclase (AC) which converts
adenosintriphosphate (ATP) in cyclic adenosinmonophophate (cAMP)
that activates protein kinase A (PKA). PKA has a dual effect: (1)
Induces the triglycerides hydrolysis by the activation of lipases (adipose
triglyceride lipase, ATGL; hormone-sensitive lipase, HSL;
monoacylglycerol lipase, MGL) leading free fatty acids release (FFA).
Of note, thermogenesis can be produced without lipolysis by circulating

nutrients supply. FFA activates the thermogenic uncoupling protein 1
(UCP1). UCP1, located in the inner mitochondrial membrane, re-
introduces the protons (H+) broken out the mitochondria by the
respiratory chain. This process generates heat instead of ATP and is
namely thermogenesis. (2) PKA activates p38-mitogen activated kinase
(p38-MAPK) inducing transcriptional effects in the nucleus for UCP1
synthesis. Glucose transporter 1 or 4 (GLUT 1/4) takes up glucose
which can be hydrolyzed in the glycolysis whose metabolic products as
citrate and glycerol-3-phosphate may be introduced in the lipogenic
pathways to generate triacylglycerols used to thermogenic process.
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194 Moreover, THs play a key role in the energy balance
195 regulation being a powerful activator of cell metabolism in
196 several tissues such as skeletal muscle, brain, heart, liver,
197 pancreas, and adipose tissues (WAT and BAT) [68]. High
198 THs levels (i.e., hyperthyroidism) are known to increase
199 feeding, to activate ATP and oxygen consumption, and to
200 increase both body temperature and basal metabolic rate.
201 Furthermore, THs promote catabolic processes such as glu-
202 cose uptake, glycogenosis, gluconeogenesis, and lipolysis.
203 Thus, being implicated in all these metabolic rate increases,
204 THs have also a demonstrated role on decreasing body
205 weight [69–72]. BAT and WAT widely express deodinase
206 type 2 and nuclear TH receptors (TR), contributing to the
207 activation of thermogenesis among the adrenergic stimulus
208 [68, 72, 73]. The different isoforms of TR, TRɑ and ß, have
209 been described to be involved in the thermogenesis regula-
210 tion at different levels. Acting synergistically, TRɑ ensures a
211 correct adrenergic response, while TRß stimulates UCP1 ex-
212 pression [74, 75]. However, the most recent evidence asso-
213 ciating THs to BAT and WAT thermogenesis via a central
214 hypothalamic action will be later developed in this review
215 [71, 76, 77].
216 Furthermore, recent studies have also described other new
217 factors able to induce thermogenesis independently of adren-
218 ergic stimulation [78]. Many of them are hormones or circu-
219 lating factors involved in the differentiation of brown and
220 beige adipocytes [79–81]. Bone morphogenetic proteins
221 (BMP), a family of growth factors, are involved in the brown
222 fat differentiation, as well as in the browning induction of
223 WAT. Indeed, BMP7 induces brown adipocyte differentiation
224 [79], while a lack of BMP receptor type 1A induces BAT
225 shortage associated to increased browning to compensate re-
226 duced thermogenesis [81]. Conversely, BMP4 seems to be a
227 pivotal factor inWAT browning since it is correlated with lean
228 phenotype and thermogenesis in white fat [80], similar to the
229 growth differentiation factor 5, that activates BMP receptors,
230 protecting against obesity [82]. On the other hand, BMP8b
231 acts as a brown fat regulator promoting BAT sensitization to
232 sympathetic activity [83].
233 The inflammatory mediators prostaglandins (PG) activate
234 thermogenesis through sympathetic-dependent and indepen-
235 dent pathways [84, 85]. Thereby, genetic and pharmacological
236 approaches have demonstrated that prostaglandin E1 (PGE1)
237 is essential to maintain a normal UCP1 expression and to
238 promote thermogenesis in brown adipocytes and browning
239 of white ones, which is mediated by ciclooxigenase-2
240 (COX-2), a key enzyme involved in PG formation [84–86].
241 Furthermore, vitamin A derivatives, named retinoids, were
242 also described to be involved in UCP1 gene expression mod-
243 ulation mainly via nuclear receptors. Retinoids are usually
244 described to be implicated in several metabolic functions
245 and energy homeostasis. However recent evidences have
246 demonstrated that the chronic administration of retinoic acid

247(RA) induced thermogenesis in BATand browning ofWAT in
248mice [87–89], independently of any sympathetic stimulations.
249Interestingly, RA treatment improved insulin sensitivity by
250enhancing fat mobilization and energy utilization inducing
251bodyweight loss associated with an increase in brown specific
252genes including UCP1 [90, 91]. An essential factor in the
253retinoid-dependent activation of thermogenesis is the intracel-
254lular conversion of retinol into active forms, retinal and RA
255[87]. The activation of RA receptor (RAR) and PPARδ has
256been suggested to be involved in the RA-induced thermogen-
257esis leading to increased BAT activation, browning, and FA
258oxidation [87–89, 92].
259In addition, transient receptor potential (TRP), an ion chan-
260nel family implicated in temperature sensing, was also de-
261scribed to induce thermogenesis. Each TRP is activated at
262different temperature ranges. As an example, TRP-vanilloid-
2638 (TRPV8) is activated when the temperature is lower than
26427 °C, and TRP-ankyrin-A1 (TRPA1) when lower than 17 °C.
265Interestingly, a lack of these low-temperature-induced TRPs
266was described to impair the cold adaptation [93–95].
267Conversely, TRP-vanilloid-1 (TRPV1) is activated when the
268temperature is higher than 43 °C [96]. Furthermore, some
269TRPs are located in adipose tissues, such as TRP-melastin-8
270(TRPM8) which is expressed in BAT and induces UCP1 ex-
271pression. Moreover, TRPM8 pharmacological activation has
272been demonstrated to increase BAT activity in rodents [97,
27398]. TRPM8 has been described to be expressed in human
274adipose tissue and acting as an UCP1 inducer [98].
275Conversely, other ion channels have been described to be
276involved in the repression of thermogenesis, such as TRPV4
277channel whose inhibition promotes WAT browning and BAT
278thermogenesis [99, 100].
279Natriuretic (NP), atrial (ANP), and ventricular peptides
280(VNP) are also involved in the control of thermogenesis and
281browning [101]. All of them are vasodilator peptides secreted
282by the myocardium in response to high blood pressure.
283Interestingly, brown adipocytes express NP receptors
284(NPRs), which, when activated, induce an increase of the ex-
285pression of thermogenic markers promoting BAT activation
286through MAPK pathway [101]. Furthermore, chronic treat-
287ment with NP activates browning of WAT [101].
288Fibroblast growth factor 21 (FGF21) is an important
289hepatic-released regulator of glucose and ketone homeostasis
290[102–104]. FGF21 improves dyslipidemia and protects
291against obesity by enhancing energy expenditure, mainly
292through the activation of thermogenesis and browning [105,
293106]. Some evidences have also suggested that brown adipo-
294cytes can release FGF21 in response to sympathetic stimula-
295tion, acting as an autocrine factor enhancing the thermogenic
296process [29, 107]. Notably, FGF21 can induce UCP1 gene
297expression and uncoupling in brown adipocytes through the
298activation of p38-MAPK [29]. Novel findings demonstrate
299that FGF21 favors BAT thermogenesis and also browning of
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300 WAT through G-protein receptor 120 (GPR120) that binds
301 unsaturated long-chain fatty acids and contribute to the anti-
302 inflammatory response protecting against obesity and type II
303 diabetes [108]. Interestingly, data in rodents and humans have
304 demonstrated that obese subjects exhibit high circulating
305 levels of FGF21, suggesting a FGF21 resistance during obe-
306 sity [109, 110]. Therefore, FGF21 has emerged as a potent
307 inducer of thermogenesis; however, the complete underlying
308 molecular mechanism through which FGF21 exerts its effects
309 remains unclear.

310 Human thermogenesis

311 As mentioned above, the first studies demonstrating the exis-
312 tence of BAT in human patients were performed using FDG-
313 PET technique 10 years ago, a method usually used for the
314 detection of carcinogen cells due their high glucose uptake.
315 They have revealed that brown fat in adult humans was locat-
316 ed in the neck and in supraclavicular, mediastinum, peri-aor-
317 tic, paravertebral, and suprarenal areas, and that BAT regions
318 were inactivated in response to ß3-AR antagonist [11]. They
319 have also shown that BAT activity was higher in women than
320 in man, in lean than in obese, and in young than in elderly
321 people; and importantly, these fat depots widely expressed
322 UCP1, an unequivocal marker of brown adipocytes [10, 12].
323 However, further studies have demonstrated that the thermo-
324 genic markers present in the neck and supraclavicular fat
325 matched better with beige selective genes than brown ones,
326 suggesting that thermogenic adipose tissue in humans rather
327 corresponds to beige adipocytes than to classical brown ones
328 [31, 35, 111]. Subsequent studies pointed that both brown and
329 beige adipocytes were coexisting in humans [31, 33, 112,
330 113]. Browning process of human WAT has been reported in
331 patients undergoing severe burns, as a model of prolonged
332 adrenergic stress, whom also exhibited increased metabolic
333 rate [47]. The same observations were made in patients with
334 pheochromocytoma, a neuroendocrine tumor secreting large
335 amounts of catecholamines, in which several thermogenic
336 markers and hypermetabolism in omental and mesenteric ad-
337 ipose tissue were observed [114–116]. Cancer-associated ca-
338 chexia is characterized by high lipolysis and fat catabolism,
339 which have been related to deep browning process in both
340 human patients and rodent models [117, 118]. Interestingly,
341 human subcutaneous fat expresses thermogenic markers as
342 UCP1 or PGC1ɑ seasonally in winter, and also under acute
343 cold exposure [67]. All these studies indicate an activation of
344 browning under different states with increased sympathetic
345 rate in humans.
346 Curiously, human beige adipose tissue transplantation in
347 rodents improves glucose tolerance and insulin sensitivity
348 [119] suggesting a key role of browning in metabolic homeo-
349 stasis. However, the exact molecular mechanisms regulating

350thermogenesis in humans remain unknown. Therefore, pro-
351moting thermogenesis in humans appears as a promising ther-
352apeutic strategy to counter obesity, diabetes, and hyperlipid-
353emias, by enhancing energy expenditure as well as decreasing
354glucose and lipid circulating levels.

355Central regulation of thermogenesis

356In addition to its peripheral control, energy homeostasis is also
357regulated at a central level, mainly in the hypothalamus, a
358region located bellow the thalamus and composed of several
359hypothalamic nuclei widely interconnected between each oth-
360er. The hypothalamus is involved in the physiological control
361of many evolutionarily conserved functions. Among them, the
362hypothalamus regulates the hormonal axes, the autonomic
363nervous system activity, and the metabolic homeostasis.
364Regarding this last function, the different hypothalamic nuclei
365play an important role in the sensing of peripheral signals
366informing on the energy status, such as hormones and nutri-
367ents, integrating them and generating an appropriated re-
368sponse in terms of food intake and energy expenditure [2,
369120–122]. Due its implication in numerousmetabolic process-
370es, the hypothalamus is considered as the master regulator of
371energy balance.
372On the one hand, the hypothalamus controls food intake
373through the regulation of neuropeptide expression:
374orexigenic neuropeptides, such as agouti-related peptide
375(AgRP), neuropeptide Y (NPY), and orexins (OX) that in-
376crease food intake, while anorexigenic neuropeptides, such
377as proopiomelanocortin (POMC) and amphetamine-
378regulated transcript (CART) promote satiety [123–127].
379Furthermore, the hypothalamus is involved in the regulation
380of energy metabolism in peripheral tissues such as liver,
381skeletal muscle, pancreas, and both adipose tissues, brown
382and white, through the autonomic nervous system, sympa-
383thetic and parasympathetic. Accordingly, many studies have
384demonstrated that BAT and WAT thermogenesis are modu-
385lated by the hypothalamus that strictly regulates thermogen-
386esis as a main component of the energy expenditure [2,
387128–130].
388As mentioned above, the hypothalamus is composed of
389several neural groups namely hypothalamic nuclei, widely
390interconnected through axonal projections. It is known for
391a long time that some of these hypothalamic nuclei are in-
392volved in the regulation of energy balance, such as the arcu-
393ate nucleus of the hypothalamus (ARC), the dorsomedial
394nucleus of the hypothalamus (DMH), the ventromedial nu-
395cleus of the hypothalamus (VMH), the lateral hypothalamic
396area (LHA), and the paraventricular nucleus of the hypothal-
397amus (PVH) (Fig. 2) [2, 130, 131]. Recently, many molecu-
398lar mechanisms regulating the thermogenesis in these nuclei
399have been described.
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400 The preoptic area

401 The preoptic area (POA), anatomically located on the ante-
402 rior hypothalamic nucleus, is one of the primary brain areas
403 associated with the body temperature homeostasis
404 [132–135]. In the POA, peripheral as well as central signals
405 are integrated to initiate a physiological response to maintain
406 the body temperature within a physiological range. The POA
407 displays a double capacity to sense temperature changes.
408 Firstly, cold and heat-sensitive neurons in situ are able to
409 respond to a direct thermal stimulus. For example, direct
410 cooling of POA neurons triggers sympathetic nervous sys-
411 tem activation of BAT together with an increase of shivering

412thermogenesis [134, 136, 137], whereas the heat-sensitive
413neurons are able to increase their activity when locally heat-
414ed [138]. In parallel, the direct electric stimulation of POA
415increases BAT activity [139, 140]. Secondly, POA neurons
416receive information from the thermosensitive peripheral af-
417ferent nerves. At a cutaneous level, the TRP family previ-
418ously introduced can detect both cold (TRPA1 and TRPM8)
419and heat stimuli (TRPV3 and TRPV4) [141]. These recep-
420tors located in the primary somatosensory neurons of the
421skin detect the temperature variations before spreading the
422nervous signal to the POA through the spinal cord [142,
423143]. In addition to these cutaneous nerve endings, other
424thermoreceptor afferent nerves located in the abdomen

Fig. 2 Central nervous system neuroendocrine connectivity involved in
BAT thermogenesis and WAT browning regulation. Together with
physical stimulus (i.e., cold and heat) peripheral signals reach the
central nervous system where interact with their particular receptors.
Hypothalamic nuclei will integrate those signals in order to regulate
brown adipose tissue (BAT) thermogenesis. Heat-sensitive neurons in
the preoptic area (POA) detect cold and prostaglandin E1 (PGE1) to
promote BAT thermogenesis through projections to the dorsomedial
hypothalamus (DMH), the rostral raphe pallidus nucleus (rRPa), and
the ventromedial nucleus of the hypothalamus (VMH). Moreover,
additional signals from periphery are integrated in the hypothalamus
regulating the sympathetic tone to BAT. In particular, thyroid hormones
(THs), estradiol (E2), glucagon-like peptide-1 (GLP-1), and bone
morphogenetic protein-8b (BMP8b) modulates AMP-activated protein
kinase (AMPK) activity in the VMH. Together with this, endoplasmic
reticulum (ER) stress levels and carnitine palmitoyltransferase 1C
(CPT1C) in the VMH as well as orexin (OX) signalling in the lateral

hypothalamus (LHA) are part of the signalling mediated by AMPK.
Neuropeptide Y (NPY) expression in DMH neurons, p53 and mitofusin
2 (Mfn2) expression in the arcuate nucleus of hypothalamus (ARC) are
also contributing to the regulation of BAT activity. Brown fat and beige/
brite cells in the white adipose tissue (WAT) are under the control of
sympathetic nervous system activity. Blue arrow lines indicate signal
local action, grey lines indicate active/stimulatory neuronal pathways,
and red lines indicate inactive/inhibitory pathways, respectively. Third
ventricle: 3V, serotonin or 5-hydroxytryptamine: 5-HT, α-melanocyte-
stimulating hormone: α-MSH, β3-adrenergic receptor: β3-AR, brain-
derived neurotrophic factor: BDNF, cocaine and amphetamine related
transcript: CART, corticotropin-releasing hormone: CRH, gamma-
aminobutyric acid: GABA, glutamate: Glu, inferior olive: IO, lateral
hypothalamus: LHA, lateral preoptic area: vLPO, medial POA: MPO,
median POA: MnPO, melanin-concentrating hormone: MCH,
norepinephrine: NE, orexin A: OXA, orexin B: OXB, single-minded
homolog 1: Sim1
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425 viscera and in the spinal cord (where somatosensory nerves
426 detect the temperature of internal regions) participate in the
427 thermoregulation process [144]. After being sensed and inte-
428 grated, the two kinds of afferences—superficial and
429 internal—are transferred through splanchnic and vagus
430 nerves to the CNS. As internal temperatures are less incline
431 to fluctuate than skin-surrounding ones, abdomen viscera
432 and spinal cord afferent signals are primary used in the en-
433 hancement of cutaneous thermal information [143]. As men-
434 tioned above, POA-located neuronal populations are also
435 susceptible to be modulated by peripheral signals through
436 the decrease of their tonic discharge and the increase of their
437 local thermosensitivity after skin cooling [138]. More specif-
438 ically, neuronal populations located in the median part of
439 POA (MnPO) were described to integrate cold stimuli orig-
440 inating from the periphery. Thus, due to the neuronal func-
441 tional specificity and connectivity, the administration of a
442 glutamatergic agonist, N-mehyl-D-aspartate (NMDA) within
443 the MnPO induces a cold-defensive response [142] while its
444 injection in the medial POA (MPO) or lateral POA (LPO)
445 does not induce any effect. However, MPO neurons seem to
446 act as downstream effectors of MnPO neurons through direct
447 GABAergic projections from MnPO to MPO [142].
448 Moreover, neurons in the ventral part of the lateral preoptic
449 area (vLPO) are also required for the warm ambient-evoked
450 inhibition of BAT thermogenesis, mediated in this case by
451 GABAergic inputs from vLPO to the raphe pallidus nucleus
452 (rRPa) [145].
453 Additionally, POA has a key role on fever regulation.
454 Fever, or pyrexia, is an increase of body temperature set point
455 as response to a potential damage. Usually, under a bacterial or
456 viral infection, the increase in temperature generated by fever
457 provides an optimal environment to the action of immune
458 system as well as a decrease of pathogen survival [146]. In
459 this mechanism, peripheral pyrogens released in the plasma,
460 such as PG, reach central regions, in particular the POA, and
461 trigger the febrile response. The direct administration of PG in
462 the POA stimulates BAT thermogenesis [147]. It has been
463 observed that PGE2-induced fever is reduced by the phospho-
464 diesterase inhibitor aminophylline and that a decrease in
465 cAMP and cGMP levels in the POA induced fever [148].
466 Interestingly, within the POA, neurons expressing a subtype
467 of prostaglandin E receptor (EP3) project directly to the DMH
468 and to the rRPa. Those different neuronal populations inde-
469 pendently control the febrile responses to the BAT and to the
470 cutaneous vessels (i.e., PGE2 pyrogenic signalling projections
471 from POA neurons to the DMH activate BAT thermogenesis
472 while POA to rRPa projections increase cutaneous vasocon-
473 striction [149]).
474 In terms of connectivity, neuronal populations of POA pro-
475 ject to other regions such as DMH, rRPa, and VMH
476 [150–152]. Among those, the VMH projections mediate
477 BAT activation after peripheral cooling [150, 151].

478The dorsomedial nucleus of the hypothalamus

479The DMH is located on both sides of the third ventricle and
480dorsally from the VMH. Seminal anatomic lesion studies of
481the DMH have demonstrated its implication in feeding mod-
482ulation. Interestingly, food intake was inhibited when the area
483containing the DMH was electrically injured [153, 154]; evi-
484dence later confirmed by others [155] [156, 157]. The DMH is
485also involved in the regulation of BAT thermogenesis. Indeed,
486chemical stimulations of DMH neuronal populations have
487been described to modulate BAT thermogenic capacity
488through the SNS [158]. These stimulations relied on the ad-
489ministration of GABAA receptor antagonists in the DMH,
490implying that the DMH receives inhibitory GABAergic pro-
491jections decreasing BAT activation [158]. Interestingly, those
492inhibitory afferences originate from GABAergic neurons lo-
493cated in the POA (mentioned above) providing an inhibitory
494feedback to the sympatho-excitatory neurons of the DMH
495[159, 160].
496Anatomically, the DMH and the BATseem to be connected
497by projections through the rRPa and it has been shown that the
498inhibition of DMH neurons or the blockade of DMH gluta-
499mate receptors could revert the cold and febrile activation of
500the SNS and of the BAT thermogenesis [158, 161]. In addi-
501tion, the inferior olive (IO) has also been suggested to partic-
502ipate in DMH-BAT connections by hosting neuronal interme-
503diate projections. Recently, it has been described that both
504leptin and corticotropin-releasing hormone (CRH) could act
505on DMH neurons, triggering the stimulation of the rRPa and
506the BAT sympathetic innervation of BAT [162, 163].
507A recent study has shown that the expression of NPY in
508DMH neurons could play an important role in the regulation
509of BAT thermogenesis. Indeed, a DMH NPY-specific knock-
510down induced an increase of UCP1 expression in both ingui-
511nal white fat and BAT associated to an increase of energy
512expenditure and to an enhancement of thermogenic response
513to a cold environment
514[164].

515The paraventricular nucleus of the hypothalamus

516The PVH is the most dorsal hypothalamic nucleus and is lo-
517cated on both sides of the top of the third ventricle. PVH is an
518integrative nucleus that receives projections from ARC neu-
519ronal populations, as well as from extrahypothalamic regions
520such as the nucleus of the solitary tract (NTS) [165, 166].
521Lesions in the PVH induce hyperphagia and eventually obe-
522sity in animal models [167, 168]. Moreover, it has been de-
523scribed that the PVH was implicated in the modulation of
524BAT thermogenesis in the febrile response. Indeed, PVH neu-
525rons projecting to preganglionic sympathetic cells are activat-
526ed during fever and lesions in the PVH blunt this process [169,
527170]. Pseudorabies retro-infection data also support the
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528 functional implication of PVH in BAT thermogenesis
529 [171–173]. However, the PVH action on BAT activity seems
530 more related to a modulatory role, whereas a direct control
531 remains unclear. In this sense, it has been reported that direct
532 stimulations of PVH do not induce effects on BAT activity
533 [174, 175], whereas the inhibitory projections from the PVH
534 to the rRPa could be implicated in the decrease of the sympa-
535 thetic activity of the BAT [175, 176].
536 However, a direct functional connection associating PVH
537 and BAT thermogenesis has been described through several
538 lines of evidence. In this regard, direct administration of glu-
539 tamate, BDNF, urocortin, CART, PGE2, leptin, and thyroid
540 hormones within the PVH have been shown to activate brown
541 fat thermogenesis [177–183]. The single-minded homolog 1
542 (Sim1) neuronal population, mostly restricted to the PVH, has
543 also been described to be an important contributor of brown
544 fat regulation. For instance, mice with neuronal ablation of
545 Sim1 display reduced BAT temperature and decreased
546 UCP1 expression suggesting an impairment of thermogenesis
547 [184]. Together with this, the specific leptin receptor (LepRb)
548 deletion in Sim1 neurons induced cold-induced adaptive (non-
549 shivering) thermogenesis disruption with defective cold-
550 induced up-regulation of BAT UCP1 [185]. In contrary, when
551 cannabinoid type 1 (CB1) is specifically knocked out in Sim1
552 neuronal population, animals develop an increased thermo-
553 genesis, based on increased expression of β3-adrenergic re-
554 ceptor and BAT thermogenic markers [186].

555 The ventromedial nucleus of the hypothalamus

556 Located just above the arcuate nucleus (ARC), the VMH nu-
557 cleus was initially described as a centre of satiety as early
558 injury studies induced hyperphagia and obesity in animal
559 models [187, 188]. Nowadays, it is known that VMH has a
560 huge relevance on the energy balance modulation that goes far
561 beyond its only implication on food intake, especially regard-
562 ing its influence on energy expenditure [4]. The VMHwas the
563 first described hypothalamic nucleus to be involved in the
564 regulation of thermogenesis. Its electrical stimulation induced
565 an increase in BAT temperature [189], an effect that disap-
566 peared through sympathetic ganglia blockade or sympathetic
567 denervation [190]. Subsequently, VMH-specific injections of
568 glutamate, hydroxybutyrate, norepinephrine, serotonin, and
569 tryptophan activate BAT thermogenesis [178, 191–193].
570 Genetic evidences, more recently published, also link the
571 VMH to the BAT thermogenesis. In this sense, the specific
572 deletion of steroidogenic factor 1 (SF1) in VMH neuronal
573 populations triggers a decrease in the energy expenditure
574 and in the expression of UCP1 in the BAT [194, 195].
575 Recently, it has also been shown that the VMH was involved
576 in the thermogenic response of multiple hormonal signals
577 (thyroid hormones, estrogens, BMP8b) [83, 196–199] as well
578 as to pharmacological agents (nicotine, liraglutide) [200–202].

579Interestingly, it seems that these mechanisms could be depen-
580dent of an inhibition of AMP-activated protein kinase
581(AMPK) in VMH neurons triggering a sympathetic activation
582of BAT thermogenesis. Specifically, it seems that AMPKα1 in
583SF1 neurons could be the molecular entitymediating the SNS-
584driven BAT thermogenesis [203]. These actions on BAT ac-
585tivity can modulate body temperature and energy expenditure,
586significantly affecting energy balance and metabolism [204].
587The neuron-specific isoform of carnitine palmitoyltransferase
5881C (CPT1C) enzyme has also been described to be involved in
589the AMPK-brown fat axis to regulate thermogenic program in
590the VMH [205]. The CPT1C knockout mice displayed im-
591paired leptin-induced thermogenesis promoting an early
592obesogenic phenotype. The genetic activation of AMPKwith-
593in the VMH of CPT1C knockout mice was unable to activate
594BAT thermogenesis, indicating that CPT1C was likely an
595AMPK downstream event. Even if the exact mechanism re-
596mains unclear, CPT1C is able to bind malonyl-CoA, suggest-
597ing that CPT1C could act as a sensor of this canonical lipid
598signalling pathway informing on the hypothalamic energy
599status.
600Another mechanism described to be involved in BAT ther-
601mogenesis modulation is the lipotoxic action of ceramides
602within the VMH. Ceramides are a family of sphingolipids
603involved in several cell functions such as cellular signalling
604and protection and formation of cell membranes. However,
605under some metabolic conditions, these lipids trend to accu-
606mulate in the VMH, inducing lipotoxicity (toxicity induced by
607abnormal lipid content) and endoplasmic reticulum (ER)
608stress, leading to a decrease in the BAT sympathetic tone
609[206]. The ER stress modulation through the overexpression
610of the glucose-related protein 78 (GRP78) chaperone in the
611VMH can restore BAT thermogenesis in animal models in-
612ducing feeding-independent weight loss [207–209].
613Interestingly, this mechanism is shared by THs and estradiol
614(E2) to exert their thermogenic actions on BAT [71, 210].
615Although the neuronal pathways transmitting information
616from the VMH to the BAT remain unclear, it has been pro-
617posed that glutamatergic projections toward the orexigenic
618neurons of the LHA could be responsible for mediating the
619sympathetic activation of brown fat [211]. However, the
620VMH-BAT connection remains controversial due to the ab-
621sence of trans-synaptic retro-infection with pseudovirus after
622BAT inoculations [172, 212]. Nevertheless, indirect evidence
623have shown how VMH neurons project their axons to differ-
624ent control centers of the autonomic nervous system and to
625brainstem areas such as RPa and IO, the latter being clearly
626associated with BAT thermogenic activity [213–215].

627The lateral hypothalamic area

628The LHA is located laterally to the VMH in the opposite area
629of the third ventricle. In contrast to the “satiety center”
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630 referring to the VMH, Anand and Brobeck proposed in 1951
631 the term “feeding center” to firstly describe the LHA [216]. In
632 this study, anatomic lesions in the LHA of rats and cats trig-
633 gered aphagia and weight loss. Subsequently, it has been
634 shown that LHA was involved in the regulation of
635 hypothalamic-pituitary axes, thirst, glucose homeostasis,
636 sleep-wake cycles, and in the hedonic aspects of food intake
637 [120, 217–221]. In relation to BAT thermogenesis, identifica-
638 tion studies using neurotropic virus pseudorabies inoculated in
639 the BAT have found different neuronal populations labeled on
640 the LHA. Immunocytochemical characterization of those pop-
641 ulations have identified them in melanin-concentrating hor-
642 mone (MCH) and orexin (hypocretins) neurons [172], mean-
643 ing that MCH and orexin neurons from the LHA projected to
644 the BAT. Particularly, it has been described that LHA orexin
645 neurons are involved in fever-induced thermogenesis and in
646 the stress response [222, 223]. Moreover, as previously men-
647 tioned, numerous evidences are indicating that VMH axons
648 project to the orexin neurons of the LHA where the overex-
649 pression of OXs activates BAT thermogenesis [211]. This
650 VMH-OX neuronal connection is essential for BMP8b induc-
651 tion of BAT activity [211]. In agreement, OX-null mice and
652 knocked-down glutamate vesicular transporter 2 (VGLUT2)
653 do not respond to the thermogenic effect of BMP8b. Overall,
654 the AMPK(VMH)-glutamatergic-OX(LHA)-SNS-BAT path-
655 way appears as a key axis of BAT thermogenesis modulation.

656 The arcuate nucleus of the hypothalamus

657 Located on both sides of the third ventricle and immediately
658 dorsal to the median eminence, the ARC is defined by two
659 distinct neuronal populations: those expressing AgRP and
660 NPY and, those expressing POMC and CART [224]. The
661 fundamental role of ARC in the regulation of feeding is deeply
662 established since the late 60s when anatomic-specific ARC
663 lesions were described to induce hyperphagia and obesity
664 phenotype in animal models [225]. However, beyond its role
665 in the control of feeding, the ARC also participates in the
666 regulation of BAT thermogenesis. In this sense, it seems that
667 orexigenic populations inhibit thermogenesis based on the
668 evidence that the partial loss of AgRP neurons induces a sym-
669 pathetic activation of BAT [226]. The action is apparently
670 mediated by the melanocortin system in the PVH as the
671 MC4R deficiency prevents the thermogenic action of leptin
672 [227]. The thermogenic action of leptin is in turn mediated by
673 its receptors in the ARC where its genetic deletion blunts the
674 mechanism [228]. Together with this, GABAergic RIP-Cre
675 neurons in the ARC contribute to the thermogenic actions of
676 leptin [229]. In this context, ER stress plays an important role
677 in leptin resistance in POMC neurons. ER stress improvement
678 through the overexpression of Mitofusin 2 is associated with
679 an increase in BAT temperature [230]. Moreover, ER stress in
680 AgRP neurons was also recently associated with BAT

681thermogenesis. In this case, the AgRP-specific deletion of
682p53 promotes obesity on mice, whereas the overexpression
683of p53 in the ARC or specifically in AgRP neurons of obese
684mice attenuated DIO-induced hypothalamic ER stress stimu-
685lating BAT thermogenesis and reducing body weight [229,
686231].

687Central regulation of browning

688As described for BAT, WAT receives sympathetic innervation
689which controls lipolysis and browning. Neuroanatomical
690knowledge about axonal projections to WAT was firstly
691established more than 20 years ago [232]. The use of antero-
692grade tracers has allowed to identify sympathetic inputs in the
693fat pads, exhibiting difference in the postganglionary projec-
694tions between the inguinal and epididymal fat depots [232].
695The sympathetic neuro-adipose junction has been described
696in vivo as a direct “enveloping” of the terminal nerves by the
697adipocytes. The functional activation of those sympathetic
698outputs using optogenetic techniques induced lipolysis in
699WAT, suggesting the existence of a nervous component mod-
700ulating WAT functions [233]. Some studies were able to de-
701scribe an extended autonomic neural axis connecting the fat
702tissue with central areas, mainly the hypothalamus and POA
703[171]. Interestingly, labeled viral particles infected down-
704stream of the sympathetic preganglionic neurons were later
705observed in the medulla (rostroventrolateral medulla
706(RVLM), rostroventromedial medulla (RVMM), rRPa
707pallidus, and raphe magnus), as well as in the hypothalamus
708(PVN, LHA, ARC), the suprachiasmatic nucleus (SCN), the
709retrochiasmatic area (RCA), and the medial POA. Moreover,
710it has also been described that neuronal populations located in
711the regions of the medulla and midbrain including the NTS,
712area postrema, locus coeruleus (LC), parabrachial nuclei
713(PBN), and the periaqueductal gray were involved in WAT
714regulation [234, 235]. Interestingly, it has been described that
715males had a higher proportion of neurons in the abdominal fat,
716whereas females exhibited high neuronal proportion in the
717subcutaneous fat, suggesting that the neural regulation of the
718different fat depots is sexually dependent and dimorphic
719[234]. A recent study has also characterized the central neural
720projections to the beige adipose tissue providing precious in-
721formation on how the different brain regions were involved in
722the browning mechanism. Oldfield and colleagues have de-
723scribed how under cold exposure, the central neural circuits in
724hypothalamic (PVH and LHA) and brainstem (rRPa and LC)
725regions could reorganized themselves with higher proportions
726of command neurons projecting to both brown fat and beige
727WAT. These data provide strong evidences indicating a prob-
728able reorganization of the nervous system connectivity follow-
729ing WAT browning [236].
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730 Together with the neurochemical characterization, func-
731 tional evidences have connected specific brain areas to the
732 WAT browning. NPY-specific knockdown in the DMH pro-
733 motes the development of brown adipocytes in the inguinal
734 WAT through the local SNS [164]. Accordingly, NPY signal-
735 ling in DMH is also essential to mediate the MPO browning
736 regulation. Thus, MC4R signalling and hence, the
737 melanocortin system in the MPO were described to modulate
738 WAT metabolism and, possibly, the brown adipocyte devel-
739 opment in the inguinal fat depot [237]. Another neuronal pop-
740 ulation known to be involved in the WAT browning is the
741 PVH. The p22phox genetic ablation in the PVH is associated
742 to an increase of subcutaneousWAT browning in diet-induced
743 obese (DIO) mice [238]. Specifically, this study suggests that
744 NADPH oxidase-derived ROS are associated with the meta-
745 bolic alterations induced by HFD. As the membrane protein
746 p22phox is an essential factor for NADPH functioning, its de-
747 letion reduces NADPH oxidase-dependent oxidative stress in
748 the PVN elevating metabolic activity in subcutaneous WAT
749 during diet-induced obesity [238]. Furthermore, another piece
750 of evidence has shown how CART administration in the PVN
751 induces an increase in the WAT thermogenic marker, UCP2
752 [181].
753 As mentioned above, AMPK is the master regulator of
754 many hormonal signals in the VMH. Different studies have
755 shown how thyroid hormones [71], E2 [199], GLP1 [201],
756 uroguanylin [239], and BMP8b [211] could reach the VMH
757 to decrease AMPK phosphorylation to induce WAT brow-
758 ning. The genetic inactivation of AMPK specifically in the
759 VMH prevented the WAT browning effect of these signals.
760 Additionally, an increase of ER stress in the VMH, previously
761 described to induce BAT thermogenesis, could also be asso-
762 ciated with white fat browning. In this regard, high-fat diet
763 feeding promotes unfolding protein response in the hypothal-
764 amus, a highly conserved pathway which is triggered in re-
765 sponse to ER stress. When genetically overexpressed within
766 the VMH, the chaperone GRP78 ameliorates the ER stress
767 leading to the activation of sympathetic β3-AR signalling
768 and to increased WAT browning leading to a weight loss,
769 which is able to revert the obese and metabolic phenotype
770 [208, 209].
771 Another important area implicated inWAT browning is the
772 ARC. Both leptin and insulin can act directly on POMC neu-
773 rons to promote white fat browning. This effect is
774 counteracted by tyrosine phosphatases 1B (PTP1B) and
775 tyrosine-protein phosphatase non-receptor type 2 (TCPTP),
776 whose deletions enhance insulin and leptin signalling path-
777 ways in POMC neurons increasing WAT browning and ener-
778 gy expenditure [240]. In an analogous way to BAT thermo-
779 genesis, ER stress in ARC neurons has also been associated to
780 the browning mechanism. In this regard, the transcription fac-
781 tor X-box-binding protein 1 (Xbp1), a key component of the
782 UPR, has been used to restore ER stress levels in POMCARC

783neurons, inducing an increase of WAT browning [241].
784Moreover, AgRP neurons, the other neuronal population com-
785posing ARC, were also associated to browning modulation.
786Specifically, the fasting activation of AgRP neurons as well as
787their chemogenetic activation suppresses the browning of
788white fat. Interestingly, the O-linked β-N-acetylglucosamine
789(O-GlcNAc) acylation dynamic has been described to play a
790key role in the modulation of this phenomenon [242]. This
791protein modification is regulated by the O-GlcNAc transferase
792(OGT) enzyme which levels are coupled to the feeding status.
793Thus, under fasting conditions (or ghrelin stimulation), OGT
794levels and O-GlcNAcylations are increased in AgRP neurons.
795The ablation of Ogt in AgRP neurons inhibits neuronal activ-
796ity, promotes WAT browning, and protects mice against diet-
797induced obesity.

798Thermogenesis and obesity

799The World Health Organization (WHO) estimates that more
800than 1.9 billion adults are in overweight, and of these, over
801650 million are obese. The worldwide prevalence of obesity
802has nearly tripled in the last 40 years, and among children, has
803risen dramatically from 4 to 18%, becoming a true pandemic.
804Obesity is a major risk factor for non-communicable diseases
805such as cardiovascular diseases (first leading cause of death),
806diabetes, musculoskeletal disorders, and some types of can-
807cers. Therefore, obesity is responsible for more deaths world-
808wide than underweight [243]. Recently, many studies have
809demonstrated that a stimulation of thermogenesis could in-
810crease the energy expenditure, favoring lipid and glucose
811clearance from circulation, and overall having a positive im-
812pact in the total energy balance leading to body weight loss
813[244–246]. Most of these studies have attempted to elucidate
814the exact molecular mechanisms underlying the peripheral
815and central control of brown fat thermogenesis in order to
816discover new therapeutic targets against obesity and related
817disorders, such as hyperlipidemia, hyperglycemia, hyperten-
818sion, hepatic steatosis, endothelial dysfunction, etc.
819Obesity is the consequence of a positive energy balance
820due to an increase in food intake exceeding energy expendi-
821ture. Undeniably, the obesogenic environment of the current
822industrialized societies defined by the combination of
823hypercaloric overnutrition and sedentary habits can explain
824partially these startling obesity trends. As thermogenesis has
825the ability to increase energy expenditure using large amounts
826of glucose and lipids avoiding lipid accumulation in WAT, it
827has become an attractive target to prevent obesity and its
828related-metabolic alterations, especially since that BAT was
829described in human adults [9, 12, 44, 45, 247].
830Human data have shown that the thermogenic activity was
831inversely correlated with the body mass index, being lower in
832obese than in lean subjects [10, 248, 249]. Many other
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833 evidences have highlighted that BAT thermogenesis andWAT
834 browning were decreased during obesity and overweight, es-
835 pecially in rodent models [207–210]. From a therapeutic point
836 of view, genetic and pharmacological manipulations of mo-
837 lecular targets to activate thermogenesis in BAT and WAT
838 could induce a body weight and adiposity decrease, indepen-
839 dently of food intake, associated to an improvement of asso-
840 ciated metabolic disorders such as hyperglycemia, insulin re-
841 sistance, hepatic steatosis, leptin resistance, and hyperlipid-
842 emia. However, the current developed drugs known to acti-
843 vate thermogenesis are hampered by non-specific extensive
844 sympathetic activation inducing side effects. Thus, growing
845 research effort has been made by the scientific community to
846 find a way to activate specifically the thermogenesis avoiding
847 the secondary complications. Promising results were obtained
848 targeting upstream hypothalamic molecular actors implicated
849 in the regulation of the thermogenic process. Interestingly, the
850 inactivation, genetically or using pharmacological inhibitors,
851 of AMPK within the VMH had demonstrated effects on in-
852 creasing BAT thermogenesis and WAT browning through an
853 increase of sympathetic firing resulting in significant body
854 weight loss [71, 77, 83, 199–201, 203, 210, 250].
855 Furthermore, the hypothalamic reduction of ER stress could
856 also be used as an innovative strategy to reduce body weight,
857 insulin and leptin resistance, hepatic steatosis, and other met-
858 abolic disorders, through the activation of SNS to BAT and
859 WAT [207, 208, 210]. Further work will be needed in the
860 coming years to address these questions and finding new
861 question marks. For example, much attention need to be fo-
862 cused on the interrelationship of BAT and WAT physiology
863 with other whole-organism functions, such as how immune
864 cells control thermogenesis, browning, and sympathetic con-
865 trol [251–255]. The role of browning and BAT in cachexia
866 [118] will be also of interest as it will provide not only alter-
867 native to cancer patients but also the knowledge of mechanism
868 that can induce negative energy balance to treat obesity.

869 Conclusion

870 In summary, the role of BAT (and browned WAT) has change
871 in the last decade from a “residual perspective” to a key organ/
872 tissue that seems critical to understand how energy balance is
873 modulated. Key to our current understanding was the charac-
874 terization of the different adipocytes cell types (white, brown,
875 and browned). Studies emerging from different groups had
876 contributed to understand the homeostatic regulation of BAT
877 activity pointing to the central nervous system, in particular
878 the hypothalamus, as the main actor. In many studies, the
879 thermogenic activity of BAT and browning was assessed
880 using UCP1 as biomarker. Recent evidences showing the ex-
881 istence of thermogenic activity via a UCP1-independent
882 mechanism highlight the need for additional studies dissecting

883out the regulatory mechanisms and signaling pathways which
884can mediate in a specific way canonical vs. non-canonical
885(UCP1-independent). For many years, the key question in
886the field was whether the amount of BAT tissue in humans
887and the browning capacity of WAT was enough to have a
888relevant impact on human well-being and disease develop-
889ment. Although the issue is not yet fully solved, numerous
890evidences support its relevance in the development of meta-
891bolic maladies, such as obesity and diabetes. Thus, this link
892has raised a strong interest for its therapeutic intervention.
893However, some flaws and limitations had also been pointed
894as well. One of the most often claimed is the likely difference
895between rodents and humans in terms of functional relevance.
896Despite of that, current data support its human role showing
897that there is room for exploration and even for a potential
898development of new approaches and rational therapies [256].
899Data obtained in rodents indicates that chronic AMPK activa-
900tion protects against high-fat diet-induced obesity through
901both UCP1 dependent and independent mechanisms.
902Although some of the therapies used in humans, such as
903GLP-1-agonists, may act at least in part through a similar
904mechanism, there is not yet an AMPK-based therapy for obe-
905sity. One of the main focus currently is the assessment of
906nutritional regulation of adaptive thermogenesis as a
907nutrient-based therapy to improve human health. However,
908despite the large number of studies reported, there are not
909conclusive evidences in humans among other reason because
910of the inherent difficulties to assess BAT-activity and brow-
911ning. Development of specific biomarkers for monitoring
912these aspects in humans are eagerly awaited as do the ones
913related to explain the gender-related differences and the mech-
914anisms involved in the decrease of energy expenditure in aged
915subjects. The exciting endeavor of understanding BAT phys-
916iology has not finished yet and future research will be needed
917to achieve the required knowledge to combat against obesity.
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