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Abstract

In this work, we solve the problem of modeling the generation of an acoustic pulse produced by the
incidence of a pulsed laser light upon an elastic material. Our concern is about the heat transport
during the absorption of electromagnetic radiation. We assume that the pulse duration is of the order
of nanoseconds, and asses if under these conditions the contribution of the heat transport in the
sample is an essential consideration in the description of the phenomena or if we can ignore it in the
model. We begin with the energy balance analysis over the initial interaction of radiation with matter
in the context of the formulation Meixner-Prigonine which is called the linear irreversible
thermodynamics to describe the induced temperature field. Then we carry a momentum balance
which yields the macroscopic elasticity equations with a heat source for the induced pressure field.
Once established the equations for temperature and displacement fields, we solve them for the one-
dimensional case, showing that the induced pressure has two components, one fast component and
one slow component which is due to heat transport in the sample, which is one of the main
contributions of the paper.

1. Introduction

Historically photoacoustic (PA) pulses have been generated by an optical source in two different ways, one called
modulated mode and the other pulse mode configurations, the name indicates if the excitation is a periodic
function in time, or a single pulsed excitation respectively. It was in the modulated mode that the phenomena of
sound generation by an optical source was first discovered. This was mainly due to a periodic accumulation of
thermal energy.

The advent of laser technology introduced a change in the way the photoacoustic pulses can be generated.
Now it is possible to produce alight pulse of duration in the order of nanoseconds with high power, that s
equally capable of producing observable photoacoustic pulses, this joined with new sensors technology of
piezoelectric capacitors has enabled one to measure small photoacoustic signals in a broad range of frequencies.

But the underlying physics of the nature of both kind of photoacoustics pulses produced in pulsed mode or
in modulated mode seemed to be different in fundamental ways. The resulting pressure wave is due mainly to
thermal expansion. Therefore, as the thermal response of any material is slower than its elastic mechanical
response, it should exist both a fast pressure pulse due to the mechanical response and a slow sound pulse due to
the thermal response of the material. It is in this context that we reexamine the basic equations of
thermoelasticity, and suggest the proper origin of the signals that are observed in the photoacoustic pulse

©2019 The Author(s). Published by IOP Publishing Ltd
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generation, dealing with the mathematical analysis of pulse generation in pulsed mode, to show the differences
between the slow and fast mechanical perturbations, hereafter referred to as PT and PA components.

Due to the small duration of the pulses when are generated in pulsed mode, the mathematical analysis of this
situation has relied on one fundamental assumption, called the stress and heat confinement hypothesis. This
hypothesis permit us to analyze mathematically the acoustic pulse generation overlooking the thermal response
of the material, and focusing only on the mechanical part. In this work, we also address the implications of this
assumption and what information is lost or not under such an assumption. We show that the mathematical
analysis can be carried out without using this hypothesis, but the thermal response of the material needs to be
solved completely instead.

Since the time scale of these events is related to the time duration of the pulsed laser used as optical excitation
source, then it is necessary to identify which are the main sources of heat transport during the phenomena at the
interfaces to properly chose the boundary conditions of the modeling. A vast bibliography dealing with the
mathematical analysis of these two modes of generating photoacoustic pulses can be found in the references
[1-12].

A rather concise historical development of the photoacoustic effect, its sensing techniques, and outstanding
applications can be found in the tutorial in [13].

We organize this paper as follows: Initially, we discuss the energy conversion from radiation into heat, the
photothermal phenomenon. We describe the conversion of the local absorbed optical energy as the heat source
that induces thermoelastic deformation. Then we analyze the balance equations for the heat and linear
momentum, whose equations model the temperature field and the displacement field, that compose the
deformed state. Then we solve the one-dimensional case as a testing example considering the case in which a
beam oflight is impinging on a flat metal slab. Then analyze how legitimate is the omission of heat transport in
the model. It means that we discuss the conditions for ignoring the temperature field, which implies the
incorporation of the converted electromagnetic radiation into heat directly into the momentum balance
equation, which implicitly is neglecting the heat transport inside the absorber. This condition is the heat and
stress confinement hypothesis.

It is shown that under the assumptions of the Meixner-Prigonine formulation of the linear irreversible
thermodynamics, the heat is transferred outside the absorber mainly by electromagnetic radiation, modeled by
the Stephan-Boltzmann law, which will establish Robin’s boundary conditions of problem analyzed.

Once the solution for the thermal response is found, then we get the solution of the wave equation for the
scalar velocity potential, which is related to the pressure field which corresponds to the mechanical part. This
procedure is carried on through the method of the Green’s functions.

For purposes of proof of consistency, we compute numerical calculations, based on previously reported
cases [ 10, 14], where the heat transport is neglected, and then we compare with numeric calculations where the
PT component is introduced.

2. Photo-thermal effect and thermo-elasticity

In this section, we derive the equation for the temperature field considering the conversion of electromagnetic
radiation into heat which we call the photothermal (PT) effect. The absorption of energy from the external
optical field follows the Beer—Lambert law [ 15], section 16.6.

1" (2) = qoe=. (1)

This law describes how the electromagnetic radiation is absorbed into the matter. Here qz(') is the density of the
flux of energy in the z-direction, « is the absorption coefficient and g is the incident energy flux upon the surface
of the absorber. The current analysis is for linear elastic materials, and we are using the notation as in [ 16] for
example. The electromagnetic energy is absorbed in the sample and accounts for a local increase of the internal
energy of the sample.

Due to the small time scale of a duration of the phenomena, we need to justify some thermodynamic
considerations regarding the generalizations of the second law of the thermodynamics for a non-equilibrium
initial state asin [17, 18]. To avoid the complexity of using a microscopic description of the system, we use an
approach called the Meixner-Prigonine formulation. This is called the linear irreversible thermodynamic, and
consist of four hypothesis: (a) the extension of the local equilibrium; (b) the extension of the validity of the
second law of thermodynamics to irreversible process; (c) the use of linear constitutive equations (Fourier law
and other transport properties); and (d) the validity of the symmetry of the Onsager reciprocity relations. These
conditions are assumed implicitly through the rest of the work [19]. These assumptions permit us to deal with
thermodynamic quantities in a dynamical sense, i.e. that they depend on time.

2



10P Publishing

J. Phys. Commun. 3 (2019) 085007 E Gutiérrez-Reyes et al

For the current discussion, let us recall the Landau’s [ 16] description for the heat propagation in an elastic
solid, including his tensor notation. In this formalism, one can consider that the optically induced heat (per unit
of time and unit volume), can be expressed as Tg—f; where Sis the entropy per unit volume. For the condensed
phase, the energy lost by the radiation phase is gained by the condensed phase and assuming the emissivity
& = 0andabsorbancetobe .«/ = ag,e™ %, therefore

T§ = -V g4+ age“f (). )
ot

Here 4 is the heat flux which units are watts per square meter J /(s m?), S has units of J/(°Km?), g, is the
electromagnetic energy flux with units J /(s m*), and « the absorption coefficient with units of m ", f(¢) isa
rectangular function related to the time duration of the pulse. Further, we assume that the wave vector of the
electromagnetic field is parallel with the z-axis. We also assume that the field begins to interact with the sample at
z = 0, and thelight absorption occurs from that point and up to L following the Beer—Lambert decay law. Being
then that the sample’s thickness L where the absorber ends abruptly.

In (2), go defines the light’s energy density at z = 0. It means that (2) describes the relationship between the
transferred optical energy aq,e™ "%, the heat transport V - 7 and the increment in sample’s local temperature T.

In the Landau’s formalism [16], he gives the Helmholtz free energy for an elastic material when an increase in
the temperature is present [ 16], equation (6.1),

1 S |
F(T) = Fo(T) — KB(T — Ty)uy + M(Hik - géikull) + EKqu. 3)

Here u;is the trace of the strain tensor, K is the bulk modulus, y is the shear modulus, s the thermal expansion
coefficient, and Fy(T) is the initial free energy within the interaction volume, u; = %(& ur + Ou;) is the strain
tensor, u; is the displacement field and, ¢;;is the Krocnecker’s delta.

From the well know thermodynamic relation, § = — Z—I; we get the related entropy given by negative of the
partial derivative of the free energy with respect to the temperature. After applying this to (3), we obtain that
S(T) = So(T) + KBuy. 4)
It implies that the increase of entropy is proportional to the increase in volume. We now require to describe the
heat flux, 4, due to the temperature gradient, VT. In it we use the Fourier'slaw § = —xV T, where x is the
thermal conductivity. Along with it, we substitute (4) in (2) to get,
T
125D | gardi _ oot 4 ageeif (o). )
ot ot
We recall that the heat capacities C, and C, fulfill the relationship [20], pg. 53,
Cp - Cv - KBZT’ (6)

where C, and C, are the specific heats of the elastic material at constant pressure and constant volume
respectively. Substituting (6) in (5),
Taso(T) " G -Gy Auy
ot I} ot

= V2T + ag e %f (). (7)
Assuming that for the initial undeformed state there is no dilatation or contraction then dS = dTQ = %dT.
Because Sy = C, In(T) + const, then the temporal change of the initial entropy is

95 _ 95,07 _ C.oT

- S ®)
ot oT ot T Ot
after combining equations (7) and (8), we get that
oT Cp - Cv 81411 ,
Cp— + ————— = VT + O (1), 9
ot I} ot " aqee™ (1) ®

Thus, from the balance of energy, we have arrived to the description of the optically induced temperature field
which is the photothermal effect.

3. The momentum equation and the scalar velocity potential

Now independently we followed an approach similar to that introduced by Arias and D Achenbach [21] to
obtain the equations that describe the displacement field of the thermoelastic expansion. This equation results
from the application of the second Newton’s law which is the linear momentum balance, and corresponds to the
thermoelastic wave equation which accounts for the propagation of the elastic deformation field [11, 21, 22]
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namely

0
— oy = pil;. (10)
8xk
Here 0 is the internal stress tensor, p is the medium density and ii; are the second time derivatives of the
displacement components. The induced stress and pressure are calculated by the derivatives of the Free
Helmbholtz’s energy with respect to each component of the deformation tensor [16], therefore it is given by

. 1. .
o = —KB(T — To) b + Zu(uik - g&‘kuu) + Kuy (11)
therefore equation (10) can be written as
2—)
uV3i + (K+ g,u)VV i — pg? = KGVT. (12)

Here equations (9) and (12), are central for the analysis. Notice that these form a set of coupled partial differential
equations and with appropriate boundary conditions, describe the evolution of the optically induced
temperature and displacement fields. The set of equations (9) and (12), correspond to the thermo-elasticity or
PT equations [2, 21, 23]. We proceed to simplify the momentum equation, to be rewritten in terms of the scalar
velocity potential function, ¢,. Thisis definedas ¥V = Vg, and v = ii. This velocity potential is related to the
longitudinal modes and fulfills the wave equation,

1 0%, _ KBOT

Vig — —=—= = ——; 13
% ¢t 02 pcf Ot (13)

()

where ¢ =

4. The small stress approximation: the photothermal equation

Prior to decouple equations (9) and (12), we notice that when no dissipative forces are included, the system is ata
state of free thermal expansion (i.e. no external forces are applied) and no internal stresses can be induced.
Therefore o = 0 which implies that the trace of the strain tensor is simplified as u; = 5(T — T,) ; more details
can be found in [16], §6 equation (6.3). Therefore, after substituting u; = 5(T — Ty) in (9), we obtain

G, %j = kVT + ag e “*f (t). (14)

This is the explicit form of the heat equation, with the heat source included, and decoupled from equation (12).
Interestingly the heat source, related to the optically absorbed energy, preserves its analytic dependence with the
Beer—Lambert law.

5. The thermo-elastic equation under the heat and stress confinement hypothesis

In this section, we derive the thermo-elastic equation under the hypothesis of heat and stress confinement, and
compare this model with the complete description given by (13), which is our main contribution to remark their
differences, namely that it is the time derivative of the temperature field which is the source of the acoustic waves.
From equation (14), we replace the time partial derivative of the temperature field in equation (13), as a result,
we get

2 _ iangs Kﬂ ZT —az
V2, e v + = cp e | (15)

It can be further expanded by noticing that % =3 (1 +eo ) where o is the Poisson ratio.
1

With these considerations in mind, (15) turn out to be

i82¢5 7 1(1 + 0o
Clz 8t2 3

V2, - )B( VT ?qo “Zf(t)] (16)

l1—-o0
Notice that the right hand term in equation (16) corresponds to the source of the longitudinal acoustic field
represented by the speed potential ¢, under propagation. Init, the ﬁrst term is related to thermal diffusivity.
After introducing the dimensionless variables T/ = T; andz' = = where Ty is the reference temperature, and
Lis the width ofa one dimensional slab, the second factor of the rlght hand side of equation (16) can be written

g Z‘;V’ T+ c £ g,e~“Ff (1), therefore the stress and thermal confinement condition is given by
P

4
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Tt
% < aq,. (17)

If this is the condition is met then one can ignore the term -~ V2T in equation (16), assuming that heat diffusion
17
is negligible during the excitation pulse [8]. For example in a aluminum sample we see that this condition is

fulfilled, so we expect that in our calculation the non-heat transport approximation is a good approximation. In

that case then equation (16) is reduced to

1 0%, 1(1+o—) 3
3

Vg, — pap e C_p aqye” ““f (1). (18)

This is the well known PA wave equation for the scalar velocity potential [7, 10, 21]. A practical approximation
for applications in elastic solids and human tissue is to assume o ~ L Additionally, if the sample does exhibit
only hydrostatic compression and no resistance to shear then, ;1 = 0 and therefore o = 1/2. A noticeable
example is biological tissue which is assumed that since it is ~70 % water, this approximation can be applied
since no transversal components propagate [8, 16, 24-26]. Hence, in the equation (18), % 3 1 *%) ~ 1anditcan
be simplified to obtain the general analytic expression for the PA wave as reported elsewhere in the literature

[2,3,7,10,21].

10%,  § o
de)s - = — Qq,€e uzf(t)’ (19)
Gor o

where ag e *f (t) is the volumetric density of energy per unit time that is absorbed in the sample through non-
radiative decays; otherwise known as the PA source or heat function [2, 8—10].

In terms of pressure, p, such that p = — p% and if in addition we introduce the Griineisen number
r= —K which we assume that is independent of the frequency and temperature, but in general it is a function

of frequency, w, and temperature, [27], pg. 27,11, 22, 28], then equation (16) can be rewritten as
1 0%

r
2 5 —pE aq e f'(1). (20)

Vip —
This expression is a good enough approximation for describing the presence of the PA signal alone. It works well
for alarge number of applications where the hypothesis of stress and heat confinement holds.

In all-optical PA sensing techniques, the PA and PT components can be sensed at once, depending on their
relative magnitude and time lag due to the heat transport speed. The PT velocity depends on the thermal
parameters #, C,. We will use a Robin’s boundary condition that models the heat lost by electromagnetic
radiation. Other boundary conditions will modifiy the rate of heat transport and the problem should be
modified accordingly to the boundary conditions for heat transport.

In this way, we have obtained the equation (1) in the [14] and the equation (5) in [ 10]. The latter reference
covers a review of the most common deduction (the non-heat-transport approximation). In [10] equation (19)
is solved using the Green’s function method, including a discussion where the pulses generated are interpreted
when they are detected by piezoelectric capacitors.

6. Solution to the Heat equation

In this section, we proceed to solve the heat equation with a source associated with the incident light pulse. The
setup of the simulation is as follows: at t = 0, we make a laser pulse to fall upon an aluminum slab of width L,
during a time interval of At = 80 ns which corresponds to the pulse duration. This pulse will heat the aluminum
slab producing a volume expansion results in a series of pressure pulses rebounds which are ideally measured at
the end of the slab atz = L and at the begin of the slabz = 0.

First we solve the heat equation (14), which solution is needed to calculate the source term of equation (13).
We assume that the absorption occurs within the region 0 < z < L, so we have that (13) can be written as

o,
— = @ L
1 9 qgoe “f(t) 0<z<

T - ——T= R 21
v v Ot 0<t< At e

0 otherwise.

Heref(t) = 1if0 < t < Atand zero for other cases and represent the time modulation of the light intensity.

Additionally, since we are focused on the one-dimensional problem, then V3T = 0, T.Finally, define v = g,
P

and then we proceed to solve (21) by applying the Fourier transform

5
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oo .
T(z, w) = f T(z, t)ei“td. (22)
-0
In the Fourier domain, for 0 < z < Land 0 < t < At,(21) can be written as
2 1 « )
O T w) + YT w) = — Lo L pear _ jypaz (23)
0%z v K iw

We also need boundary conditions for this problem. The absorber can interchange heat with the water in three
ways, by radiation, convection, and conduction. Across the flat interface, the heat radiated as thermal radiation
follows the Stefan-Boltzman law

dQg = op(T* — T)dodt. (24)

Here do is the cross section of the absorber and dt the time elapsed which in principle and accordingly to the
assumption of the Meixner-Prigonine formulation can be as small as we want, here o3 = 5.670 367 x 10 °W
m K *is the Stefan-Boltzmann constant, also, the sign — refers to the left side and + to the right side of the
boundary respectively. The heat crossing the boundary toward the absorber due to thermal conductivity is

dQ, = (— k0, T- + k,0,T)dodt (25)

where k the thermal conductivity of the absorber and &, that of the surrounding water.
The heat passing to water by convection is

dQy = W(T. — T,)dodt. (26)

Here /1 is the convection coefficient which depends on the fluid dynamics around the flat surface, nature of the
fluid if it is a liquid or a gas, the orientation relative to the gravity or if changes of phase are occurring at the
interface.

The first case we analyze is that in which we assume that there is no difference of temperature between the
absorber and the water. This case happens when the water can change its temperature so fast as to follow the
temperature of the absorber. Therefore by equations (24) and (26) there is no heat transport by radiation or
convection. In that case, we have that dQ,, = 0 implying the boundary condition is the continuity of k 9, Tand T
across the interface. And alsoweneed T (z — —o0) = T(z — o) = T.

The other case is that when there exists a difference of temperature between the absorber and the water. This
is the case when water cannot change its temperature as fast as that of the absorber.

We ask that no heat is not accumulated at the boundary, so we have that dQr + dQj, = dQ,, and if the
temperature increment is moderated then (T* — Ty) ~ 4T3 (T — Tp), therefore we arrive at Robin’s boundary
condition

9T w) + h(T(@ w) — Ty = 0, 27)
on

where 1 is the direction of the normal vector to the surface interface pointing outside the absorber, namely to —z
atthe z = O planeand +z,atthez = Lplane. Also h = (403 T; + h)/khereoy = 5.670367 x 10 °W
m~ 2K *is the Stefan-Boltzmann constant, T, the water temperature, x the thermal conductivity of the absorber.
In what follows we assume that Robin’s boundary condition is the one that better describes the heat transport
outside the absorber, this assumption is justified by reason of the large water’s heat capacity. Also as a
consequence, this assumption is consistent with the implicit supposition that wave pressure is generated inside
the absorber and not outside. Also if no convective currents are formed, then we can take the convection
coefficient /1 as zero.

Therefore the general solution to equation (23) is,

T(z,w)=Ty for z <0,

T(z, w) =me™ + bre ™ + Age=** for 0<z<0,

T(z, w)=Ty for z > 0. (28)
Ifwecall T} = ae?, T, = be ", T; = Aje” %, the temperatureis writtenas T = T + T, + Ts. Here we defined
r= 1\/? = i(sign(w) + 1) % . Numerically it is necessary to include the negative frequencies in the inverse
Fourier transform, we believe this has to do with the irreversibility of the diffusion process. In the literature [29],
ris known as the complex thermal wave number and \/? is the thermal diffusion length. After substituting (28)
in (23), it turns out that A is given by,
04y 1 [ev — 1]

A p—
q ; m
Kk iw o+ 1%

(29)
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A relevant thermo-physic parameter for heating or cooling, is the so-called thermal effusivity [30]

€= ncp:%:ﬁcp
1%

Ws'2m 2K, also known as, thermal admittance’ or, contact coefficient’. We introduce this parameter in
equation (29), and obtain

ak 1. .
A, = —qy—————[e™A — 1]. 30
i e + iwe? iw (50
We see therefore that the source amplitude of the temperature increment is a function of the parameter o k and
the square effusivity times the frequency acting as an imaginary part. The coefficients a, b are found by the
Robin’s boundary condition (see [31] p.74).
Applying the boundary condition (27) to (28) atz = 0 and z = L we found out that the coefficients a, bare

a=—A4h+a)h —r)— (h— a)(h+ rexp(—al + rL)] /A, (31)
b= —Ayl(h — r)(h — a)exp(—al + rL) — (h + r)(h + a)exp(2rL)] /A, (32)

where A = (h — r)? + (h + r)?exp(2rL).
Finally we can find the time domain solution by applying the inverse Fourier transform, we used the method

of discrete inverse fast Fourier transform. We note that it is the time derivative of the temperature field in the
sample’s volume which constitutes the source term of the pressure wave equation (13).

7. The induced photoacoustic pressure

In this next section, we solve equation (13) by using the Green’s function method in this way we assure to fulfill
the boundary conditions. In the Fourier domain, for the time coordinate, the Green’s function for the scalar
velocity potential fulfills the equation

2
- W - S o
Vi F, 7w + g, w) =6(F - 7). (33)
c
Here, we solve the one-dimensional case for the Green’s function in a mixed Fourier representation g (z, z’, w),

for a three layer system when the light source impinges on the sample atz = 0. Therefore we need to solve the
wave equation for each medium consisting of water, metal, water:

92
@g(z, w) + —g(z, w =0 z<0, (34)
2 W2
8Zzg(z,z , w) + 2g(z,z w)=06(z—2z) 0<z<IL, (35)
92
—yg(z, 7, w) + —g(z, Z,w)y=0 z>L. (36)
0z* c?
The solutions for each interval are,
g(z, 7', w) = A(Z, wye ™z z <0, (37)
g(z, 7', w) = B(Z/, w)e? + C(Z, wye ™ 0<z< 7, (38)
g(z, Z, w) = D(Z/, w)e™E=2) 4 E(Z/, wye *e=2) 2 <z <L, (39)
¢(z, 7, w) = F(Z/, w)e®™eD 7z > L (40)
Then, the wave number in each regionis k; = <, k, = <, k3 = ,respectlvely In turn, the coefficients A, B, C,

D, E, Fare found by imposing boundary COIldlthIlS namely that the velocity and the pressure are continuous
functions at the interfaces z = 0,and z = L. Additionally, we ask that:

1. At the singularity z = z’, the Green’s function shall be a continuous function and,

2. The space derivative is such that 9,g (z'*, w) — 9,g(z"~, w) = 1, where z’* means approaching z’ from the
right-hand side, and z’~, means to approach z’ from the left-hand side.

By means of these boundary conditions we get that the coefficients A, Fare:

1 1

A, w
( ) lk2 0[12 (1 — R12R32€21k21“)

( ikyz' 4 R326ik2(2L72/))
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Table 1. Parameters used for calculations.

par = 2700 kg m~? Aluminum’s density
p = 1000 kgm > Water’s density
Cay=6450ms " Aluminum’s sound velocity
¢ = 1484ms™! Water’s sound velocity
L=3-10"m Absorber’s width
C, = 2457 % Aluminum’s heat capacity
B=169-10°K! Aluminum’s volumetric expansion
coefficient

a=14531-10m™! Aluminum’s absorption coefficient
Kk = 205 W/(m K) Aluminum’s conductivity coefficient
qo = 1.8 - 10%]/m? Laser’s fluency
Ty = 293.15°K Reference Temperature
AT = 80 ns Pulse time duration

F(Z/, (.d) — 11 1 (efikzz’ 4 Rlzeikzz’)eikzL

Ea_;z(l — RiyRyye?ikl)

with R, = Z—E, R3 = %, ozﬁ = (Z—: + i—:), oé[z = (% + :—z);for further details, see [9, 10]. Therefore, if we

use the relation between the scalar velocity potential and the pressure p(w) = iwp; ¢ (w), we find that

2 KB L !/ ! /
plz,w) =w pl—zf g(z, 2, W)T(Z, wydz. (41)
P26 0
wherel = 1, 2, 3 for each media respectively. The displacement field for z < 01is calculated with the
relationship u,(z, w) = ikl%p(z, w).
w, il

By representing the absorber’s density as p, and since T (z/, w) and g (z, z’, w) are given by the
equations (28) and (40), respectively, then the integral (41)can be evaluated analytically in closed form. It means
that, forz > L,

ik, L 3 )
par ) = w2, E T ()3 )| — et — 1)
P65 2iky i\ — ik,
+ R12 1 (eL(ajJrikz) _ 1) eik3(sz). (42)
aj + ik,

Here a;, represents the different amplitudes of the temperature field, withj = 1,2, 3, thatin (28),a; = a,a, = b
andas = A,.Inturn o;takes the values o = r,a, = —rand a3 = —aq, that correspond to three pressures

p = P; + P, + Psrespectively. ris the self consistent value for the exponential coefficient in e’?, as condition to
solve the heat equation in one dimension, in the frequency domain.

8. Numerical results

In this section we present the results for equations (28) and (42) which represent the temperature and the
pressure increment fields for an 80 ns incident laser pulse upon a 3 mm aluminum slab. The parameters for the
simulation are shown in table (1). For the Fourier inversion of the pressure field we use the fast Fourier
transform algorithm. For the fast pulse we use an upper maximum frequency W = (27) 60.0 - 10" rads™",
which corresponds to a discretization time of 1.66 ns . For the slow components of the acoustic field we use
instead W = (27) 60.0 - 10*rad s~ ' which corresponds to the discretization time of 166.66 s.

In figure 1(a) we show the temperature increment upon the aluminum slab as a function of time, the
aluminum interface is assumed to be at the origin of the reference system z = 0, the temperature shows an

8
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Figure 1. Display of the PA and PT induced fields at z = 0. (a) Notice that the fast PT field and the pressure field at z = 0, are almost
simultaneous. (b) We display a low frequency pressure, also at z = 0; we brand it as the slow-component because it appear at time
scale six orders of magnitude larger than the fast PA and PT fields.
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Figure 2. The PT induced pressure field atz = L. (a) Comparison between the pressure fields, with and without heat transport. Both
depicted arriving at the plane z = L. The pulses corresponding to several acoustic reflections after bouncing forth and back within the

sample’s ends. (b) Comparison between the spectra pressure fields with (the fast pressure component (P; + Ps) ), and without heat
transport.

increase, that reverses with the laser’s pulse turn off. There is a small offset in the temperature field figure 1(a)
(red color), this due to the method we chose to obtain the inverse Fourier transform. This offset is an inherent
problem associated with the fast Fourier algorithm applied to the inverse Fourier transform [32]. For the
corresponding laser’s fluency, we observe a temperature increase of nearly 2 Kelvin degrees in 80 ns.

From the analytic solution (28) we observe that we can decompose the temperature field in three terms, that
we call Ty, Ty, T5. Associated with each temperature term we have a pressure field Py, P,, P; respectively. These
pressure fields occur at different scales of time; being that the pressure fields P; and P; are of the order of 80 ns
then these corresponds to the fast pressure pulse, we show P; + P;atz = 0in figure (1(a)) (blue color) the fast
component of the pressure field, and on figure 1(b) the slow component P, of the pressure field. We note the that
the amplitude of the fast pulse is approximately 3.3 x 107 greater that the amplitude of the slow pulse.

In figure 2(a) we compare the fast component of the pressure field with the pressure field obtained with the
non-heat transport model which for our parameters range verifies the condition for heat confinement as a good
one; both models show multiple replicas of the initial pulse. The details of these results and the interpretation of
their respective spectra figure 2(b) can be found in [10].

In figure (3(a)) we display the pressure term P, and its Fourier spectra in figure 3(b). This plot is the most
important results of this work because it shows that the non-heat transport model ignores a slow thermal pulse.
This calculation shows that the magnitude of the fast pulse is seven orders of magnitude higher than the slow
pulse.
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Figure 3. (a) Same as in figure (2), now only the heat transport, for the field P, atz = L. (b) The pressure Fourier spectra at the plane
z = L for the slow pressure component P,.
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Figure 4. Comparison between the pressure fields slow and fast normalized in logarithmic scale in the time. (a) The PA and PT
induced pressure field atz = 0. (b) The PA and PT induced pressure fieldatz = L.

Finally figure 4 shows the comparison in logarithmic scale of the fast pulse and its replicas both normalized
with respect their maximum pressures, which shows that in a single pulse experiment, both fast and slow
components are well distinguished showing each pulse in their proper time scales.

9. Conclusions

In this work, we have reexamined the basic equations for explaining the thermoelastic expansion that occurs in
the process of generating photoacoustic pulses. The central question we place is about the validity of the
hypothesis of heat confinement. We find that when we include heat transport in the modelling, the solution to
the heat equation contains an additional source term, that is associated with a slow pressure pulse. This slow
pulse is in the scale of milliseconds and has an amplitude several orders of magnitude shorter than the fast
pressure component; whose pulse-width is within the nanoseconds scale, and corresponds to the time duration
of the excitation laser pulse.

We conclude that if we are not interested in modeling the slow thermal response, then we can ignore the heat
transport at least in the regime of the example we studied, due to the fact that its amplitude is much smaller that
the mechanical pulse. However, one has to keep in mind the existence of a background low-frequency pressure-
component.

Minding the material’s physical and chemical properties, and the sensing method and configuration
(transmittance or reflectance), we asses that this component cannot always can be neglected [9, 12, 33-36].

10
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The thermal confinement condition, as commonly stated, is expressed by inequality (17). The example we
deal with, falls in this regime. Materials with different optical absorption, and also different thermal and
mechanical impedances as stated here, may require to include the slow heat transport within the model
considerations.

The current analysis shows that it is the time derivative of the temperature field which is the source of the
acoustic waves. This is a vision that is lost if we ignore the heat transport in the model.

Another observation of the analysis is that the most reasonable boundary condition in the Meixner-
Prigonine formulation for the heat equation is that of a Robbin type. In it the main terms transporting heat are
electromagnetic radiation given by the Stefan-Boltzmann law, and the thermal conductivity.

Also we interpret that the fast PA component is mainly related to the elastomechanical properties of the
sample. These manifested when the sample is excited externally with the laser pulses. From the sample’s
transport properties it is known [2—4, 16, 37, 38] that the fast PA signal corresponds to the longitudinal
propagation of the elastomechanical perturbation. In turn, the slow component, is related to the thermal
diffusivity and to viscous and elastic properties of the sample.

The numerical solutions show that the pressure due to the low frequency thermal field is much smaller
respect the PA component (7 orders of magnitude), and propagates diffusively at a lower speed than the PA
component lagged four orders of magnitude with respect to the PA component. However, this is not a
generalization, since this condition may change depending on the acoustic resonant coupling of the transversal
mechanical components [9, 10, 13, 16].

Besides the complexity of the problem, we tried to keep the physical and mathematical sophistication to the
minimum required, to asses how well the photoacoustic phenomena can be described in classical terms,
avoiding the introduction of non-linear terms or even more realistic transport considerations than the ordinary
Fourier law, showing that indeed our model can capture most of the main characteristics of the photoacoustic
phenomena. Although the model we present can serve as a basic formalism on which more physics can be
overlaid, it is far from capturing physical features reported in recent developments where is clear the impact of
temperature distribution over the pulsed PA (or laser ultrasound) signal [12, 33, 34, 39-43].
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