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Abstract
In this work, we solve the problemofmodeling the generation of an acoustic pulse produced by the
incidence of a pulsed laser light upon an elasticmaterial. Our concern is about the heat transport
during the absorption of electromagnetic radiation.We assume that the pulse duration is of the order
of nanoseconds, and asses if under these conditions the contribution of the heat transport in the
sample is an essential consideration in the description of the phenomena or if we can ignore it in the
model.We beginwith the energy balance analysis over the initial interaction of radiationwithmatter
in the context of the formulationMeixner-Prigonine which is called the linear irreversible
thermodynamics to describe the induced temperature field. Thenwe carry amomentumbalance
which yields themacroscopic elasticity equationswith a heat source for the induced pressure field.
Once established the equations for temperature and displacement fields, we solve them for the one-
dimensional case, showing that the induced pressure has two components, one fast component and
one slow component which is due to heat transport in the sample, which is one of themain
contributions of the paper.

1. Introduction

Historically photoacoustic (PA) pulses have been generated by an optical source in two different ways, one called
modulatedmode and the other pulsemode configurations, the name indicates if the excitation is a periodic
function in time, or a single pulsed excitation respectively. It was in themodulatedmode that the phenomena of
sound generation by an optical sourcewas first discovered. This wasmainly due to a periodic accumulation of
thermal energy.

The advent of laser technology introduced a change in theway the photoacoustic pulses can be generated.
Now it is possible to produce a light pulse of duration in the order of nanosecondswith high power, that is
equally capable of producing observable photoacoustic pulses, this joinedwith new sensors technology of
piezoelectric capacitors has enabled one tomeasure small photoacoustic signals in a broad range of frequencies.

But the underlying physics of the nature of both kind of photoacoustics pulses produced in pulsedmode or
inmodulatedmode seemed to be different in fundamental ways. The resulting pressure wave is duemainly to
thermal expansion. Therefore, as the thermal response of anymaterial is slower than its elasticmechanical
response, it should exist both a fast pressure pulse due to themechanical response and a slow sound pulse due to
the thermal response of thematerial. It is in this context that we reexamine the basic equations of
thermoelasticity, and suggest the proper origin of the signals that are observed in the photoacoustic pulse
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generation, dealingwith themathematical analysis of pulse generation in pulsedmode, to show the differences
between the slow and fastmechanical perturbations, hereafter referred to as PT and PA components.

Due to the small duration of the pulses when are generated in pulsedmode, themathematical analysis of this
situation has relied on one fundamental assumption, called the stress and heat confinement hypothesis. This
hypothesis permit us to analyzemathematically the acoustic pulse generation overlooking the thermal response
of thematerial, and focusing only on themechanical part. In this work, we also address the implications of this
assumption andwhat information is lost or not under such an assumption.We show that themathematical
analysis can be carried outwithout using this hypothesis, but the thermal response of thematerial needs to be
solved completely instead.

Since the time scale of these events is related to the time duration of the pulsed laser used as optical excitation
source, then it is necessary to identify which are themain sources of heat transport during the phenomena at the
interfaces to properly chose the boundary conditions of themodeling. A vast bibliography dealingwith the
mathematical analysis of these twomodes of generating photoacoustic pulses can be found in the references
[1–12].

A rather concise historical development of the photoacoustic effect, its sensing techniques, and outstanding
applications can be found in the tutorial in [13].

We organize this paper as follows: Initially, we discuss the energy conversion from radiation into heat, the
photothermal phenomenon.We describe the conversion of the local absorbed optical energy as the heat source
that induces thermoelastic deformation. Thenwe analyze the balance equations for the heat and linear
momentum,whose equationsmodel the temperature field and the displacement field, that compose the
deformed state. Thenwe solve the one-dimensional case as a testing example considering the case inwhich a
beamof light is impinging on aflatmetal slab. Then analyze how legitimate is the omission of heat transport in
themodel. Itmeans that we discuss the conditions for ignoring the temperature field, which implies the
incorporation of the converted electromagnetic radiation into heat directly into themomentumbalance
equation, which implicitly is neglecting the heat transport inside the absorber. This condition is the heat and
stress confinement hypothesis.

It is shown that under the assumptions of theMeixner-Prigonine formulation of the linear irreversible
thermodynamics, the heat is transferred outside the absorbermainly by electromagnetic radiation,modeled by
the Stephan-Boltzmann law,whichwill establish Robin’s boundary conditions of problem analyzed.

Once the solution for the thermal response is found, thenwe get the solution of thewave equation for the
scalar velocity potential, which is related to the pressure fieldwhich corresponds to themechanical part. This
procedure is carried on through themethod of theGreen’s functions.

For purposes of proof of consistency, we compute numerical calculations, based on previously reported
cases [10, 14], where the heat transport is neglected, and thenwe compare with numeric calculations where the
PT component is introduced.

2. Photo-thermal effect and thermo-elasticity

In this section, we derive the equation for the temperaturefield considering the conversion of electromagnetic
radiation into heat whichwe call the photothermal (PT) effect. The absorption of energy from the external
opticalfield follows the Beer–Lambert law [15], section 16.6.

= a-( ) ( )( )q z q e . 1
z
r z

0

This law describes how the electromagnetic radiation is absorbed into thematter. Here ( )qz
r is the density of the

flux of energy in the z-direction,α is the absorption coefficient and q0 is the incident energyflux upon the surface
of the absorber. The current analysis is for linear elasticmaterials, andwe are using the notation as in [16] for
example. The electromagnetic energy is absorbed in the sample and accounts for a local increase of the internal
energy of the sample.

Due to the small time scale of a duration of the phenomena, we need to justify some thermodynamic
considerations regarding the generalizations of the second law of the thermodynamics for a non-equilibrium
initial state as in [17, 18]. To avoid the complexity of using amicroscopic description of the system, we use an
approach called theMeixner-Prigonine formulation. This is called the linear irreversible thermodynamic, and
consist of four hypothesis: (a) the extension of the local equilibrium; (b) the extension of the validity of the
second law of thermodynamics to irreversible process; (c) the use of linear constitutive equations (Fourier law
and other transport properties); and (d) the validity of the symmetry of theOnsager reciprocity relations. These
conditions are assumed implicitly through the rest of thework [19]. These assumptions permit us to deal with
thermodynamic quantities in a dynamical sense, i.e. that they depend on time.
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For the current discussion, let us recall the Landau’s [16] description for the heat propagation in an elastic
solid, including his tensor notation. In this formalism, one can consider that the optically induced heat (per unit
of time and unit volume), can be expressed as ¶

¶
T ;S

t
where S is the entropy per unit volume. For the condensed

phase, the energy lost by the radiation phase is gained by the condensed phase and assuming the emissivity
E = 0 and absorbance to beA a= a-q e z

0 , therefore

a
¶
¶

= - + a-· ( ) ( )T
S

t
q q e f t . 2z

0

Here

q is the heatfluxwhich units arewatts per squaremeter J/(sm2), S has units of ( )J Km3 , q0 is the

electromagnetic energy fluxwith units J/(sm2), andα the absorption coefficient with units ofm−1, f (t) is a
rectangular function related to the time duration of the pulse. Further, we assume that thewave vector of the
electromagnetic field is parallel with the z-axis.We also assume that the field begins to interact with the sample at
z=0, and the light absorption occurs from that point and up to L following the Beer–Lambert decay law. Being
then that the sample’s thickness Lwhere the absorber ends abruptly.

In (2), q0 defines the light’s energy density at z=0. Itmeans that (2) describes the relationship between the
transferred optical energy a a-q e z

0 , the heat transport 
· q and the increment in sample’s local temperatureT.

In the Landau’s formalism [16], he gives theHelmholtz free energy for an elasticmaterial when an increase in
the temperature is present [16], equation (6.1),

b m d= - - + - +⎜ ⎟⎛
⎝

⎞
⎠( ) ( ) ( ) ( )F T F T K T T u u u Ku

1

3

1

2
. 3ll ik ik ll ll0 0

2
2

Here ull is the trace of the strain tensor,K is the bulkmodulus,μ is the shearmodulus,β is the thermal expansion
coefficient, and F0(T) is the initial free energy within the interaction volume, = ¶ + ¶( )u u uik i k k i

1

2
is the strain

tensor, ui is the displacement field and, δij is the Krocnecker’s delta.

From thewell know thermodynamic relation, = -¶
¶

S F

T
we get the related entropy given by negative of the

partial derivative of the free energy with respect to the temperature. After applying this to (3), we obtain that

b= +( ) ( ) ( )S T S T K u . 4ll0

It implies that the increase of entropy is proportional to the increase in volume.Wenow require to describe the
heatflux,


q , due to the temperature gradient,∇T. In it we use the Fourier’s law k= - 


q T , whereκ is the

thermal conductivity. Alongwith it, we substitute (4) in (2) to get,

b k a
¶

¶
+

¶
¶

=  + a-( ) ( ) ( )T
S T

t
K T

u

t
T q e f t . 5ll z0 2

0

We recall that the heat capacitiesCp andCv fulfill the relationship [20], pg. 53,

b- = ( )C C K T , 6p v
2

whereCp andCv are the specific heats of the elasticmaterial at constant pressure and constant volume
respectively. Substituting (6) in (5),

b
k a

¶
¶

+
- ¶

¶
=  + a-( ) ( ) ( )T

S T

t

C C u

t
T q e f t . 7

p v ll z0 2
0

Assuming that for the initial undeformed state there is no dilatation or contraction then = =dS dTdQ

T

C

T
v .

Because = +( )S C T constlnv0 , then the temporal change of the initial entropy is

¶
¶

=
¶
¶

¶
¶

=
¶
¶

( )S

t

S

T

T

t

C

T

T

t
. 8v0 0

after combining equations (7) and (8), we get that

b
k a

¶
¶

+
- ¶

¶
=  + a- ( ) ( )C

T

t

C C u

t
T q e f t . 9v

p v ll z2
0

Thus, from the balance of energy, we have arrived to the description of the optically induced temperature field
which is the photothermal effect.

3. Themomentumequation and the scalar velocity potential

Now independently we followed an approach similar to that introduced byArias andDAchenbach [21] to
obtain the equations that describe the displacement field of the thermoelastic expansion. This equation results
from the application of the secondNewton’s lawwhich is the linearmomentumbalance, and corresponds to the
thermoelastic wave equationwhich accounts for the propagation of the elastic deformation field [11, 21, 22]
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namely

s r
¶
¶

= ( )
x

ü . 10
k

ik i

Hereσik is the internal stress tensor, ρ is themediumdensity and üi are the second time derivatives of the
displacement components. The induced stress and pressure are calculated by the derivatives of the Free
Helmholtz’s energywith respect to each component of the deformation tensor [16], therefore it is given by

s b d m d= - - + - +⎜ ⎟⎛
⎝

⎞
⎠( ) ˙ ˙ ( )K T T u u Ku2

1

3
11ik ik ik ik ll ll0

therefore equation (10) can bewritten as

m m r b + +  -
¶
¶

= 
  

⎜ ⎟⎛
⎝

⎞
⎠ · ( )u K u

u

t
K T

1

3
. 122

2

2

Here equations (9) and (12), are central for the analysis. Notice that these form a set of coupled partial differential
equations andwith appropriate boundary conditions, describe the evolution of the optically induced
temperature and displacement fields. The set of equations (9) and (12), correspond to the thermo-elasticity or
PT equations [2, 21, 23].We proceed to simplify themomentum equation, to be rewritten in terms of the scalar
velocity potential function,fs. This is defined as f= 


v s and =

 ̇
v u . This velocity potential is related to the

longitudinalmodes and fulfills thewave equation,

f
f b

r
 -

¶
¶

=
¶
¶

( )
c t

K

c

T

t

1
; 13s

l

s

l

2
2

2

2 2

where =
m

r

+( )
cl

K
2

4

3 .

4. The small stress approximation: the photothermal equation

Prior to decouple equations (9) and (12), we notice that when no dissipative forces are included, the system is at a
state of free thermal expansion (i.e. no external forces are applied) and no internal stresses can be induced.
Thereforeσik=0which implies that the trace of the strain tensor is simplified as ull=β (T−T0) ; more details
can be found in [16], §6 equation (6.3). Therefore, after substituting ull=β (T−T0) in (9), we obtain

k a
¶
¶

=  + a- ( ) ( )C
T

t
T q e f t . 14p

z2
0

This is the explicit formof the heat equation, with the heat source included, and decoupled from equation (12).
Interestingly the heat source, related to the optically absorbed energy, preserves its analytic dependencewith the
Beer–Lambert law.

5. The thermo-elastic equation under the heat and stress confinement hypothesis

In this section, we derive the thermo-elastic equation under the hypothesis of heat and stress confinement, and
compare thismodel with the complete description given by (13), which is ourmain contribution to remark their
differences, namely that it is the time derivative of the temperaturefieldwhich is the source of the acoustic waves.
From equation (14), we replace the time partial derivative of the temperature field in equation (13), as a result,
we get

f
f b

r
k a

 -
¶
¶

=  + a-
⎛
⎝⎜

⎞
⎠⎟( ) ( )

c t

K

c C
T

C
q e f t

1
. 15s

l

s

l p p

z2
2

2

2 2
2

0

It can be further expanded by noticing that =
r

s
s

+
-( )K

c

1

3

1

1l
2 whereσ is the Poisson ratio.

With these considerations inmind, (15) turn out to be

f
f s

s
b

k a
 -

¶
¶

=
+
-

 + a-⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟( ) ( )

c t C
T

C
q e f t

1 1

3

1

1
. 16s

l

s

p p

z2
2

2

2
2

0

Notice that the right hand term in equation (16) corresponds to the source of the longitudinal acoustic field
represented by the speed potentialfs, under propagation. In it, the first term is related to thermal diffusivity.
After introducing the dimensionless variables ¢ = -T T T

T
0

0
and ¢ =z z

L
whereT0 is the reference temperature, and

L is thewidth of a one-dimensional slab, the second factor of the right hand side of equation (16) can bewritten
as ¢ ¢ +k a a- ¢ ( )T q e f t

C

T

L C
Lz2

0
p p

0
2 , therefore the stress and thermal confinement condition is given by
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k
a ( )T

L
q . 170

2 0

If this is the condition ismet then one can ignore the term k T
C

2
p

in equation (16), assuming that heat diffusion

is negligible during the excitation pulse [8]. For example in a aluminum sample we see that this condition is
fulfilled, sowe expect that in our calculation the non-heat transport approximation is a good approximation. In
that case then equation (16) is reduced to

f
f s

s
b

a -
¶
¶

=
+
-

a-⎜ ⎟⎛
⎝

⎞
⎠ ( ) ( )

c t C
q e f t

1 1

3

1

1
. 18s

l

s

p

z2
2

2

2 0

This is thewell knownPAwave equation for the scalar velocity potential [7, 10, 21]. A practical approximation
for applications in elastic solids and human tissue is to assume s » 1

2
. Additionally, if the sample does exhibit

only hydrostatic compression and no resistance to shear then,μ=0 and thereforeσ=1/2. A noticeable
example is biological tissue which is assumed that since it is∼70%water, this approximation can be applied

since no transversal components propagate [8, 16, 24–26]. Hence, in the equation (18), ~s
s

+
-( ) 11

3

1

1
and it can

be simplified to obtain the general analytic expression for the PAwave as reported elsewhere in the literature
[2, 3, 7, 10, 21].

f
f b

a -
¶
¶

= a- ( ) ( )
c t C

q e f t
1

, 19s
l

s

p

z2
2

2

2 0

where a a- ( )q e f tz
0 is the volumetric density of energy per unit time that is absorbed in the sample through non-

radiative decays; otherwise known as the PA source or heat function [2, 8–10].
In terms of pressure, p, such that r= - f¶

¶
p

t
and if in additionwe introduce theGrüneisen number

G = b K
Cp

, whichwe assume that is independent of the frequency and temperature, but in general it is a function

of frequency,ω, and temperature, [27], pg. 27, [11, 22, 28], then equation (16) can be rewritten as

r a -
¶
¶

= -
G

¢a- ( ) ( )p
c

p

t K
q e f t

1
. 20

l

z2
2

2

2 0

This expression is a good enough approximation for describing the presence of the PA signal alone. It workswell
for a large number of applications where the hypothesis of stress and heat confinement holds.

In all-optical PA sensing techniques, the PA and PT components can be sensed at once, depending on their
relativemagnitude and time lag due to the heat transport speed. The PT velocity depends on the thermal
parametersκ,Cp.Wewill use a Robin’s boundary condition thatmodels the heat lost by electromagnetic
radiation.Other boundary conditionswillmodifiy the rate of heat transport and the problem should be
modified accordingly to the boundary conditions for heat transport.

In this way, we have obtained the equation (1) in the [14] and the equation (5) in [10]. The latter reference
covers a review of themost commondeduction (the non-heat-transport approximation). In [10] equation (19)
is solved using theGreen’s functionmethod, including a discussionwhere the pulses generated are interpreted
when they are detected by piezoelectric capacitors.

6. Solution to theHeat equation

In this section, we proceed to solve the heat equationwith a source associatedwith the incident light pulse. The
setup of the simulation is as follows: at =t 0, wemake a laser pulse to fall upon an aluminum slab of width L,
during a time interval ofΔt=80 nswhich corresponds to the pulse duration. This pulsewill heat the aluminum
slab producing a volume expansion results in a series of pressure pulses reboundswhich are ideallymeasured at
the end of the slab at z=L and at the begin of the slab z=0.

First we solve the heat equation (14), which solution is needed to calculate the source termof equation (13).
We assume that the absorption occurs within the region 0<z<L, sowe have that (13) can bewritten as

n

a
k -

¶
¶

=
- < <

< < D

a-⎧
⎨⎪

⎩⎪
( )

( )T
t

T
q e f t z L

t t
otherwise

1
0

0
0 .

21

z

2
0

Here f (t)=1 if 0<t<Δt and zero for other cases and represent the timemodulation of the light intensity.
Additionally, sincewe are focused on the one-dimensional problem, then∇2T=∂zz T. Finally, define n = k

Cp
,

and thenwe proceed to solve (21) by applying the Fourier transform
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òw = w

-¥

¥
( ) ( ) ( )T z T z t e dt, , . 22i t

In the Fourier domain, for < <z L0 and 0<t<Δt, (21) can bewritten as

w
w
n

w
a
k w

¶
¶

+ = - -w aD -( ) ( ) [ ] ( )
z

T z
i

T z
q

i
e e, ,

1
1 . 23i t z

2

2
0

Wealso need boundary conditions for this problem. The absorber can interchange heat with thewater in three
ways, by radiation, convection, and conduction. Across theflat interface, the heat radiated as thermal radiation
follows the Stefan-Boltzman law

s s= -- +( ) ( )dQ T T d dt. 24R B
4 4

Here dσ is the cross section of the absorber and dt the time elapsedwhich in principle and accordingly to the
assumption of theMeixner-Prigonine formulation can be as small as wewant, hereσB=5.670 367×10−8W
m−2K−4 is the Stefan-Boltzmann constant, also, the sign− refers to the left side and+ to the right side of the
boundary respectively. The heat crossing the boundary toward the absorber due to thermal conductivity is

k k s= - ¶ + ¶k - +( ) ( )dQ T T d dt 25z z1 2

whereκ1 the thermal conductivity of the absorber andκ2 that of the surroundingwater.
The heat passing towater by convection is

s= -- +˜( ) ( )dQ h T T d dt. 26h

Here h̃ is the convection coefficient which depends on thefluid dynamics around the flat surface, nature of the
fluid if it is a liquid or a gas, the orientation relative to the gravity or if changes of phase are occurring at the
interface.

Thefirst case we analyze is that inwhichwe assume that there is no difference of temperature between the
absorber and thewater. This case happens when thewater can change its temperature so fast as to follow the
temperature of the absorber. Therefore by equations (24) and (26) there is no heat transport by radiation or
convection. In that case, we have that =kdQ 0 implying the boundary condition is the continuity of k∂z T andT
across the interface. And alsowe need  -¥ =  ¥ =( ) ( )T z T z T0.

The other case is that when there exists a difference of temperature between the absorber and thewater. This
is the casewhenwater cannot change its temperature as fast as that of the absorber.

We ask that no heat is not accumulated at the boundary, sowe have that + = kdQ dQ dQR h , and if the
temperature increment ismoderated then - » -( ) ( )T T T T T44

0
4

0
3

0 , therefore we arrive at Robin’s boundary
condition

w w
¶
¶

+ - =( ) ( ( ) ) ( )
n

T z h T z T, , 0, 270

where n is the direction of the normal vector to the surface interface pointing outside the absorber, namely to-z
at the z=0 plane and+z, at the z=L plane. Also s k= +( ˜)h T h4 B 0

3 hereσB=5.670 367×10−8W
m−2K−4 is the Stefan-Boltzmann constant,T0 thewater temperature,κ the thermal conductivity of the absorber.
Inwhat followswe assume that Robin’s boundary condition is the one that better describes the heat transport
outside the absorber, this assumption is justified by reason of the largewater’s heat capacity. Also as a
consequence, this assumption is consistent with the implicit supposition that wave pressure is generated inside
the absorber and not outside. Also if no convective currents are formed, thenwe can take the convection
coefficient h̃ as zero.

Therefore the general solution to equation (23) is,

 
w
w
w

= <
= + +
= >

a- -
( )
( )
( ) ( )

T z T z

T z a e b e A e z

T z T z

, for 0,

, for 0 0,

, for 0. 28

rz rz
q

z
0

2 2

0

If we call =T aerz
1 , = -T be rz

2 , = a-T A eq
z

3 , the temperature is written asT=T1+T2+T3. Here we defined

w= = +w
n n

( ( ) ) ∣ ∣r i i isigni w

2
. Numerically it is necessary to include the negative frequencies in the inverse

Fourier transform,we believe this has to dowith the irreversibility of the diffusion process. In the literature [29],
r is known as the complex thermal wave number and n

w
2 is the thermal diffusion length. After substituting (28)

in (23), it turns out thatAq is given by,

a
k w a

= -
-

+

w

w
n

D[ ] ( )A
q

i

e

i

1 1
. 29q

i t
0

2
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A relevant thermo-physic parameter for heating or cooling, is the so-called thermal effusivity [30]

 k
k
n

n= = =C Cp p

Ws1/2m−2 K−1, also known as, thermal admittance’ or, contact coefficient’.We introduce this parameter in
equation (29), and obtain


ak

a k w w
= -

+
-wD[ ] ( )A q

i i
e

1
1 . 30q

i t
0 2 2 2

We see therefore that the source amplitude of the temperature increment is a function of the parameterακ and
the square effusivity times the frequency acting as an imaginary part. The coefficients a, b are found by the
Robin’s boundary condition (see [31] p.74).

Applying the boundary condition (27) to (28) at z=0 and z=Lwe found out that the coefficients a, b are

a a a= - + - - - + - + D[( )( ) ( )( ) ( )] ( )a A h h r h h r L rLexp , 31q

a a a= - - - - + - + + D[( )( ) ( ) ( )( ) ( )] ( )b A h r h L rL h r h rLexp exp 2 , 32q

whereD = - + +( ) ( ) ( )h r h r rLexp 22 2 .
Finally we can find the time domain solution by applying the inverse Fourier transform, we used themethod

of discrete inverse fast Fourier transform.Wenote that it is the time derivative of the temperature field in the
sample’s volumewhich constitutes the source termof the pressure wave equation (13).

7. The induced photoacoustic pressure

In this next section, we solve equation (13) by using theGreen’s functionmethod in this waywe assure to fulfill
the boundary conditions. In the Fourier domain, for the time coordinate, theGreen’s function for the scalar
velocity potential fulfills the equation

w
w

w d ¢ + = - ¢    ( ) ( ) ( ) ( )g r r
c

g r r r, , , . 332
2

2

Here, we solve the one-dimensional case for theGreen’s function in amixed Fourier representation w¢( )g z z, , ,
for a three layer systemwhen the light source impinges on the sample at z=0. Therefore we need to solve the
wave equation for eachmedium consisting of water,metal, water:

w
w

w
¶
¶

+ = <( ) ( ) ( )
z

g z
c

g z z, , 0 0, 34
2

2

2

1
2

w
w

w d
¶
¶

¢ + ¢ = - ¢ <( ) ( ) ( ) ( )
z

g z z
c

g z z z z z L, , , , 0 , 35
2

2

2

2
2

w
w

w
¶
¶

¢ + ¢ = >( ) ( ) ( )
z

g z z
c

g z z z L, , , , 0 . 36
2

2

2

3
2

The solutions for each interval are,

w w¢ = ¢ <-( ) ( ) ( )g z z A z e z, , , 0, 37ik z1

w w w¢ = ¢ + ¢ < ¢-( ) ( ) ( ) ( )g z z B z e C z e z z, , , , 0 , 38ik z ik z2 2

w w w¢ = ¢ + ¢ ¢ <- ¢ - - ¢( ) ( ) ( ) ( )( ) ( )g z z D z e E z e z z L, , , , , 39ik z z ik z z2 2

w w¢ = ¢ >-( ) ( ) ( )( )g z z F z e z L, , , . 40ik z L3

Then, thewave number in each region is = wk
c1
1
, = wk

c2
2
, = wk

c3
3
, respectively. In turn, the coefficientsA,B,C,

D,E, F are found by imposing boundary conditions namely that the velocity and the pressure are continuous
functions at the interfaces z=0, and z=L. Additionally, we ask that:

1. At the singularity = ¢z z , theGreen’s function shall be a continuous function and,

2. The space derivative is such that w w¶ ¢ - ¶ ¢ =+ -( ) ( )g z g z, , 1z z , where ¢+z means approaching ¢z from the
right-hand side, and ¢-z , means to approach ¢z from the left-hand side.

Bymeans of these boundary conditions we get that the coefficientsA, F are:

w
a

¢ =
-

++
¢ - ¢( )

( )
( )( )A z

ik R R e
e R e,

1 1 1

1 ik L
ik z ik L z

2 12 12 32
2 32

2
2

2 2
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w
a

¢ =
-

++
- ¢ ¢( )

( )
( )F z

ik R R e
e R e e,

1 1 1

1 ik L
ik z ik z ik L

2 32 12 32
2 12

2

2 2 2

with = a
a

-

+R12
12

12
, = a

a

-

+R32
32

32
, a = r

r
 ( )k

k12
1

2

1

2
, a = r

r
 ( );k

k32
3

2

3

2
for further details, see [9, 10]. Therefore, if we

use the relation between the scalar velocity potential and the pressure w wr f w=( ) ( )p i 3 , we find that

òw w r
b

r
w w= ¢ ¢ ¢( ) ( ) ( ) ( )p z

K

c
g z z T z dz, , , , . 41l

L
2

2 2
2

0

where l=1, 2, 3 for eachmedia respectively. The displacement field for z<0 is calculatedwith the
relationship w w=

wr
( ) ( )u z ik p z, ,z l i

1

l
.

By representing the absorber’s density as ρ2 and since w¢( )T z , and w¢( )g z z, , are given by the
equations (28) and (40), respectively, then the integral (41)can be evaluated analytically in closed form. Itmeans
that, for z>L,

åw w r
b

r
w

a

a

=
-

-

+
+

-

a

a

=

-

+ -

⎛
⎝⎜

⎞
⎠⎟

( ) ( ) ( )
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K
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,
e

2

1
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e 1 e . 42

ik L

M
j

j
j

L ik

j

L ik ik z L

2
3

2 2
2

2
3

1

3

2

12
2

j

j

2
2

2 3

Here aj, represents the different amplitudes of the temperature field, with j=1, 2, 3, that in (28), a1=a, a2=b
and a3=Aq . In turnαj takes the valuesα1=r,α2=−r andα3=−α, that correspond to three pressures
p=P1+P2+P3 respectively. r is the self consistent value for the exponential coefficient in erz , as condition to
solve the heat equation in one dimension, in the frequency domain.

8.Numerical results

In this sectionwe present the results for equations (28) and (42)which represent the temperature and the
pressure incrementfields for an 80 ns incident laser pulse upon a 3 mmaluminum slab. The parameters for the
simulation are shown in table (1). For the Fourier inversion of the pressure fieldwe use the fast Fourier
transform algorithm. For the fast pulsewe use an uppermaximum frequencyW=(2π) 60.0·107 rad s−1,
which corresponds to a discretization time of 1.66 ns . For the slow components of the acoustic fieldwe use
insteadW=(2π) 60.0·102 rad s−1 which corresponds to the discretization time of 166.66μs.

Infigure 1(a)we show the temperature increment upon the aluminum slab as a function of time, the
aluminum interface is assumed to be at the origin of the reference system z=0, the temperature shows an

Table 1.Parameters used for calculations.

ρAl=2700 kg m−3 Aluminum’s density

ρ1=1000 kg m−3 Water’s density

cAl=6450 m s−1 Aluminum’s sound velocity

c1=1484 m s−1 Water’s sound velocity

L=3·10−3m Absorber’s width

Cp=2457 k

K

J

m3 Aluminum’s heat capacity

β=69·10−6 K−1 Aluminum’s volumetric expansion

coefficient

α=1.453 1·108 m−1 Aluminum’s absorption coefficient

κ=205 W/(mK) Aluminum’s conductivity coefficient

q0=1.8·108 J/m2 Laser’sfluency

=T 293.15 K0
o Reference Temperature

ΔT=80 ns Pulse time duration

8

J. Phys. Commun. 3 (2019) 085007 EGutiérrez-Reyes et al



increase, that reverses with the laser’s pulse turn off. There is a small offset in the temperature field figure 1(a)
(red color), this due to themethodwe chose to obtain the inverse Fourier transform. This offset is an inherent
problem associatedwith the fast Fourier algorithm applied to the inverse Fourier transform [32]. For the
corresponding laser’sfluency, we observe a temperature increase of nearly 2Kelvin degrees in 80 ns.

From the analytic solution (28)we observe that we can decompose the temperature field in three terms, that
we callT1,T2,T3. Associatedwith each temperature termwe have a pressure field P1,P2,P3 respectively. These
pressure fields occur at different scales of time; being that the pressure fieldsP1 andP3 are of the order of 80 ns
then these corresponds to the fast pressure pulse, we showP1+P3 at z=0 infigure (1(a)) (blue color) the fast
component of the pressure field, and onfigure 1(b) the slow componentP2 of the pressure field.We note the that
the amplitude of the fast pulse is approximately 3.3×107 greater that the amplitude of the slow pulse.

Infigure 2(a)we compare the fast component of the pressure fieldwith the pressure field obtainedwith the
non-heat transportmodel which for our parameters range verifies the condition for heat confinement as a good
one; bothmodels showmultiple replicas of the initial pulse. The details of these results and the interpretation of
their respective spectrafigure 2(b) can be found in [10].

Infigure (3(a))wedisplay the pressure termP2 and its Fourier spectra infigure 3(b). This plot is themost
important results of this work because it shows that the non-heat transportmodel ignores a slow thermal pulse.
This calculation shows that themagnitude of the fast pulse is seven orders ofmagnitude higher than the slow
pulse.

Figure 1.Display of the PA and PT induced fields at z=0. (a)Notice that the fast PTfield and the pressurefield at z=0, are almost
simultaneous. (b)Wedisplay a low frequency pressure, also at z=0; we brand it as the slow-component because it appear at time
scale six orders ofmagnitude larger than the fast PA and PTfields.

Figure 2.The PT induced pressurefield at z=L. (a)Comparison between the pressure fields, with andwithout heat transport. Both
depicted arriving at the plane z=L. The pulses corresponding to several acoustic reflections after bouncing forth and backwithin the
sample’s ends. (b)Comparison between the spectra pressure fieldswith (the fast pressure component (P1+P3) ), andwithout heat
transport.
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Finally figure 4 shows the comparison in logarithmic scale of the fast pulse and its replicas both normalized
with respect theirmaximumpressures, which shows that in a single pulse experiment, both fast and slow
components arewell distinguished showing each pulse in their proper time scales.

9. Conclusions

In this work, we have reexamined the basic equations for explaining the thermoelastic expansion that occurs in
the process of generating photoacoustic pulses. The central questionwe place is about the validity of the
hypothesis of heat confinement.Wefind that whenwe include heat transport in themodelling, the solution to
the heat equation contains an additional source term, that is associatedwith a slow pressure pulse. This slow
pulse is in the scale ofmilliseconds and has an amplitude several orders ofmagnitude shorter than the fast
pressure component; whose pulse-width is within the nanoseconds scale, and corresponds to the time duration
of the excitation laser pulse.

We conclude that if we are not interested inmodeling the slow thermal response, thenwe can ignore the heat
transport at least in the regime of the examplewe studied, due to the fact that its amplitude ismuch smaller that
themechanical pulse. However, one has to keep inmind the existence of a background low-frequency pressure-
component.

Minding thematerial’s physical and chemical properties, and the sensingmethod and configuration
(transmittance or reflectance), we asses that this component cannot always can be neglected [9, 12, 33–36].

Figure 3. (a) Same as infigure (2), now only the heat transport, for thefieldP2 at z=L. (b)The pressure Fourier spectra at the plane
z=L for the slowpressure component P2.

Figure 4.Comparison between the pressure fields slow and fast normalized in logarithmic scale in the time. (a)The PA and PT
induced pressure field at z=0. (b)The PA and PT induced pressurefield at z=L.
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The thermal confinement condition, as commonly stated, is expressed by inequality (17). The examplewe
deal with, falls in this regime.Materials with different optical absorption, and also different thermal and
mechanical impedances as stated here,may require to include the slowheat transport within themodel
considerations.

The current analysis shows that it is the time derivative of the temperature fieldwhich is the source of the
acoustic waves. This is a vision that is lost if we ignore the heat transport in themodel.

Another observation of the analysis is that themost reasonable boundary condition in theMeixner-
Prigonine formulation for the heat equation is that of a Robbin type. In it themain terms transporting heat are
electromagnetic radiation given by the Stefan-Boltzmann law, and the thermal conductivity.

Alsowe interpret that the fast PA component ismainly related to the elastomechanical properties of the
sample. Thesemanifestedwhen the sample is excited externally with the laser pulses. From the sample’s
transport properties it is known [2–4, 16, 37, 38] that the fast PA signal corresponds to the longitudinal
propagation of the elastomechanical perturbation. In turn, the slow component, is related to the thermal
diffusivity and to viscous and elastic properties of the sample.

The numerical solutions show that the pressure due to the low frequency thermalfield ismuch smaller
respect the PA component (7 orders ofmagnitude), and propagates diffusively at a lower speed than the PA
component lagged four orders ofmagnitudewith respect to the PA component. However, this is not a
generalization, since this conditionmay change depending on the acoustic resonant coupling of the transversal
mechanical components [9, 10, 13, 16].

Besides the complexity of the problem,we tried to keep the physical andmathematical sophistication to the
minimum required, to asses howwell the photoacoustic phenomena can be described in classical terms,
avoiding the introduction of non-linear terms or evenmore realistic transport considerations than the ordinary
Fourier law, showing that indeed ourmodel can capturemost of themain characteristics of the photoacoustic
phenomena. Although themodel we present can serve as a basic formalismonwhichmore physics can be
overlaid, it is far from capturing physical features reported in recent developments where is clear the impact of
temperature distribution over the pulsed PA (or laser ultrasound) signal [12, 33, 34, 39–43].
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