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Identification of Restless Legs Syndrome
Genes by Mutational Load Analysis
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Objective: Restless legs syndrome is a frequent neurological disorder with substantial burden on individual well-being
and public health. Genetic risk loci have been identified, but the causatives genes at these loci are largely unknown, so
that functional investigation and clinical translation of molecular research data are still inhibited. To identify putatively
causative genes, we searched for highly significant mutational burden in candidate genes.
Methods: We analyzed 84 candidate genes in 4,649 patients and 4,982 controls by next generation sequencing using
molecular inversion probes that targeted mainly coding regions. The burden of low-frequency and rare variants was
assessed, and in addition, an algorithm (binomial performance deviation analysis) was established to estimate indepen-
dently the sequence variation in the probe binding regions from the variation in sequencing depth.
Results: Highly significant results (considering the number of genes in the genome) of the conventional burden test
and the binomial performance deviation analysis overlapped significantly. Fourteen genes were highly significant by
one method and confirmed with Bonferroni-corrected significance by the other to show a differential burden of low-
frequency and rare variants in restless legs syndrome. Nine of them (AAGAB, ATP2C1, CNTN4, COL6A6, CRBN,
GLO1, NTNG1, STEAP4, VAV3) resided in the vicinity of known restless legs syndrome loci, whereas 5 (BBS7, CADM1,
CREB5, NRG3, SUN1) have not previously been associated with restless legs syndrome. Burden test and binomial per-
formance deviation analysis also converged significantly in fine-mapping potentially causative domains within these
genes.
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Interpretation: Differential burden with intragenic low-frequency variants reveals putatively causative genes in restless
legs syndrome.

ANN NEUROL 2020;87:184–193

The contribution of low-frequency variants to the genetic
architecture of common diseases has gained considerable

attention recently.1–3 However, the required sample size in
association analysis of single rare variants is inversely propor-
tional to their allele frequency, necessitating strategies to over-
come this power problem.1,4–6 Increasing the sample size
while minimizing genotyping/sequencing costs is one such
strategy. Classwise analysis of variants as in genewise burden
testing is another.

We applied both strategies when investigating the
contribution of rare (minor allele frequency [MAF] ≤ 1%)
and low-frequency variation (1% < MAF ≤ 5%) to restless
legs syndrome (RLS), one of the most prevalent neurological
disorders in Western countries. RLS affects 5 to 10% of the
population, presenting with unpleasant symptoms in the
legs, an urge to move at rest predominantly in the evening,
and sleep disturbances.7,8 Previous genome-wide association
studies (GWASs) of common variants revealed 19 RLS
loci.9–11 For the detection of low-frequency variants in a set
of 84 candidate genes, we now applied tiling molecular
inversion probes (MIPs), which allow for targeted enrich-
ment and resequencing (MIPseq) of large sample sizes.12

MIP technology is based on 2 linked probes that bind
to the same DNA target strand. Upon binding, the MIP is
circularized enzymatically. Only then can the captured DNA
between the probes be sequenced. To do so, next generation
sequencing (NGS) adapters and multiplex tags are attached
to the captured DNA by polymerase chain reaction (PCR).
Sequencing reads are mapped to a reference so that polymor-
phisms can be detected. This and similar MIP methods are
widely used for resequencing of various traits.13–15

The standard MIP analysis focuses on variation found
in the captured sequences. However, the MIP hybridization
binding capacities are influenced by genetic variation within
the probe binding sequences. Although high reading coverage
and double tiling of the MIPs may largely neutralize the
potential impact of such variation on the sequencing results,
which is desirable especially in diagnostic applications on a
limited number of genes,16 it is also possible to regard the
deviation of the yield of MIP sequencing reads as indepen-
dent information on the genetic variation within the MIP
probe binding sequences. Devoting our limited resources to
the scientific analysis of a considerable number of genes in a
large number of patients and controls, we followed the latter
option and developed a tool called binomial performance
deviation analysis (BIPEDAL), which assessed the differential
variant burden directly from the difference in MIP read

number. Incidentally, BIPEDAL is sensitive to copy number
variations that may escape sequencing. BIPEDAL results
were compared to standard burden of rare variant testing
(BRVT)17 of the MIP target sequences. Examining 11,214
MIPs at 84 RLS candidate genes, we detected a large and sig-
nificant overlap in the results of these 2 independent
methods. The significant overlap of BRVT and BIPEDAL
also holds in fine-mapping of intragenic domains. Beyond
the mere calling of variants, enrichment-based NGS technol-
ogies provide quantitative hybridization data that can thus be
made useful for the genetic study of complex traits.

Materials and Methods
Targeted Sequencing, Variant Calling, and
Quality Control
We designedMIPs12,18 for extended exons (extending by 20 bp over
the exon borders) and promotors (500bp upstream from any tran-
scription start site) of 84 putative RLS genes. Sixty-five genes were
selected from loci detected in a previous GWAS11 using expression
quantitative trait locus and additional functional annotations as the
major selection criteria. The remaining 19 genes were the top genes
from a case–control Illumina ExomeChip study, where no gene had
reached significance after multiple testing correction of the burden
test.19 These 19 genes were included in theMIPseq analysis, because
it covered more variants than the ExomeChip analysis and thus
potentially provided the burden test with sufficient power. The
84 candidate genes and their selection criteria are provided in Sup-
plementary Table 1.MIP binding sites were selected such as to avoid

TABLE 1. Demographics after Quality Control

Male/
Female
Ratio

Mean
Age,
yr (SD)

Mean Age
at Onset,
yr (SD)

BRVT cases,
n = 4,001

0.52 62.75
(12.60)

42.04
(18.04)

BRVT controls,
n = 4,378

0.94 55.70
(13.18)

NA

BIPEDAL cases,
n = 3,975

0.52 62.67
(12.65)

41.15
(18.03)

BIPEDAL
controls,
n = 4,261

0.94 55.62
(13.18)

NA

BIPEDAL = binomial performance deviation analysis; BRVT = burden
of rare variant testing; NA = not applicable; SD = standard deviation.
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variants with MAF > 1% listed in dbSNP Build 141. Alternatively,
degeneratedMIPs were used so as to neutralize the effect of the com-
mon single nucleotide polymorphisms (SNPs). MIPs were pooled
and calibrated as described previously.12,15,16,19 We paired-end
sequenced in batches of 186 samples on 6 Illumina HiSeq 4000
lanes.19 Together, we sequenced 4,649 RLS cases collected from
Germany/Austria and 4,982 controls from the region of Augsburg
(Kooperative Gesundheitsforschung in der Region Augsburg
[KORA]) in southeastern Germany (Table 1).20 The study was
approved by the respective institutional review board, and partici-
pants provided informed written consent. RLS cases have been diag-
nosed by experienced neurologists based on the International
Restless Legs Syndrome StudyGroup criteria.21

Paired-end reads were merged using BBMerge,22 trimmed at
head/tail for the sequencing adapters, and mapped to the reference
genome (GRCh37/hg19, hs37d5, downloaded from https://

software.broadinstitute.org/gatk/download/bundle) using Bowtie2.23

For quality control (QC), we filtered mapped reads (mapping
uniquely to target region, 108 < length < 113, Mapq > 30), counted
the read numbers as input for BIPEDAL (see below), and called vari-
ants using GATK24 v3.5 (in target region, average base quality
for reads supporting alleles > 30, root mean square of the mapping
quality of reads across all samples > 30, primary alignments only,
insertion–deletion depth > 50, insertion–deletion fraction > 0.1, con-
tamination = 0.01) as input for BRVT.We normalized variants using
Bcftools25 v1.2 and removed those of low quality (genotype quality
< 50, coverage depth < 10, and also SNPs with root mean square of
the mapping quality of reads across all samples ≤ 30, call rate < 0.5)
using Vcftools26 v0.1.12b. Using Plink27,28 (v1.07, v2.00aLM), we
further removed individuals with low call rate (< 0.5) and excess het-
erozygosity �5 standard deviations (SD). We filtered variants on
Hardy–Weinberg equilibrium (HWE) in controls (p < 0.00001).
Individuals were excluded if data on age or sex, or data on common
SNPs as assessed in our latest GWAS11 were missing. Moreover, we
excluded duplicated individuals, related individuals (π > 0.09375),
and population outliers based on 10 principal components (PCs)
and �6 SD (derived from common SNP array data11). We filtered
variants on MAF (0 < MAF ≤ 0.05 in either cases or controls). For
subsequent analysis, we used R29 v3.0.2.

Burden Analysis (BRVT)
We grouped variants by gene and ran a BRVT, that is, a modified
Morris-Zeggini test as described by Auer et al17 including a correc-
tion for differential missing genotypes and the covariates age, sex,
PC1, PC2, batch, and sub-batch. The number of PCs was deter-
mined based on a scree plot analysis. Multiple testing was corrected
on a stringent scale (0.05/25,000, corresponding to the number of
genes in the genome) in line with the previous ExomeChip analysis,
whose results were used for candidate gene selection.

FIGURE: Evidence that the target sequencing depth of a
substantial proportion of molecular inversion probes (MIPs) is
reduced by low-frequency variants located in the corresponding
MIP probe binding regions. Tiling design of the MIPs allowed us
to identify low-frequency and rare variants in probe binding
regions of 16% of all MIPs. (A, B) Two examples of rare variants
(single nucleotide polymorphism rs143456273 and indel
rs1308722484) in MIP probe binding regions with effect on the
MIP target sequencing depth. Genotypes are shown on the
horizontal axis, corrected residual depth (logit of normalized
target count minus individual bias, kij − dj) on the vertical axis.
The respective regression (gray dashed line) resulted in the
effect size β of−0.71 and−0.75, respectively. (C) β values for all
MIPs with low-frequency or rare variants in their probe binding
regions (solid line). For comparison, we sampled 1,000 null
distributions of random variant-to-MIP assignments (dashed
line). The substantial shift of the solid curve to the left indicates
that the majority of such variants negatively impact the target
sequencing depth. (D) Distribution of the inflation parameter λ
(solid line) of the 1,000 null distributions (see C) as compared to
the observed λ (dashed vertical line). The very large observed λ
of 5.2 indicates that most of the examined variants affect the
target sequencing depth of the correspondingMIP.
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Binomial Performance Deviation Analysis
To test for an association between disease and variant burden as rev-
ealed by target sequencing depth, we developed BIPEDAL. Data
processing by BIPEDAL can be subdivided into a first step, which
identifies MIP targets that show Bonferroni significant difference in
sequencing depth between cases and controls and comprises a cali-
bration, and a second step, which determines a genewise or seg-
mentwise burden with these disease-associatedMIPs.

In the first step, the sequencing depth of each MIP target
is compared between cases and controls. Therefore, for
n MIP targets and m individuals, consider an n × m matrix H of
MIP target depths. To normalize by total read number over all
MIPs in an individual, we transform H to Z, so that zi,j = hi,j/
(h1,j + h2,j + … + hn,j). The zi,j are limited to the interval [0,1].
Therefore, their logit ki,j = log(zi,j/[1 − zi,j]) is used in the basic
regression model of BIPEDAL:

ki,j � gi,j + f i,j + d j + bi ð1Þ

where gi,j and fi,j measure genetic variation in the probe and tar-
get regions of MIP target i in individual j, respectively, dj quan-
tifies individual bias, and bi is the baseline for MIP target i. The
individual bias covariate is needed because the read depths of the
MIPs of an individual are not independent of each other. They
share the same chemical resources during the library preparation
and they become interrelated via the normalization procedure
(see above). Thus, for instance, if one particular MIP cannot
bind due to a copy number variation, the read depths of all other
MIPs in that individual will increase, especially if the dropout
affects a MIP with a high baseline.

Baseline parameter bi may be estimated from a submatrix
K* of K, comprising c controls. Vector b = c−1 � K* � Jc,1 con-
tains the baselines of all MIP targets. The baseline is only needed
for the next step of the calibration, the estimation of dj. This is
done by regression on the subset of MIP targets for which gi,j
and fi,j are available in all individuals, k.j ~ b + g.j + f.j + dj. The
intercept dj captures the individual bias.

The genetic variation of individual j in MIP target i may
be correlated with disease probability aj, so that gi,j + fi,j ~ logit
(aj), which is the model for the burden of rare variant test.
Hence, we rearrange equation 1 to:

logit að Þ� ki: + d + bi ð2Þ

which models the association between disease probability and the
calibrated sequencing depth of each MIP. The regression param-
eters βi of the ki are determined by logistic regression and subse-
quently tested for significant association using the Wald test.
Individual covariates such as age and sex may be added to the
equation, whereas bi may be dropped as it would be captured by
the intercept.

In the worst case, there may be an overall bias between cases
and controls, causing an imbalance of the effect directions sign (βi).
For quantification and eventual correction of this bias, we estimate
the probability pbin = P(βi < 0) of randomly drawing a MIP target

with lower depth in cases under the null hypothesis of no association
betweenMIP target depth and disease status. As an estimator of pbin,
we choose the proportion of betas below zero among all those betas
with significance above the nominal threshold (0.05), thus excluding
the true associations from the estimation.

The second step of BIPEDAL addresses all those MIP tar-
gets that showed significant association (Bonferroni-corrected for
the number of MIPs) with the disease. We group them by gene
and, for each gene, perform a 1-sided binomial test to see
whether there are significantly more MIPs with negative betas in
that gene than expected, yielding:

pBIPEDAL = s = r

Xn
B sjpbin,n
� � ð3Þ

where pbin, as indicated above, is the probability for negative beta
under the null hypothesis, and n and r are the numbers of all
MIPs and all negative MIPs, respectively, within the examined
gene. As such, BIPEDAL is alike a burden test, operating in the
spirit of a meta-analysis, but allowing for correction for residual
bias by setting the probability of success to pbin.

Application of BIPEDAL
In our data, we considered only MIPs loci with at least one read
in the whole experiment and only individuals with at least
200,000 reads of all MIPs combined. We calibrated BIPEDAL
based on variants and for individuals from a more stringent qual-
ity control (QC; ie, QC as before, but heterozygosity filter at �3
SD, HWE filter at p < 0.0001, population outliers from
10 PCs �4 SD). We added age, sex, batch, sub-batch, and
10 PCs from common variants as covariates. Multiple testing
was corrected on the same stringent scale (0.05/25,000) as in
case of the BRVT.

To assess the overlap between significant genes in
BIPEDAL and in BRVT, a 2-sided Fisher exact test was applied.

Independent Tests for Case–Control Bias
In addition to the described methods to adjust for a putative case–
control bias in BRVT or BIPEDAL, we applied a positive control. A
general bias (null hypothesis) would create a false uniform genetic
architecture across all genes. We sampled by permutations of gene-
variant assignments (100×) or gene-MIP assignments (1,000×),
each followed by BRVT and BIPEDAL, respectively, and then cor-
related (Spearman) the logit-transformed p values with the gene sizes
(as measured by the number of variants or MIP targets). We thus
obtained an empirical null distribution of correlations, to which we
compared the observed correlation to get an empirical p value for
testing the null hypothesis.

As an additional control approach, we applied BRVT to
variant subclasses binned by their predicted consequences. For
each gene, we calculated the BRVT p values 2,500 times in each
subclass after jackknife-sampling of equal numbers of variants in
each subclass. For each subclass, we thus obtained an empirical
distribution of λ, which is the median deviation of the genes’
p values from a random distribution. The subclasses’ λ distribu-
tions were empirically compared by analysis of variance.
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TABLE 2. Fourteen Genes Identified with Stringent Significancea in BRVT or BIPEDAL, and Crosswise
Confirmation by BIPEDAL and BRVT, Respectively

Gene and Genomic Position (hg19)
Protein function (extracted from RefSeq summary,
UniProtKB, OMIM) pBRVT pBIPEDAL

AAGAB, chr15:67,493,012 RLS-GWAS locus Functions in clathrin-coated vesicle trafficking, eg,
EGFR recycling. LoF causes autosomal-dominant
palmoplantar keratoderma, punctate type I.

8.8E-10a 2.1E-03

ATP2C1, chr3:130,569,368 RLS-GWAS locus Catalyzes the hydrolysis of ATP coupled with the
transport of Ca2+. LoF causes autosomal-dominant
Hailey–Hailey skin disease.

7.6E-07a 1.4E-13a

BBS7, chr4:122,745,483 Part of the BBSome, which is required for ciliogenesis.
LoF causes autosomal-recessive syndromic intellectual
disability (Bardet–Biedl).

4.2E-07a 1.5E-07a

CADM1, chr11:115,044,344 Mediates cell–cell adhesion (Ca2+-independent). May
function in synapse assembly, neuronal migration, and
axon growth/pathfinding.

3.8E-07a 3.6E-05

CNTN4, chr3:2,140,549 RLS-GWAS locus Glycosylphosphatidylinositol-anchored axon-associated
cell adhesion molecule that functions in neuronal
network formation and plasticity.

7.2E-09a 2.4E-09a

COL6A6, chr3:130,279,178 RLS-GWAS locus Part of the basal lamina of epithelial cells, possibly
regulating their cell-fibronectin interactions.

2.1E-03 3.2E-07a

CRBN, chr3:3,191,316 RLS-GWAS locus Substrate recognition component of a
ubiquitin–protein ligase (mediates degradation of eg
MEIS2). May function in memory by regulating
neuronal expression of large-conductance
Ca2+-activated K+ channels. LoF causes autosomal-
recessive nonsyndromic intellectual disability.

7.2E-07a 1.6E-04

CREB5, chr7:28,338,939 Binds CRE (cAMP response element) as a homo-/
heterodimer (with c-Jun or CRE-BP1). Functions as a
CRE-dependent transactivator.

3.9E-10a 3.5E-07a

GLO1, chr6:38,643,700 RLS-GWAS locus Synthesis of S-lactoylglutathione. Regulates the TNF-
induced transcriptional activity of NF-kappa-B.
Required for osteoclastogenesis.

8.6E-07a 9.9E-04

NRG3, chr10:83,635,070 Stimulates activation and phosphorylation of ERBB4.
May influence neuroblast population, and act as
survival factor in oligodendrocytes.

3.3E-04 7.5E-07a

NTNG1, chr1:107,682,539 RLS-GWAS locus Functions in patterning and neuronal circuit
formation at the laminar, cellular, subcellular, and
synaptic levels. Promotes neurite outgrowth.

1.1E-06a 9.3E-13a

STEAP4, chr7:87,905,744 RLS-GWAS locus Transmembrane metalloreductase for Fe3+ and Cu2+

in the Golgi apparatus. Ubiquitous expression, but
not in brain.

6.3E-05 3.0E-11a

SUN1, chr7:855,194 Nuclear envelope protein that is required for radial
neuronal migration in the cerebral cortex and glial
migration.

8.1E-04 3.0E-08a

VAV3, chr1:108,113,781 RLS-GWAS locus GTP exchange factors for Rho family GTPases.
Functions in actin dynamics, angiogenesis, and
integrin-mediated cell adhesion.

1.6E-07a 2.7E-10a

ap ≤ 0.05/25,000.
ATP = adenosine triphosphate; BIPEDAL = binomial performance deviation analysis; BRVT = burden of rare variant testing; cAMP = cyclic adenosine
monophosphate; CRE = cAMP response element; GTP = guanosine triphosphate; LoF = loss of function; NF = nuclear factor; OMIM = Online Men-
delian Inheritance in Man database; TNF = tumor necrosis factor.
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Fine-Mapping
Fine-mapping was applied to the 14 genes with significance
above the stringent threshold in BIPEDAL or BRVT and cross-
wise Bonferroni-corrected confirmation (Table 2). In BIPEDAL
fine-mapping, we identified and excluded the subsegments
within these genes that did not show a strong burden in cases,
retaining those subsegments that carried the burden. To test sub-
segment z binomially (in analogy to Eq 3), we use:

pz = s = 0

Xxz
B sjpbinH0 ,nz
� � ð4Þ

where xz of the nz MIPs have a differentially lower target depth,
and pbinH0 is at least as large as the average proportion of MIP
targets that have a differentially lower target depth (to reach high
specificity, we chose pbinH0 = 0.99). In a sliding window
approach, nz is set to n (= window size) for all subsegments,
which determines the α and β errors:

αn = 0:05= m=nð Þ ð5Þ

βn = s = kn + 1

Xn
B sjpbinH1,n
� � ð6Þ

where m is the number of all considered MIP targets and pbinH1

is expected to be 0.5. Both errors are linked by the critical bino-
mial quantile:

kn = qbinom αn,n,pbinH0

� �
: ð7Þ

We chose the smallest n for which 1 − βn ≥ 0.99.
For BRVT fine-mapping, we merged overlapping promotors

and exons from all considered transcripts, and subjected the variants
within the merged segments to BRVT with covariates as described
above, 1-sided significance testing for a greater burden in cases, and
Bonferroni correction for the number of tested segments. BRVT
might be underpowered if applied to small segments such as a single
exon. Therefore, if possible, we extended BRVT fine-mapping to
the segments that had been identified in BIPEDAL fine-mapping
before.

Fine-Mapping Interpretation
To test for an overlap between the results of BIPEDAL and BRVT
fine-mappings (excluding the results of extended BRVT fine-map-
ping), we performed 500 rounds of permutation. Within the set of
genes subjected to fine-mapping, each round of permutation ran-
domly reassigned the positions of BIPEDAL fine-mapped segments
and randomly resampled the same number of BRVT subsegments.
The significance level was determined by comparing the resulting
empirical distribution of overlapping base pairs with the observed
overlap.

For segments that were detected in both the BIPEDAL fine-
mapping and the extended BRVT fine-mapping, we determined the
called variants and MIP probes that indicated a higher burden of
genetic variation in cases. We annotated these probes/variants using
Variant Effect Predictor30 variant consequences as well as functional
regions downloaded from the UCSC Table Browser31 for

Encyclopedia of DNA Elements transcription factor binding sites
(TFBSs) and conserved TFBSs,32 DNase clusters V3 and UMass
brain H3K4Me3 peaks,33 miRNA regulatory sites,34 and Universal
Protein Resource protein annotations.

Results
Targeted Sequencing, Variant Calling, and QC
We designed 11,214 MIPs for targeted sequencing of
84 positional and functional RLS candidate genes. After
QC, 8,379 individuals (4,001 cases) and 31,445 variants
with MAF ≤ 5% in either cases or controls
(Supplementary Tables 2 and 3) remained. DNA aliquots
from 2 individuals were processed on each PCR plate,
serving as replicates for QC. Their median pairwise con-
cordance was 0.9992 (95% confidence interval
[CI] = 0.9984–0.9998) and 0.9994 (95%
CI = 0.9981–0.9999), respectively.

Burden of Rare Variant Testing
We performed BRVT.17 Highly significant burden was found
for 14 genes, namely, COL20A1, CREB5, AAGAB, DMPK,
CNTN4, MICALL2, VAV3, CADM1, BBS7, CRBN,
ATP2C1, GLO1, NTNG1, and ASTN2 (p ≤ 0.05/25,000).
Conditioning BRVT of each gene on the respective GWAS
lead SNP or on variant burden of neighboring genes indicated
the independence of the signals (see Supplementary Table 1).
Variant burdens in MEIS1, which comprises the strongest
RLS GWAS signal,11 and its paralog MEIS2 were significant
(p = 5E-04 and p = 4E-05, respectively) but did not overcome
the stringent threshold. The BRVT p values were not a sole
effect of a potential genotyping bias between cases and con-
trols (p = 0.03, 100 permutations of gene-to-variant assign-
ments). All significant genes showed a higher burden of minor
alleles in the cases, suggesting that their effects in RLS are det-
rimental.When we binned variants by predicted consequence,
performed BRVT in each bin subclass, and determined the
deviation of the genes’ p values from a random distribution
(λ), we observed a significant difference between the classes
(p = 0.001). In subclasses with likely low effect sizes, λ was
low. Intronic variants outside of TFBSs, for instance, implied
λ = 1.9, which was not significantly different from 1 (95%
CI = 0.7–3.9), whereas missense and 50-untranslated region
variants implied λ of 2.7 and 3.2, respectively, which were sig-
nificantly larger than 1 (95% CI = 1.2–5.0 and 1.4–4.8,
respectively).

Binomial Performance Deviation Analysis
We applied BIPEDAL to MIPseq data of 3,975 RLS cases
and 4261 controls. For estimation of their individual biases
(accounting for individual leanings of theMIP targets’ depths)
in the first step of BIPEDAL, we selected a subset of 880MIPs
with 9,193 variants mapping to respective probe and target

February 2020 189

Tilch et al: RLS Genes by Mutational Load



regions. The burden of variants and the MIPs’ general base-
lines explained a major proportion of the targets’ depth vari-
ance in each individual (95% CI of R2 = 0.72–0.89). The
median effect sizes of the burden in probe and target regions
were −0.37 and 0.02 (95% CI = −80 to 15 and −1.34 to
1.52), respectively, suggesting that variants in the probe bind-
ing regions had a stronger effect on target depth. This negative
effect was also observed for individual variants (Fig, A–C). As
expected, the individual bias was slightly larger in cases (linear
regression of individual bias on disease status, R2 = 0.064,
p < 2E-16, β = 0.40). Some MIPs usually generate many
reads. If the target depth of such an MIP is substantially
lowered in an individual, for example, due to a copy number
variation in the probe binding regions, then the other MIPs’
relative proportion of reads in that individual may increase,
resulting in a relevant individual bias. This scenario is more
likely in cases, because they tend to have more genetic varia-
tion. We succeeded in calibrating BIPEDAL for 9,434 MIP
targets, of which 5,664 showed a significantly different target
depth between cases and controls after multiple testing correc-
tion. Among the nonsignificant MIP targets (p > 0.05), effect
directions were balanced (pbin = 0.501).

We then performed BIPEDAL analysis by gene. Six-
teen genes showed stringent significance, namely, ATP2C1,
NTNG1, LAMA1, STEAP4, PTPRM, VAV3, ADAM22,
CNTN4, PTPRD, SUN1, OSBP, RIMS2, BBS7, COL6A6,
CREB5, andNRG3.

Comparison of BRVT and BIPEDAL
BIPEDAL confirmed 10 genes that had stringent significance
in BRVT and, vice versa, BRVT confirmed 10 genes detected
byBIPEDALwith stringent significance, resulting in 14 genes
crosswise confirmed with Bonferroni-corrected significance
of p < 0.05/14 and p < 0.05/16, respectively (see Table 2).
Six genes showed stringent significance in both BRVT and
BIPEDAL analysis, namely, ATP2C1, BBS7, CNTN4,
CREB5, NTNG1, and VAV3. A set of that size was highly
unlikely to occur by chance (2-sided Fisher exact test,
p = 0.023, 95%CI = 1.03–18.40).

Fine-Mapping
We performed fine-mapping in the 14 genes with stringent
high significance in BRVT or BIPEDAL and crosswise vali-
dation. For BIPEDAL fine-mapping, a sliding window of
11 MIPs was selected, resulting in 36 fine-mapped segments
with 1 to 6 segments in each of the genes, whereas extended
BRVT fine-mapping yielded 19 segments with 1 to 4 seg-
ments in 12 of the 14 genes. (As described in the Materials
and Methods section, BRVT fine-mapping was extended, if
feasible, to BIPEDAL fine-mapped segments, because it may
have been underpowered if applied to single exons only.)

BIPEDAL fine-mapped segments intersected signifi-
cantly with BRVT fine-mapped segments (35,614bp,
17 overlapping segments with p = 0.002 after 500 permu-
tations, excluding extended segments to avoid any statisti-
cal bias), demonstrating the reliability of the 2 methods.

Intersecting BIPEDAL fine-mapping results with the
results of extended BRVT fine-mapping yielded 19 vali-
dated segments in 13 genes (88,457bp of the tiling MIP
target regions): 3 in ATP2C1, 2 in BBS7, 1 in CADM1,
1 in CNTN4, 1 in COL6A6, 1 in CRBN, 3 in CREB5,
1 in GLO1, 1 in NRG3, 1 in NTNG1, 1 in STEAP4, 1 in
SUN1, and 2 in VAV3 (details are given in Supplementary
Table 4). Fifteen of these segments harbored open chro-
matin loci or transcription factor binding sites. Of note,
the analysis revealed RLS-associated segments relating to
brain open chromatin marked by H3K4Me3 patterns in
CNTN4, NRG3, and NTNG1. COL6A6 and CADM1
seemed to be affected by regulatory alterations in RLS
cases. Eleven of 19 segments comprised protein coding
sequences, of which 10 have a functional assignments
(Table 3). Among these, the calponin-homology domain

TABLE 3. Of 19 Segments Determined by
Intersecting BRVT and BIPEDAL Fine-Mapping
Results, 10 Coded for Functional Domains in
8 Genes

Gene Functional Domain

ATP2C1 Cation transporter/ATPase (N-terminus),
Ca2+-binding sites

CRBN Cereblon domain of unknown activity,
binding cellular ligands and thalidomide
(CULT) and Lon protease-like (N-terminal)

CREB5 Basic leucine zipper (bZIP) domain

GLO1 Vicinal oxygen chelate (VOC) domain (with
substrate and zinc binding sites)

NRG3 Extracellular neuregulin-3 (cleaved from
membrane-bound pro-neuregulin-3)

NTNG1 NGL discriminant loops, EGF-like, and
laminin-type EGF-like domains

SUN1 SAD1-and-UNC84 (SUN) domain

VAV3 Phorbol-ester/DAG-type zinc finger, calponin
homology domain, Dbl homology (DH),
pleckstrin homology (PH), and Src homology
3 (SH3) domains

BIPEDAL = binomial performance deviation analysis; BRVT = burden
of rare variant testing; EGF = epidermal growth factor; NGL = netrin-G
ligand-2.
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of VAV3, the cation-ATPase-N domain of ATP2C1, and
the VOC domain of GLO1 seemed to be affected by
moderately or severely detrimental variants. The ATP2C1
locus overlaps with the ASTE1 locus, which thus also
showed detrimental effects in RLS cases.

Discussion
Common variants contribute to rare disease, and rare variants
contribute to common disease.35 The present paper demon-
strates that the latter also applies to RLS, one of the most
common neurological disorders. By MIP sequencing of a
large case–control sample of RLS patients, we detected a sig-
nificant burden of low frequency and rare variants in 14 genes
(see Table 2). In keeping with the preponderance of RLS
GWAS loci in the selection of candidate genes subjected to
the MIP analysis, 9 of the 14 genes resided at one of these
19 known RLS loci. Due to the nonrandom selection of can-
didate genes, we applied a stringent significance threshold in
the gene discovery (p ≤ 0.05/25,000, corresponding to the
number of genes in the genome) to avoid p value hacking.
With a Bonferroni correction for only the number of candi-
date genes, the set of significant results would have been larger
and would have included the leading RLS gene MEIS1 and
its paralogueMEIS2.

The detection of genes with rare variants affecting the
pathogenesis of RLS leads to the question of whether allelic
series in these genes may include highly penetrant variants
that cause monogenic RLS and are detectable by linkage anal-
ysis.4 A recent study that assessed the segregation pattern of
rare protein-altering variants from significant GWAS loci in
7 large French-Canadian families had negative results.36 We
observed 21 of the reported variants, most of them with small
effect size estimates. When we checked the low-frequency
variants detected by the present study for linkage in European
RLS families whose index patient we had included in the
MIPseq analysis, we also could not detect significant
cosegregation (unpublished data). Although this does not
exclude the role of rare variants with nearly complete pene-
trance in the genetic architecture of RLS, we emphasize that
for some multifactorial disorders monogenic subgroups may
not exit.

Our study has demonstrated that the search for low fre-
quency and rare variant burden is useful in identifying the
putatively causative genes at GWAS loci. This might include
surprises such as the identification of GLO1 at the locus of
BTBD9, whereas the latter previously appeared to be the
likely RLS gene.37 Glyoxalase 1, the gene product of GLO1,
detoxifiesmethylglyoxal. Decreased Glo1 activity or increased
maternal methylglyoxal levels derange neurogenesis in embry-
onic mice and cause long-term alterations in cortical neurons
postnatally,38 in keeping with the concept of RLS being a

disorder of neurodevelopment.11 Of note, a GWAS locus
may contain more than one disease-associated gene, by
chance or due to functional or developmental relation
between genes within the same chromosomal domain.39 At
3 RLS GWAS loci, we detected 2 genes each having signifi-
cant burdens of low-frequency variants (see Table 2).

Identifying causative genes at GWAS loci is important
for guiding further functional research in molecular pathol-
ogy and pharmacology. We identified CRBN, for instance,
the gene of cereblon, a substrate receptor of the cullin-4
RING E3 ligase (CRL4). Cereblon is bound by thalidomide,
which inhibits the binding, ubiquitination, and proteosomal
degradation of CRL4’s endogenous substrate MEIS2.40,41

We therefore assume that thalidomide may have therapeutic
potential in RLS cases where its teratogenicity is irrelevant,
that is, in men and in women without childbearing
potential.11

Our MIP analysis aimed for complete assessment of a
comparatively large number of genes in a large number of
individuals. Accordingly, to have as few gaps and dropouts as
possible, the chosen MIP design and QC thresholds were not
maximized for sequencing precision as in diagnostic MIP
applications, but allowed for potentially false variant callings
within the MIP sequencing regions. To compensate for the
latter, we developed BIPEDAL, a method for analyzing
sequencing depth of MIPseq to obtain independent informa-
tion on the variant burden within the MIP binding regions.
As expected, BIPEDAL results showed significant and sub-
stantial overlap with the BRVT results. BIPEDAL therefore
qualifies as a cost-efficient and time-efficient tool for validation
of MIP results if the MIP study is focused on segmental vari-
ant burden. Of note, however, BIPEDAL and BRVT may
reach their maximal reliability in different scenarios;
BIPEDAL is less affected by a high burden of variants (includ-
ing unrecognized copy number variations), which would lead
to many missing variant calls and thereby to an underpow-
ered BRVT, so that significant BIPEDAL signals might be
of interest even if they are not confirmed by BRVT results.
On the other hand, BIPEDAL signals represent the effect
of variants on probe binding efficiency, which differs
between variant positions, for instance, and therefore
implies a potential bias, so that BIPEDAL cannot reach the
performance of BRVT applied to hypothetical error-free
genotype data.

As we have demonstrated, BIPEDAL can also be
used for fine-mapping of variation-sensitive domains of
disease-associated genes. Again, there was a highly signifi-
cant overlap with BRVT fine-mapping, resulting in the
identification of regulatory regions or of coding segments
covering active centers of encoded proteins (see Table 3;
details are given in Supplementary Table 4). Together,
our BIPEDAL results may trigger the reanalysis of existing
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MIPseq datasets and influence the design of future large-
scale probe-based resequencing analyses.

In summary, we applied BRVT and BIPEDAL to
MIPseq data of an RLS patient–control sample. Signifi-
cance thresholds were corrected for the number of genes
in the genome, that is, more rigidly than the number of
analyzed genes or even of MIP probes would have
required. We detected RLS associations of 14 genes,
namely, AAGAB, ATP2C1, CNTN4, COL6A6, CRBN,
GLO1, NTNG1, STEAP4, and VAV3, as well as BBS7,
CADM1, CREB5, NRG3, and SUN1. Their products
mostly function in calcium transport and neurogenesis.
With the exception of AAGAB, the association could be
fine-mapped to coding and regulatory regions within these
genes. The first 9 of these genes are located in the vicinity
of RLS-GWAS signals; the latter 5 reside at loci that have
not been associated with RLS before.
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