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Non-invasive stimulation of vagal afferents reduces gastric frequency
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a b s t r a c t

Metabolic feedback between the gut and the brain relayed via the vagus nerve contributes to energy
homeostasis. We investigated in healthy adults whether non-invasive stimulation of vagal afferents
impacts energy homeostasis via efferent effects on metabolism or digestion. In a randomized crossover
design, we applied transcutaneous auricular vagus nerve stimulation (taVNS) while recording efferent
metabolic effects using simultaneous electrogastrography (EGG) and indirect calorimetry. We found that
taVNS reduced gastric myoelectric frequency (p ¼ .008), but did not alter resting energy expenditure. We
conclude that stimulating vagal afferents induces gastric slowing via vagal efferents without acutely
affecting net energy expenditure at rest. Collectively, this highlights the potential of taVNS to modulate
digestion by activating the dorsal vagal complex. Thus, taVNS-induced changes in gastric frequency are
an important peripheral marker of brain stimulation effects.
© 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Maintaining energy homeostasis is vital for organisms and ne-
cessitates a balance between energy intake and expenditure [1].
Achieving this balance requires vagal afferents to transmit infor-
mation between peripheral organs and the dorsal vagal complex in
the brain stem [2e6]. Invasive stimulation of the vagus nerve (VNS)
as well as the more recent non-invasive transcutaneous auricular
VNS (taVNS [7e9]) impact energy homeostasis by modulating food
intake, energy metabolism, and glycemic control [10e12]. In ro-
dents, VNS triggered by phasic stomach contractions resulted in
weight loss [13]. In humans, taVNS led to a decreased frequency and
increased amplitude of gastric motility [14] pointing to metabolic
effects of taVNS on energy homeostasis via digestion. Such meta-
bolic effects have also been observed in VNS-induced increases in
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the activity of brown adipose tissue, which in turn increased the
basal metabolic rate, a measure related to energy expenditure
reflecting physiological homeostasis [15]. Notably, dopamine has
been suggested as a neuromodulator of energy homeostasis within
the gut-brain axis [16,17]. Afferently, stimulation of the vagal sen-
sory ganglion in mice was found to induce dopamine release in the
substantia nigra [17]. Efferently, dopamine administration to the
dorsal vagal complex in rats modulated the upper gastrointestinal
tract by reducing gastric tone and motility via DA2 receptors in the
dorsal motor nucleus of the vagus [18]. Thus, while vagal stimula-
tion mostly targets afferent pathways, studies in rodents provide
evidence for brain-mediated effects on downstream targets.

Although there is preliminary evidence linking vagal signaling
and energy homeostasis [14], efferent taVNS-induced effects on
digestion and energy metabolism in healthy humans have not been
conclusively demonstrated. We therefore investigated whether
taVNS vs. sham changes electrogastrography (EGG) and indirect
calorimetry as markers of energy homeostasis.
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Fig. 1. Gastric frequency is reduced after transcutaneous auricular vagus nerve stimulation (taVNS) compared to sham stimulation, but there is no change in resting energy
expenditure (REE). The figure depicts A) changes (stimulation e baseline) in gastric frequency and B) changes (stimulation e baseline) in REE for taVNS and sham. It further depicts
C) bootstrapped delta gastric frequency distributions (stimulation e baseline) and D) bootstrapped delta REE distributions (stimulation e baseline) as well as the interaction
between Time (pre, post) and Stimulation (taVNS, sham) for E) EGG and F) REE. While the interaction is significant for gastric frequency with pboot ¼ .008, the same term does not
reach significance for REE with pboot ¼ .863. Bootstrapped distributions are based on 50,000 iterations.
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Methods

Participants and procedure

We invited 22 participants (14 female, Mage ± SD ¼ 23.3 ± 2.7
years, range: 19e29) for two consecutive days with a 30-min
stimulation phase each. In a randomized crossover design, we
measured EGG using four standard electrocardiogram electrodes
connected to a BrainProducts BrainAmp DC EEG recording system.
Electrodes were placed as previously described ([19], see SI).
Resting energy expenditure (REE) was measured with the Care-
Fusion Vmax ventilated hood system for indirect calorimetry (see
SI). For administering taVNS, we used Cerbomed NEMOS following
the protocol presented in Ref. [8]. Briefly, the electrode was placed
at the left cymba conchae (taVNS) or was turned upside down and
placed at the earlobe (sham). The stimulation protocol of NEMOS is
preset with a biphasic impulse frequency of 25 Hz with alternating
intervals of 30 s stimulation on and 30 s off.
After a resting period of at least 15 min, we recorded a 15-min
baseline for both EGG and calorimetry. Next, we placed the taVNS
device on the participants’ left ear according to the randomization
protocol. The individual stimulation intensity was adjusted based
on subjective pain thresholds using concurrent VAS ratings (for
details, see Ref. [20]). We then recorded at least 30 min of EGG and
calorimetry during active stimulation before the participant was
debriefed.
Data preprocessing and statistical analysis

EGG data were preprocessed and inspected for muscle artifacts.
We then identified the gastric peak frequency for baseline, taVNS
and sham, respectively, based on spectral density for each EGG
channel (see SI). One participant had to be excluded after quality
control due to absence of visibly identifiable peaks in any channel
in both sessions, leaving N ¼ 21 for the statistical analysis.
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We calculated baseline-corrected delta mean gastric frequency
(in mHz) by subtracting the individual session-specific baseline
mean gastric frequency from the respective taVNS and sham mean
gastric frequency. Next, we calculated the net effect of stimulation
(interaction) by subtracting delta sham from delta taVNS. After
preprocessing the calorimetry data (see SI), we calculated the same
measures for REE (in kcal/day). For non-parametric inference, we
bootstrapped the distribution of taVNS-induced changes in gastric
frequency and REE, respectively, using 50,000 repetitions and
calculated two-tailed p-values.

Results

We found that taVNS compared to sham led to a significant
reduction in gastric myoelectric frequency (Fig. 1A; mean [95%
bootstrap CI] Time � Stimulation: �2.24 mHz [-4.44, �0.72],
pboot ¼ .008). In contrast, we observed no significant effect of taVNS
on resting energy expenditure (Fig. 1B; mean [95% bootstrap CI]
Time � Stimulation: �3.69 kcal/day [-46.52, 42.31], pboot ¼ .863).

Discussion

In line with the hypothesized efferent effect, we found that
taVNS alters a marker of energy homeostasis in humans. The
observed taVNS-induced reduction in gastric frequency is well in
line with previous findings linking VNS to altered energy homeo-
stasis [13,14,17]. This efferent effect on gastric motilitymight be due
to a taVNS-induced release of dopamine in the brain stem. Previous
work has shown that elevated levels of brain stem dopamine lead
to reduced food intake [21] and gastric relaxation [22]. Moreover,
dopamine administration in the brain stem reduced gastric tone
andmotility which was abolished by vagotomy [18]. Studies linking
alterations in vagal signaling to the development of Parkinson’s
disease [23,24] further support the assumption of afferent signaling
between the gut and key dopaminergic brain regions along the
vagal pathway. Therefore, taVNS-induced neuromodulation in the
brain stem might lead to the observed slowing of gastric
myoelectric frequency via the efferent vagal pathway.

In contrast to chronic VNS in patients [15], we did not find
changes in energy expenditure during acute taVNS. This pattern
indicates that compared to changes in digestion, taVNS-induced
effects on energy expenditure may develop over longer time
periods.

In sum, we demonstrated that taVNS reduces gastric frequency
without affecting REE. This shows that transcutaneous stimulation
of vagal afferents can elicit efferent gastric effects through a feed-
back loop via the dorsal vagal complex. Thus, in light of the het-
erogeneous efferent effects of taVNS on electrocardiogram
parameters [25,26], the EGG may be a promising positive control
measure for taVNS in healthy humans [27].
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