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ABSTRACT

Motivation: Methylation of cytosines in DNA is an important epigen-

etic mechanism involved in transcriptional regulation and preservation

of genome integrity in a wide range of eukaryotes. Immunoprecipita-

tion of methylated DNA followed by hybridization to genomic tiling

arrays (MeDIP-chip) is a cost-effective and sensitive method for

methylome analyses. However, existing bioinformatics methods only

enable a binary classification into unmethylated and methylated gen-

omic regions, which limit biological interpretations. Indeed, DNA

methylation levels can vary substantially within a given DNA fragment

depending on the number and degree of methylated cytosines. There-

fore, a method for the identification of more than two methylation

states is highly desirable.

Results: Here, we present a three-state hidden Markov model

(MeDIP-HMM) for analyzing MeDIP-chip data. MeDIP-HMM uses a

higher-order state-transition process improving modeling of spatial

dependencies between chromosomal regions, allows a simultaneous

analysis of replicates and enables a differentiation between unmethy-

lated, methylated and highly methylated genomic regions. We train

MeDIP-HMM using a Bayesian Baum–Welch algorithm, integrating

prior knowledge on methylation levels. We apply MeDIP-HMM to the

analysis of the Arabidopsis root methylome and systematically inves-

tigate the benefit of using higher-order HMMs. Moreover, we also

perform an in-depth comparison study with existing methods and

demonstrate the value of using MeDIP-HMM by comparisons to cur-

rent knowledge on the Arabidopsis methylome. We find that MeDIP-

HMM is a fast and precise method for the analysis of methylome data,

enabling the identification of distinct DNA methylation levels. Finally,

we provide evidence for the general applicability of MeDIP-HMM by

analyzing promoter DNA methylation data obtained for chicken.

Availability: MeDIP-HMM is available as part of the open-source Java

library Jstacs (www.jstacs.de/index.php/MeDIP-HMM). Data files are

available from the Jstacs website.
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1 INTRODUCTION

Methylation of genomic DNA is one of the best characterized
epigenetic modifications catalyzed by DNA methyltransferases

that methylate cytosines at their carbon-5 position (Beck and

Rakyan, 2008). In mammals, DNA methylation is found exclu-

sively in the CpG dinucleotide context, except in embryonic stem
cells, where a small proportion of cytosines in other contexts

(CpA, CpT and CpC) are also methylated. In plants, DNA

methylation is found in symmetric CpG and CpHpG and in

asymmetric CpHpH contexts (H¼A, T or C). Generally,
DNA methylation plays important roles in regulation of gene

expression (Barlow, 2011; Esteller, 2007; Wutz, 2011;

Zilberman et al., 2007) and silencing of transposons (Law and

Jacobsen, 2010; Teixeira and Colot, 2010).
Despite recent developments of next-generation sequencing

approaches for determining methylomes at single base pair reso-
lution (e.g. Cokus et al., 2008; Lister et al., 2008, 2009), methy-

lomes of different organisms or cell tissues are also frequently

analyzed using whole-genome tiling arrays (e.g. Borgel et al.,

2010; Nätt et al., 2012; Zilberman et al., 2008), which provide
cost-effective alternatives. Most array-based studies are

done based on methylated DNA immunoprecipitation coupled

with hybridization to a tiling array (MeDIP-chip) (Beck and

Rakyan, 2008; Harrison and Parle-McDermott, 2011).
MeDIP-chip enables to analyze the methylome of a genome at

a resolution of few hundred base pairs, which in most applica-

tions is sufficient to draw biologically meaningful conclusions.
The analysis of MeDIP-chip data puts similar challenges on

bioinformatics methods, as identified for the analysis of closely

related array-based chromatin immunoprecipitation data
(ChIP-chip). Different methods for the analysis of ChIP-chip

data were proposed over the last years. Especially, methods

based on hidden Markov models (HMMs) (e.g. Humburg

et al., 2008; Ji and Wong, 2005; Seifert et al., 2009) and on mix-
ture models (e.g. Banaei et al., 2011; Johannes et al., 2010;

Martin-Magniette et al., 2008) were shown to enable reliable

predictions of chromosomal target regions of transcription fac-

tors or histone modifications. A common characteristic of all
these methods is the modeling of two different populations of

measurements to differentiate non-enriched genomic regions

from enriched ones. Main conceptual differences exist in the*To whom correspondence should be addressed.

2930 � The Author 2012. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/28/22/2930/242644 by G
SF H

aem
atologikum

 user on 18 February 2020

www.jstacs.de/index.php/MeDIP-HMM
http://bioinformatics.oxfordjournals.org/cgi/content/full/bts562/DC1


way of modeling dependencies between adjacent measurements
on a chromosome, in handling of replicates and in training al-
gorithms. From these methods, only approaches based on

HMMs integrate dependencies between directly adjacent meas-
urements on a chromosome. Some methods only enable a sep-
arate analysis of replicates (e.g. Humburg et al., 2008;

Martin-Magniette et al., 2008; Seifert et al., 2009), whereas
others try to improve the analysis by simultaneous modeling of
replicates (e.g. Banaei et al., 2011; Ji and Wong, 2005; Johannes

et al., 2010). Mixture models are typically trained by specifically
designed expectation maximization (EM) algorithms (Dempster
et al., 1977). HMM-based methods except TileMAPHMM

(Ji and Wong, 2005) and HMMs by Seifert et al. (2009) use a
Baum–Welch training (Baum, 1972), representing a special case
of an EM algorithm. TileMAPHMM is based on data-dependent

ad hoc settings, and HMMs by Seifert et al. (2009) enable the
integration of prior knowledge on measurements using a
Bayesian Baum–Welch algorithm.
All these methods are useful tools for the analysis of

ChIP-chip data. Additionally, some methods like ChIPmix
(Martin-Magniette et al., 2008) and a mixture-model approach
by Johannes et al. (2010) have already been applied to the ana-

lysis of MeDIP-chip data. One general limitation of all these
methods in the context of MeDIP-chip data analyses is that
they only enable a binary classification into unmethylated and

methylated regions. MeDIP-chip data is known to be more com-
plex, showing differences in methylation levels of individual
chromosomal regions as, for example, revealed for Arabidopsis

thaliana having moderately methylated genes and highly methy-
lated transposons (Zilberman et al., 2008). To address that, a
three-state HMM specifically designed for the analysis of

Arabidopsis MeDIP-chip data has been developed in a compan-
ion work by Cortijo et al. (2012). This approach uses
Arabidopsis-specific ad hoc settings and enabled a better inter-

pretation of MeDIP-chip data using a classification of methyla-
tion states of genomic regions according to the underlying three
states. Generally, organism-specific ad hoc settings can only be

hardly transferred to MeDIP-chip data of other organisms.
Thus, there is still a great demand of having a general method
that is able to differentiate between different methylation levels

without being dependent on a specific organism. Moreover, a
systematic performance evaluation of different methods for ana-
lyzing DNA methylation data has not been carried out up to

now, and current HMM-based methods only focus on standard
first-order HMMs.
Here, we present MeDIP-HMM, a method specifically

designed for the analysis of MeDIP-chip data. MeDIP-HMM
utilizes three states to differentiate between unmethylated,
methylated and highly methylated regions overcoming limita-

tions of typically used ChIP-chip methods only enabling a
binary classification into unmethylated and methylated regions.
Additionally, MeDIP-HMM can perform a simultaneous ana-

lysis of replicates and integrates prior knowledge on measure-
ments to improve the identification of methylated genomic
regions. Moreover, MeDIP-HMM can also take advantage of

higher-order hidden Markov chains to improve spatial modeling
of dependencies between neighboring regions. This has recently
been found to improve the analysis of comparative genomics

data (Seifert et al., 2012) and provides a valuable option for

improving the analysis of MeDIP-chip data. We apply our
MeDIP-HMM to the analysis of the Arabidopsis root methy-

lome and systematically evaluate the influence of using
higher-order Markov chains on the identification of methylated

genomic regions. We further perform an in-depth comparison
study to widely used existing methods and demonstrate advan-
tages of using MeDIP-HMM based on comparisons to current

knowledge on the Arabidopsis methylome. We also show that
MeDIP-HMM can be applied to non-Arabidopsis data by per-

forming an additional study on promoter DNAmethylation data
obtained for chicken (Nätt et al., 2012).

2 METHODS

In this section, we initially describe our root methylome data. Then, we

provide the mathematical background of MeDIP-HMM. Finally, we

consider publicly available data for model evaluations.

2.1 Arabidopsis root methylome dataset

We performed a MeDIP-chip experiment to identify genomic regions that

are methylated in root tissue of the accession Col-0 of the flowering plant

A.thaliana according to the experimental protocol described by Cortijo

et al. (2012). The dataset is publicly available from GEO (GSE36750).

This dataset represents log ratios of fluorescent intensities of immuno-

precipitated methylated DNA versus reference input DNA measured for

T :¼ 711320 genomic regions in two biological replicates. We applied

quantile normalization (Bolstad et al., 2003) to the log ratios of both

replicates and summarized the resulting normalized log ratios of each

replicate in chromosome-specific methylation profiles. This leads to a

methylation profile ~oðkÞ :¼ ð~o1ðkÞ, . . . , ~oTk
ðkÞÞ for each chromosome

k 2 f1, . . . , 5g containing chromosome-specific measurements

~otðkÞ :¼ ðo1t ðkÞ, o
2
t ðkÞÞ of both replicates in increasing order of their

chromosomal positions. Thus, each methylation level ~otðkÞ of a region

t 2 f1, . . . ,Tkg is represented by the corresponding normalized log ratios

o1t ðkÞ and o2t ðkÞ measured in replicates 1 and 2, respectively. A histogram

of average methylation levels is shown in Figure 1a. Measurements of

both biological replicates are highly reproducible, reaching a Pearson

correlation coefficient of 0.92 (Supplementary Fig. S1a).

2.2 MeDIP-HMM: HMM for MeDIP-chip analyses

We use a three-state HMM with state-specific multivariate Gaussian

emission densities to analyze methylation levels of chromosomal regions

in methylation profiles. Motivated by the distribution of methylation

levels in Figure 1a, three states S :¼ f0U0, 0M0, 0I0g are defined to model

distinct classes of methylation states. State 0U0 models unmethylated

regions characterized by log ratios of about or much less than zero.

Highly methylated regions having log ratios much greater than zero are

modeled by state 0M0. Methylated regions having log ratios in between

unmethylated and highly methylated genomic regions are modeled by

state 0I0. These states are the basis of the fully connected three-state archi-

tecture of the HMM shown in Supplementary Figure S2.

More formally, the state of a region t on chromosome k is denoted

by qtðkÞ 2 S. To account for correlations between measurements of

closely adjacent regions on a chromosome, a state sequence

~qðkÞ :¼ ðq1ðkÞ, . . . , qTk
ðkÞÞ underlying a methylation profile ~oðkÞ is mod-

eled by a homogeneous Markov model of order L (e.g. Berchtold and

Raftery, 2002). Thus, the state-transition process of an HMM of order

L � 1 is parameterized by an initial state distribution ~� :¼ ð�iÞi2S with

initial state probability�i 2 ð0, 1Þ anda set of stochastic transitionmatrices

A :¼ fA1, . . . ,ALg. The initial state distribution fulfills the constraintP
i2S �i ¼ 1. Each transition matrix Al :¼ ðaijÞi2Sl , j2S 2 A with 1 � l � L

specifies the transition probability aij 2 ð0, 1Þ for each transition from the
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current state il of a state-context i ¼ ði1, . . . , ilÞ 2 Sl to a next state j 2 S.

Thus, this means that, for l41, transitions from il are depending on its

l� 1 predecessors i1, . . . , il�1. Hence, a transitionmatrixAl with 1 � l5L

is used for the transition from the current state qlðkÞ to the next state qlþ1ðkÞ

under consideration of the l� 1 predecessor states q1ðkÞ, . . . , ql�1ðkÞ. The

transition matrix AL 2 A is used for each transition from qtðkÞ to qtþ1ðkÞ

for all regions t � L in dependency of the complete memory on L� 1

predecessor states qt�Lþ1ðkÞ, . . . , qt�1ðkÞ. Finally, each Al 2 A also fulfills

the constraint
P

j2S aij ¼ 1 for each i 2 Sl.

Practically, only small model orders should be considered due to an

exponential increase of transition parameters with increasing model

order, leading to higher computational complexities and potentially over-

fitted models. Thus, different studies in other domains mainly focused on

second-order HMMs (e.g. Eng et al., 2009; Mari et al., 1997) or

developed different strategies to obtain parsimonious models (e.g. du

Preez, 1998; Seifert et al., 2012; Wang, 2006). For our approach, the

most parsimonious model is obtained for L ¼ 0. This reduces the

HMM to a mixture model (e.g. Bilmes, 1998) that does not model depen-

dencies between measurements.

Generally, the state sequence ~qðkÞ underlying a methylation profile

~oðkÞ is unknown. To enable the inference of a state sequence, measure-

ments contained in a methylation profile must be integrated into the

HMM by making use of state-specific emission distributions. The usage

of univariate Gaussian emission distributions represents a common

choice for HMM-based analyses of single ChIP-chip experiments (e.g.

Li et al., 2005; Seifert et al., 2009). Similar to Johannes et al. (2010),

we extend this assumption by using multivariate Gaussian emission dis-

tributions, enabling the simultaneous analysis of replicates of an experi-

ment. Thus, a methylation level ~o :¼ ðo1, . . . , odÞ that represents the log

ratios of a region measured in d replicates is modeled under state i 2 S of

the HMM by the state-specific Gaussian emission distribution

bið~oÞ :¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2�Þd detð�i

q
Þ

exp �
1

2
ð~o� ~�iÞ ��

�1
i � ð~o� ~�iÞ

T

� �

with mean vector ~�i 2 R
d and covariance matrix �i 2 R

d�d. Here, the

determinant of the covariance matrix is denoted by detð�iÞ, where ��1i

represents the inverse of the covariance matrix, and the transpose vector

of ð~o� ~�iÞ is given by ð~o� ~�iÞ
T. The emission parameters of all states of

the HMM are summarized by B :¼ ð ~�i,�iÞi2S. All parameters of the

HMM are denoted by � :¼ ð~�,A,BÞ. The underlying state-space model

highlighting dependencies modeled between states and emissions is illu-

strated in Supplementary Figure S3 for a second-order HMM.

To quantify the methylation status of a genomic region, the HMM is

used to compute the probability that a region t in methylation profile ~oðkÞ

is modeled by a state i 2 S. The corresponding state-posterior probability

�kt ðiÞ :¼ P½ qtðkÞ ¼ i j ~oðkÞ, � � is computed by the forward-backward algo-

rithm adapted to higher-order HMMs (e.g. Seifert, 2010). These

state-posterior probabilities allow to decode the most likely underlying

methylation state of each region. Additionally, the state-posterior prob-

abilities enable a ranking of genomic regions according to their probabil-

ities of being methylated (0I0 or 0M0) using the probability 1� �kt ð
0U0Þ as

score.

2.3 Integration of prior knowledge

The integration of prior knowledge on the distribution of measurements

enables a problem-specific characterization of model parameters.

Especially, the modeling of prior knowledge on emission parameters

can substantially improve HMM-based predictions compared with pre-

dictions of HMMs ignoring prior knowledge during training (Seifert

et al., 2011). For that reason, a prior distribution for an HMM

� :¼ ð~�,A,BÞ is defined by

P½ � j� � :¼ D1ð ~� j�1 Þ �D2ðA j�2 Þ �D3ðB j�3 Þ ð1Þ

given specific hyperparameters � :¼ ð�1,�2,�3Þ. This prior represents a

product of independent conjugate priors for each class of model param-

eters, enabling analytical parameter estimations and integration of prior

knowledge during model training.

Following the usual choice of prior distributions for initial state and

transition parameters (e.g. Durbin et al., 1998; Seifert et al., 2011, 2012),

the prior D1ð ~� j�1 Þ for the initial state distribution is given by a

Dirichlet distribution, and the prior D2ðA j�2 Þ for the set of transition

matrices is specified by products of Dirichlet distributions. Appendix A of

the Supplementary Material provides details to both prior distributions

and chosen hyperparameters.

For the state-specific multivariate Gaussian emission densities enabling

simultaneous modeling of measurements of replicates of an experiment,

we use a Gaussian–Wishart prior to integrate prior knowledge on differ-

ent methylation levels. This choice is motivated by Gauvain and

Lee (1994) introducing this prior into HMM-based speech recognition.

We transfer this to HMM-based modeling of multivariate MeDIP-chip

data. Thus, the prior distribution for the emission parameters is a

product of state-specific independent Gaussian–Wishart distributions

defined by

D3ðB j�3 Þ /
Y
i2S

detð��1i Þ
ri�d

2 � exp �
1

2
trð�i ��

�1
i Þ

� �

� exp �
�i
2
ð ~�i � ~�iÞ ��

�1
i � ð ~�i � ~�iÞ

T
� �

with hyperparameters �3 :¼ ð~�i, �i,�i, riÞi2S. Here, ~�i 2 R
d specifies an a

priori mean vector for methylation levels modeled by state i 2 S, and

�i 2 R
þ defines a corresponding scaling factor of the a priori mean

vector weighting its strength of influence on the state-specific mean

vector ~�i during training. Similarly, �i 2 R
d�d is a positive definite

scale matrix for the covariance matrix �i of state i, and ri4d� 1 is a

scaling parameter for �i. Additionally, trð�i ��
�1
i Þ specifies the trace of

the matrix product �i ��
�1
i .

The influence of the emission prior on the estimation of emission par-

ameters is shown in the following section. Details to chosen prior

Fig. 1. Overview of measurements in the Arabidopsis root methylome

dataset. (a) Histogram of average methylation levels measured in root

tissue using two biological replicates. Three groups of methylation levels

are observed comprising unmethylated genomic regions with log ratios

much less than zero peaking around �1:0, highly methylated genomic

regions with log ratios much greater than zero peaking around 2.0 and

genomic regions having methylation levels between unmethylated and

highly methylated regions peaking around 1.0. (b) Histogram of average

methylation levels of genomic regions in the root methylome dataset that

has been labeled as potential candidates for DNA methylation based on

an initial study by Zilberman et al. (2008). The distribution of measured

methylation levels for the candidate regions is clearly shifted into the

positive range of log ratios peaking at log ratios of about 2.0. This

strongly indicates that candidate regions of DNA methylation from

Zilberman et al. (2008) are also present in our root methylome dataset.

This motivates the usage of these information for evaluating different

methods for MeDIP-chip analyses
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hyperparameters for the analysis of the MeDIP-chip data are given in the

section model initialization.

2.4 Bayesian Baum–Welch training

The adaptation of the HMM parameters to the MeDIP-chip data is done

by a Bayesian Baum–Welch training outlined in Seifert et al. (2011) for

HMMs with univariate Gaussian emission distributions. This training

algorithm is a special case of an EM algorithm (Dempster et al., 1977),

enabling the integration of prior knowledge. Based on a choice of

initial model parameters, the Bayesian Baum–Welch algorithm iteratively

maximizes the posterior density (product of likelihood and prior

distribution) of the model parameters given a dataset, reaching at

least a local optimum in dependency of the initial parameters. This is

usually done in log space by successively computing updated HMM

parameters

�ðhþ 1Þ ¼ arg max
�

Qð � j �ðhÞ Þ þ logðP½ � j� �Þð Þ

maximizing the sum of Baum’s auxiliary function Qð � j �ðhÞ Þ

(see Appendix B, Supplementary Material) and the logarithm of the

prior distribution P½ � j� � in Equation (1). This enables an iterative es-

timation of the new HMM parameters �ðhþ 1Þ under consideration of

current parameters �ðhÞ (for h ¼ 1 initial HMM) until the log posterior

grows less than a predefined threshold. Here, we use a threshold of 10�3

for two successive iterations.

Details to the estimation of initial state and transition parameters are

given in Appendix B of the Supplementary Material. Since we make use

of state-specific multivariate Gaussian emission densities in combination

with a Gaussian–Wishart prior, estimation formulas of the state-specific

mean vector ~�i and the corresponding covariance matrix �i are given in

the following. Detailed derivations of these formulas are outlined in

Appendix B of the Supplementary Material.

Considering the iteration step h of the Bayesian Baum–Welch training,

the mean vector of the multivariate Gaussian emission density of state

i 2 S is given by

~�ðhþ1Þi :¼

PK
k¼1

PTk

t¼1

~otðkÞ � �
k
t ðiÞ

� �
þ �i ~�i

PK
k¼1

PTk

t¼1

�kt ðiÞ

� �
þ �i

with respect to the measured methylation level ~otðkÞ, the state-posterior

probability �kt ðiÞ :¼ P½ qtðkÞ ¼ i j ~oðkÞ, �ðhÞ � under the current model �ðhÞ,

and the state-specific a priori mean vector ~�i with its scaling factor �i
specified by the Gaussian–Wishart prior. The corresponding state-specific

covariance matrix

�
ðhþ1Þ
i :¼

PK
k¼1

PTk

t¼1

�kt ðiÞ �Oitk

� �
þ �iVi þ�i

PK
k¼1

PTk

t¼1

�kt ðiÞ

� �
þ ri � d

is computed based on the state-posterior �kt ðiÞ under the

current model �ðhÞ and two state-specific

matrices Oitk :¼ ð~otðkÞ � ~�ðhþ1Þi Þ
T
� ð~otðkÞ � ~�ðhþ1Þi Þ 2 R

d�d and

Vi :¼ ð ~�ðhþ1Þi � ~�iÞ
T
� ð ~�ðhþ1Þi � ~�iÞ 2 R

d�d. The a priori mean vector ~�i,

the scale matrix �i and the scaling factor ri are specified by the

state-specific Gaussian–Wishart prior.

The obtained parameter estimation formulas for the mean vector and

the covariance matrix generalize the estimation formulas for multivariate

Gaussian emission densities typically used in the standard Baum–Welch

training that does not enable the integration of prior knowledge (e.g.

Bilmes, 1998). A computational scheme summarizing the main steps of

the Bayesian Baum–Welch training is given in Appendix B of the

Supplementary Material.

2.5 Model initialization

To enable the identification of distinct DNA methylation states from

MeDIP-chip data, an initial HMM is specified in a data-dependent

manner. We use the following heuristic approach to set the initial

model parameters.

Initially, the user has to specify the model order L and rough estimates

of expected proportions �0U0 2 ð0, 1Þ and �0M0 2 ð0, 1Þ of unmethylated

and highly methylated genomic regions in an experiment. Here, a histo-

gram or a cumulative density plot of measured methylation levels helps to

select these proportions. Alternatively, these proportions can also be

chosen based on prior knowledge from previous experiments. Based on

that, the initial state distribution is set to ~� :¼ ð�0U0 ,�0I0 ,�0M0 Þ with

�0I0 :¼ 1� �0U0 � �0M0 . Additionally, the initial transition matrix

A1 :¼ ðaijÞi, j2S is defined to have a stationary distribution identical to ~�

by using state-specific diagonal and non-diagonal elements aii :¼ 1� s=�i
and aij :¼ s=ð2�iÞ with respect to s 2 ð0, minf�0U0 ,�0I0 ,�0M0 gÞ for control-

ling the state durations (default s ¼ 0:05). For transition matrices

Al :¼ ðaijÞi2Sl , j2S with 15l � L, we initially set aij :¼ ailj for each

state-context i :¼ ði1, . . . , ilÞ to the value of the corresponding transition

probability ailj defined for A1. These settings realize that the

state-transition process of the initial HMM is modeling the specified pro-

portions of unmethylated and highly methylated genomic regions.

In addition to this, the states of the initial HMM need to be character-

ized by specific Gaussian emission densities to enable the differentiation

of methylation levels. For realizing this, average methylation levels of

genomic regions are initially computed based on all replicates of an ex-

periment. The resulting distribution of average methylation levels is fur-

ther divided into three parts by computing data-dependent quantilesQ�0U0

and Q�0U0 þ�0 I0 for the corresponding initial proportions �0U0 and �0I0 .

These two quantiles are used to obtain the following partitioning in

which unmethylated genomic regions are assumed to have average methy-

lation levels less than Q�0U0 , highly methylated genomic regions are

assumed to have average methylation levels greater than Q�0U0 þ�0 I0 and

less strongly methylated genomic regions are assumed to have average

methylation levels between Q�0U0 and Q�0U0 þ�0 I0 . For these three groups,

the mean values �0U0 , �0I0 and �0M0 , and the standard deviations �0U0 , �0I0

and �0M0 are computed for the corresponding averaged methylation levels.

Additionally, Pearson’s correlation coefficients R0U0 ðv,wÞ, R0I0 ðv,wÞ and

R0M0 ðv,wÞ of methylation levels between each pair of replicates ðv,wÞ with

1 � v,w � d and v 6¼ w are computed for the three groups. Based on

these precomputations, the initial mean vector ~�i of each state i 2 S is

set to ~�i :¼ ð�i, . . . ,�iÞ using the precomputed mean value �i. The cor-

responding covariance matrix �i :¼ ð�iðv,wÞÞ with 1 � v,w � d is speci-

fied by diagonal elements �iðv, vÞ :¼ �
2
i and by non-diagonal elements

�iðv,wÞ :¼ �2i � Riðv,wÞ based on the precomputed standard deviation �i
and the correlation coefficient Riðv,wÞ. These initial emission parameters

realize an appropriate characterization of the three HMM states for iden-

tifying distinct classes of methylation levels.

All initially chosen model parameters are further refined during the

Bayesian Baum–Welch training using precomputed data-dependent prior

knowledge. This is done by setting each a priori mean vector ~�i :¼ ~�i for

modeling the methylation levels under state i 2 S to the initially com-

puted state-specific mean vector ~�i. The corresponding scaling factor is

specified by �i :¼ �i � T representing the number of measurements initially

assumed to be modeled by state i. The scale matrix of the covariance

matrix of state i is set to �i :¼ T=100 ��i in dependency of the precom-

puted covariance matrix �i weighted by 1% of the total number of meas-

urements. The corresponding scaling parameter is set to ri :¼ �i � T.

The approach for setting the initial parameters of the HMM and for

specifying the parameters of the prior distribution has been tested on

different MeDIP-chip datasets of root and shoot tissue for varying

user-specified proportions �0U0 and �0M0 . The performance of the resulting

identification of methylation levels by HMMs trained based on these

initial settings was found to be robust (e.g. Supplementary Table S1
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for four different initializations on root data). Some more general hints

considering the initialization are summarized in Appendix C of the

Supplementary Material.

Motivated by the mapping of candidate regions of DNA methylation

from Zilberman et al. (2008) to our tiling array, we use �0U0 ¼ 0:8 and

�0M0 ¼ 0:1 for all studies and investigate models of order zero up to four.

2.6 Publicly available data for model evaluations

The methylome of Arabidopsis roots has initially been studied on a

genome-wide scale by Zilberman et al. (2008). This study used a tiling

array with 382178 tiles, which is less dense than the tiling array platform

that we used for our experiments. Still, genomic regions quantified as

being methylated in this study provide a useful resource for evaluating

the performance of different methods for MeDIP-chip analyses, because

they also analyzed the accession Col-0. For that purpose, we downloaded

the corresponding two DNA methylation profiles from GEO

(GSM307382, GSM307384) and applied quantile normalization to the

log ratios of both experiments. We then averaged both log ratios mea-

sured for each genomic region and determined all chromosomal seg-

ments, consisting of successive genomic regions with an average log

ratio greater or equal than one. This restrictive log-ratio cutoff ensures

that only strongly enriched genomic segments are considered as potential

targets of DNA methylation. This led to 18 061 potential candidate seg-

ments of DNA methylation widespread across all chromosomes of

A.thaliana. These segments were mapped back to the 711 320 genomic

regions present on our tiling array. Based on this mapping, each genomic

region that was at least partially covered by one of the candidate seg-

ments has been labeled as a putative candidate for DNA methylation in

root tissue. This resulted in 156 091 genomic regions being potential can-

didates for DNA methylation (22% of regions present on our tiling

array). The remaining 555229 genomic regions are potential candidates

for being unmethylated.

To demonstrate the value of using this public dataset to evaluate

potential candidates of DNA methylation in our root methylome data,

the distribution of measured methylation levels of genomic regions

labeled as being methylated is shown in Figure 1b (see Supplementary

Fig. S1b for a bivariate density plot). Most of these genomic regions have

log ratios clearly greater than zero peaking at about 2.0. Thus, genomic

segments identified as being potential candidates of DNA methylation in

the Zilberman et al. (2008) data are also present in our root methylome

dataset and can be used as a useful resource for comparisons of different

MeDIP-chip analysis methods.

3 RESULTS AND DISCUSSION

In this section, we first investigate the effect of using higher-order

MeDIP-HMMs for analyzing the Arabidopsis root methylome.

We next perform a systematic comparison study to existing

methods and analyze predictions of MeDIP-HMM in the con-

text of the Arabidopsis genome annotation. Finally, we show an

application of MeDIP-HMM to publicly available promoter

DNA methylation data obtained for chicken.

3.1 Comparison of MeDIP-HMMs of different

model orders

To compare the influence of different model orders on the iden-

tification of methylated genomic regions by MeDIP-HMMs, we

analyzed our root methylome dataset with respect to methylated

regions from Zilberman et al. (2008). We initially trained

MeDIP-HMMs of orders zero up to four on our root methylome

data. For each model, we next ranked all genomic regions

according to their probabilities of being methylated (0I0 or 0M0)
as described in the methods section. Based on that, we computed

for each MeDIP-HMM the corresponding true-positive rates
(TPRs) of identified methylated regions reached at different

levels of fixed false-positive rates (FPRs). The performance of
the different MeDIP-HMMs at small FPRs is shown in Figure 2.

The largest improvement in the identification of known can-
didate regions of DNA methylation is achieved by the transition

from order zero to order one. The zeroth-order MeDIP-HMM
represents a mixture model of multivariate Gaussians that does

not enable the modeling of dependencies between measurements
in close chromosomal proximity. This is overcome by the

first-order MeDIP-HMM capable of modeling dependencies be-
tween measurements of directly adjacent chromosomal regions.

Moreover, an additional increase in performance is reached by
the second-order MeDIP-HMM that extends the first-order

model by realizing dependencies between two directly adjacent
regions to identify the state of the next region. This is exemplarily

shown in Figure 2a for a fixed FPR of 1.5% and also observed
among the small FPRs considered in Figure 2b. MeDIP-HMMs

of order three and four did not reach the performance of the

second-order model. These two models identified methylated
regions only slightly better than the first-order MeDIP-HMM

potentially due to overfitting caused by exponentially growing
numbers of transition parameters. All these findings are also

supported by performance evaluations based on different train-
ing and test sets (Supplementary Table S2).
In summary, the transition from a mixture model to an HMM

has led to the largest improvement in the identification of methy-
lated genomic regions. Overall, the second-order MeDIP-HMM

reached the best performance among all considered models.
We focus on this model in the following studies.

3.2 Comparison of MeDIP-HMM to existing methods

To compare the second-order MeDIP-HMM against other exist-

ing methods, we again utilize our root methylome dataset and
known potential candidate regions of DNA methylation

obtained from Zilberman et al. (2008). In recent years, especially,

Fig. 2. Evaluation of identified known candidate regions of methylation

by MeDIP-HMMs of different model orders. (a) TPRs obtained at a

fixed FPR of 1.5%. The greatest improvement is reached for the transi-

tion from a zero-order model to a first-order model, leading to a more

than 7% increase in TPR. The second-order MeDIP-HMM reaches the

best TPR among all models. (b) Part of ROC curves up to an FPR of 6%

comparing different MeDIP-HMMs. HMM(L) denotes the correspond-

ing MeDIP-HMM of order L. The second-order MeDIP-HMM (red)

reaches the best TPRs at small FPRs
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methods based on mixture models (e.g. Banaei et al., 2011;

Johannes et al., 2010; Martin-Magniette et al., 2008) and meth-

ods based on HMMs (e.g. Humburg et al., 2008; Ji and Wong,

2005; Seifert et al., 2009) were developed for the analysis of

ChIP-chip data to enable reliable identifications of chromosomal

target regions of transcription factors or histone modifications.

Because the analysis of ChIP-chip data is closely related to that

of MeDIP-chip data and Johannes et al. (2010) have already

shown that mixture models can be used to analyze DNA methy-

lation data, we compare the identification of known candidate

regions of methylation against these different methods. We also

include the three-state HMM specifically developed for the ana-

lysis of Arabidopsis MeDIP-chip data described in a companion

work by Cortijo et al. (2012) into the comparison. This model

uses the observation that introns of protein coding genes are

usually unmethylated in Arabidopsis. Based on that, MeDIP-

chip data is rescaled and state-specific emission functions are

estimated with respect to biological constraints customized for

Arabidopsis. Two state-specific Gaussian emission densities with

fixed means and equal variances are used to model probes with

high or low methylation levels, whereas a mixture of 30

Gaussians with fixed variances is used to model unmethylated

probes based on the measurement distribution obtained from

intronic probes. The estimation of 30 Gaussians is done exter-

nally, and the obtained parameters are used as fixed emission

parameters for the unmethylated state. This approach cannot be

directly transferred to other organisms like human, where introns

are usually found to be methylated (Lister et al., 2009).
The first four columns of Table 1 provide more detailed infor-

mation about the considered methods. Conceptionally, our

MeDIP-HMM is specifically designed for the analysis of

MeDIP-chip data by making use of three distinct states to

enable the differentiation between different degrees of methyla-

tion. Except for CortijoHMM (Cortijo et al., 2012), this cannot

be realized by all the other methods that only perform a binary

classification into unmethylated and methylated regions.

Additionally, MeDIP-HMM also enables the modeling of

higher-order dependencies, which has not been addressed by

other methods so far.
All methods listed in Table 1 were analyzed for their ability to

identify the potential candidate regions of DNA methylation in

our root methylome dataset. The methods were adapted

to the data using their standard initialization and training algo-

rithms. User-defined settings were required to obtain an initial

StandardHMM (Seifert et al., 2009) and an initial

JohannesModel1 (Johannes et al., 2010). For both models, the

initial parameter settings of the first-order MeDIP-HMM have

been transferred by taking into account that these models only

differentiate between unmethylated and methylated regions. This

was done using average initial parameter values of states 0I0 and
0M0 modeling methylations in MeDIP-HMM to initially specify

the state representing methylated regions in StandardHMM and

JohannesModel1. The settings for the state modeling unmethy-

lated regions were directly transferred.
The time and memory complexity for analyzing a methylation

profile of length T by a MeDIP-HMM of order L during one

training step is given byOðT �NLþ1Þ with respect toN ¼ 3 states.

For each of the T measurements, all possible NLþ1 state transi-

tions must be considered. Thus, the complexity is mainly domi-

nated by the extended state-transition process involving the

last L predecessor states to determine the next state

(e.g. Supplementary Fig. S3). This time and memory complexity

can also be transferred to the mixture models (L ¼ 0) and the

first-order HMMs (L ¼ 1) in Table 1.

To quantify the potential of genomic regions of being methy-

lated, corresponding scores based on state-posterior probabilities

were provided by each of the different methods. A score close to

one indicates that the corresponding genomic region is a

Table 1. Performance comparison of different methods applied to the analysis of the MeDIP-chip root methylome dataset

Method Model SIM Training Reference TPR at

1% FPR

AU-ROC AU-PRC Run time

MeDIP-HMM HMM Yes Bayesian BW This manuscript 0.66 0.98 0.93 637 s

CortijoHMM HMM No Constrained BW Cortijo et al. (2012) 0.66 0.98 0.93 402 s

tileHMM HMM No ViterbiþBW Humburg et al. (2008) 0.65 0.98 0.93 741 s

StandardHMM HMM No Bayesian BW Seifert et al. (2009) 0.63 0.98 0.93 218 s

ChIPmixHMM HMM No BW C.Bérard (personal communication)a 0.58 0.97 0.91 914 s

TileMAPHMM HMM Yes — Ji and Wong (2005) 0.56 0.96 0.90 61 s

JohannesModel1 MixMod Yes Incremental EM Johannes et al. (2010) 0.55 0.97 0.90 4936 s

multiChIPmix MixMod Yes EM C.Bérard (personal communication)a 0.52 0.97 0.90 1109 s

ChIPmix MixMod No EM Martin-Magniette et al. (2008) 0.51 0.97 0.90 1204 s

The methods are compared based on their identification of methylated DNA-regions in the root methylome dataset. The ‘Method’ column contains the shortcuts of the

different methods. The ‘Model’ column specifies the basic model of the corresponding method. This is either a HMM or a mixture model (MixMod). The ‘SIM’ column

specifies whether a method considers all replicates of an experiment simultaneously. The ‘Training’ column specifies the algorithm used for adapting the corresponding method

to the data. For an HMM-based method, this is either a Bayesian Baum–Welch training (Bayesian BW), Viterbi training (Viterbi) or a standard Baum–Welch training (BW).

For methods based on a mixture model, specific versions of the EM algorithm are used. The ‘Reference’ column provides the link for getting more information about a specific

method. The methods are compared based on different criteria, considering the TPR reached at a fixed FPR of 1%, AU-ROC, AU-PRC and the run time in seconds required

for the complete analysis of the dataset. The run time was measured on a standard desktop computer with 2.6GHz and 4 GB of memory, except for CortijoHMM evaluated

on a cluster node with 3GHz and 8 GB of memory. For MeDIP-HMM only, results obtained by the second-order model are shown. Corresponding ROC and PRC curves of

all methods are shown in Supplementary Figure S4. An additional summary for MeDIP-HMMs of order zero up to four is given in Supplementary Table S3.
aSource code available upon request from C.Bérard (caroline.berard@agroparistech.fr).
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potential candidate of being methylated, while a score close to
zero specifies that this region is potentially unmethylated. For
methods that do not allow the simultaneous analysis of both

replicates of our root methylome dataset, average state-posterior
probabilities obtained from separate analyses of replicates were
considered as scores.

Based on these scores, the identification of candidate regions
of methylation was evaluated for the different methods. For each
method, we computed the TPR at a fixed FPR of 1%. To
enable a more global performance comparison, we also com-

puted the area under the receiver-operating-characteristic curve
(AU-ROC) and the area under the precision-recall curve
(AU-PRC). Because run times of methods can also be important

for the analysis of high-density tiling array data, we additionally
measured the time required by each method for performing the
analysis of our root methylome data. All results are summarized

in Table 1. Corresponding ROC and PRC curves are shown in
Supplementary Figure S4. An additional summary for MeDIP-
HMMs of order zero up to four is given in Supplementary

Table S3.
The best performing methods in terms of accuracy of

identifying methylated regions are the proposed MeDIP-

HMM, CortijoHMM (Cortijo et al., 2012) and tileHMM
(Humburg et al., 2008). In comparison to CortijoHMM, which
has been specifically developed for the analysis of Arabidopsis

MeDIP-chip data, MeDIP-HMM reaches the same performance
without being dependent on organism-specific settings. As
expected, the second-order MeDIP-HMM required longer for

performing the analysis than the first-order CortijoHMM. The
first-order MeDIP-HMM reaches nearly identical AU-ROC and
AU-PRC values but could not reach the level of TPR at 1%

FPR as CortijoHMM (Supplementary Table S3). Thus, at the
price of a slightly higher run time, the second-order MeDIP-
HMM is able to compensate Arabidopsis-specific ad hoc settings

required by CortijoHMM. Compared with tileHMM, MeDIP-
HMM reaches a higher TPR at 1% FPR. Additionally,
MeDIP-HMM is faster than tileHMM and provides the pos-

sibility to differentiate between different methylation levels
due to the usage of the three states. StandardHMM is also
reaching a good performance, but has a smaller TPR at 1%

FPR compared with MeDIP-HMM, CortijoHMM and
tileHMM. Generally, all these four methods reach comparable
global performances as indicated by nearly identical AU-ROC

and AU-PRC values.
Comparing all six tested HMM-based methods,

TileMAPHMM (Ji and Wong 2005) reaches the lowest perform-

ance potentially because this method does not use a training
algorithm, which also leads to the fastest run time among all
tested methods. More generally, MeDIP-HMM, CortijoHMM,

tileHMM, StandardHMM and ChIPmixHMM are reaching
clearly higher TPRs at 1% FPR and higher AU-PRCs than
methods based on mixture models. This is again obtained due

to the modeling of dependencies between measurements of dir-
ectly adjacent chromosomal regions, which cannot be realized by
mixture models. Further support to this is given considering all

ChIPmix-based methods (Martin-Magniette et al., 2008) for
which ChIPmixHMM clearly outperforms multiChIPmix and
ChIPmix that are both using a mixture model. The best

method based on a mixture model is JohannesModel1 reaching

an accuracy comparable with that of TileMAPHMM but requir-

ing nearly 81 times longer for the analysis.
Generally, also these comparisons indicate that the

second-order MeDIP-HMM is well suited for the identification

of methylated regions. This model reaches a high accuracy, has a

low run time, does not depend on organism-specific settings and

additionally enables to differentiate between different levels of

DNA methylation. Additionally, considering more stringent val-

idation data from Zilberman et al. 2008 than utilized for this

comparison, the second-order MeDIP-HMM is clearly outper-

forming all other tested methods (Supplementary Fig. S4).

3.3 Functional analysis of DNA methylation states

identified by MeDIP-HMM

The Arabidopsis Information Resource (TAIR8) genome anno-

tation (Rhee et al., 2003) enables us to analyze whether predic-

tions by the second-order MeDIP-HMM are targeting specific

functional units of the genome and to which extent these findings

are in accordance with current knowledge on the Arabidopsis

methylome. We initially assigned each genomic region to its

most likely underlying state (unmethylated, methylated or

highly methylated) of the MeDIP-HMM using state-posterior

decodings. This resulted in 463 877 ð652%Þ unmethylated,

143 017 ð201%Þ methylated and 104 426 ð147%Þ highly methy-

lated regions. Thus, 65:2% of regions are unmethylated, whereas

34:8% of regions are targeted by methylation, which is in good

agreement with previous studies for aerial and root tissues by

Zilberman et al. (2007, 2008).

We next classified all regions according to the genome anno-

tation and identified under- or overrepresentations of specific

functional categories by sampling the same numbers of unmethy-

lated, methylated and highly methylated regions randomly from

all regions on the tiling array using 500 repeats (Fig. 3).
Regions identified as being unmethylated are enriched in genic

categories (gene, mRNA, protein, exon and CDS), and 50 and 30

untranslated regions (UTRs), whereas transposons are clearly

underrepresented (Fig. 3a). About 62.4% of all genes and

21.2% of all transposons are identified as being unmethylated

over their whole-tiled sequences (Supplementary Fig. S5).

This is in good agreement with results of previous studies (e.g.

Ahmed et al., 2011; Cokus et al., 2008; Zilberman et al., 2007).

Furthermore, using the chromatin classification by

Bernatavichute et al. (2008), we find that 72.8% of unmethylated

regions are located in euchromatin, which is in agreement with

these regions being gene-rich and transposon-poor (Supplemen-

tary Table S4).

Regions identified as being methylated include a large fraction

of genic regions and a small fraction of 50 and 30 UTRs (Fig. 3b).

About 35:6% of genes are at least partially methylated

(Supplementary Fig. S5). This is in good accordance with previ-

ous findings of gene body methylation (Cokus et al., 2008; Zhang

et al., 2006; Zilberman et al., 2007). Additionally, regions identi-

fied as being methylated are clearly enriched in transposons. This

is expected and coincides with the three previous studies, because

methylation of transposons is a known mechanism to silence

these elements (Law and Jacobsen 2010; Teixeira and Colot

2010). Overall, the fraction of methylated regions modeled by

state 0I0 targeting genic regions is greater than that of
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transposons. Generally, the prevalence of methylated regions in

euchromatin is significantly enriched, comprising about 53% of

methylated regions (Supplementary Table S4), which is much less

stronger than observed for unmethylated regions because trans-

posons identified as being methylated are mostly located within

the heterochromatic regions.

Regions identified as being highly methylated are clearly

enriched in transposons, whereas only very small fractions of

genic regions, 50 and 30 UTRs, are highly methylated (Fig. 3c).

About 27:2% of all transposons and only about 2% of all genes

are highly methylated over their whole tiled sequences

(Supplementary Fig. S5). This coincides with previous findings

(Ahmed et al., 2011; Zilberman et al., 2008). Overall, we find

that highly methylated regions modeled by state 0M0 are

preferentially located in heterochromatin. We identified a

significantly enriched proportion of 86:3% heterochromatic
regions compared with only 13:7% euchromatic regions

(Supplementary Table S4).

We further analyzed identified DNA methylation states of

transposon superfamilies using the extended TAIR8 transposon

annotation of Ahmed et al. (2011). We observe clear tendencies

that especially unmethylated or methylated transposons of the

superfamilies LTR/Gypsy, LTR/Copia, LINE/L1 and DNA/

En-Spm are much smaller in size than highly methylated mem-

bers of the same superfamily (Supplementary Fig. S6). Shorter

sizes and less strong methylation are known to be indicative of

non-functional transposon relics (Ahmed et al., 2011). These

dependencies can only be observed so explicitly using the

three-state decoding of MeDIP-HMM.
Summing up, predictions by MeDIP-HMM are in good

accordance with current knowledge on the Arabidopsis methy-

lome assembled in previous studies using tiling array and bisulfite

sequencing experiments. Moreover, differentiations between

unmethylated, methylated and highly methylated regions are

only possible with MeDIP-HMM and cannot be achieved

using standard methods for ChIP-chip analysis designed to dis-

criminate between two populations of measurements. Thus,

MeDIP-HMM allows a more detailed analysis and potentially

a more advanced interpretation of results.

3.4 Application of MeDIP-HMM to

non-Arabidopsis data

To illustrate the general applicability of MeDIP-HMM, we ana-

lyzed publicly available promoter DNA methylation data of

brain tissue of domesticated White Leghorn (WL) and wild-

type Red Jungle fowl (RJF) chickens (Nätt et al., 2012). We

downloaded processed data for parents and offspring chickens

from ArrayExpress (E-MTAB-648 and E-MTAB-649) and cre-

ated a small dataset containing measurements of tiles in corres-

ponding promoter regions for two selected genes ABHD7 and

PCDHAC1 shown to have a stable transgenerational methyla-

tion profile. This dataset includes four replicates (females and

males each with high and low fear behavior) for WL and RJF.

We trained a second-order MeDIP-HMM with four-variate

Gaussian emissions on this dataset using initial proportions of

unmethylated and highly methylated tiles like those applied for

the Arabidopsis root methylome data. Finally, we performed a

state-posterior decoding into the most likely underlying methy-

lation states. The results are shown in Supplementary Figure S7.

In accordance with Nätt et al. (2012), we also find that the

methylation patterns of ABHD7 and PCDHAC1 are very

stable between parents and offspring. Additionally, the decoding

into three states by MeDIP-HMM enables a more detailed view

on promoter DNA methylation, potentially highlighting do-

mains with high and low levels of DNA methylation. Thus,

this additional study indicates that MeDIP-HMM can also be

applied to non-plant data.
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Fig. 3. Functional analysis of genomic regions in the Arabidopsis root methylome dataset according to the underlying DNAmethylation states identified

by MeDIP-HMM. Genomic regions were annotated using the functional categories defined by the TAIR8 genome annotation. Colored bars represent

the number of regions in each category identified by MeDIP-HMM. Gray shaded bars represent the average number of regions obtained for each

category by randomly sampling the same number of regions from all genomic regions in the dataset using 500 repeats. Genomic regions identified as

being unmethylated are shown in (a), regions identified as being methylated are shown in (b) and regions identified as being highly methylated are shown

in (c). All identified genomic regions classified into the different categories are significantly different from random sampling with P-values less than 0.01.

The states 0I0 and 0M0 modeling different degrees of DNA methylation are having obviously distinct functional interpretations. Less strongly methylated

transposons and genes with gene body methylation are covered by state 0I0, whereas strongly methylated transposons are mainly characterizing regions

assigned to state 0M0
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4 CONCLUSIONS

We developed a three-state MeDIP-HMM for the analysis of

DNA methylation data from high-density tiling arrays, enabling

the identification of distinct methylation levels. MeDIP-HMM

enables a simultaneous analysis of replicates and improves mod-

eling of spatial dependencies between chromosomal regions using

a higher-order state-transition process.
We carefully evaluated our model and existing methods for

ChIP-chip analyses on DNA methylation data of Arabidopsis

root tissue. Compared with these methods, MeDIP-HMM

reached an overall good performance in combination with a

fast run time. This also revealed that HMMs modeling spatial

dependencies between chromosomal regions are generally better

suited for the analysis of MeDIP-chip data than mixture models

ignoring these dependencies. Besides this, moderately

higher-order MeDIP-HMMs were identified to be more precise

than the first-order MeDIP-HMM and other existing first-order

HMMs. This is in good accordance with a previous study in

comparative genomics (Seifert et al., 2012). Generally, we identi-

fied that a second-order MeDIP-HMM is working best on the

root methylome data, reaching a performance comparable to a

three-state first-order HMM specifically developed for the ana-

lysis of Arabidopsis MeDIP-chip data in a companion study by

Cortijo et al. (2012). The companion approach uses the observa-

tion that introns in Arabidopsis are typically found to be

unmethylated for estimating the emission parameters of the

unmethylated state. This cannot be directly transferred to other

organisms like human, where introns are usually found to be

methylated (Lister et al., 2009). Our results indicate that the

second-order MeDIP-HMM is able to compensate

Arabidopsis-specific ad hoc settings required by the companion

approach. Moreover, we also showed that our MeDIP-HMM

can be applied to the analysis of non-plant data as well.

Overall, MeDIP-HMM is more versatile by being independent

of organism-specific settings, using a higher-order state-

transition process and enabling simultaneous analyses of

replicates.
Generally, the differentiation between unmethylated, met-

hylated and highly methylated regions by MeDIP-HMM enables

an improved interpretation of predictions compared with existing

ChIP-chip analyses methods only enabling a binary classification

into unmethylated and methylated regions. Moreover, the pre-

dictions of MeDIP-HMM were in good accordance with current

knowledge on the Arabidopsis methylome. All these findings

clearly indicate that MeDIP-HMM is a useful method for the

analysis of DNA methylation data. Given that MeDIP-HMM is

independent of organism-specific settings, it should be applicable

to the analysis of methylomes of plant and non-plant species

equally.
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