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Abstract. Spatial entropy redistribution plays a key role in adiabatic cooling of
ultra-cold lattice gases. We show that high-spin fermions with a spatially variable
quadratic Zeeman coupling may allow for the creation of an inner spin-1/2 core
surrounded by high-spin wings. The latter are always more entropic than the
core at high temperatures and, remarkably, at all temperatures in the presence
of frustration. Combining thermodynamic Bethe Ansatz with local density
approximation, we study the spatial entropy distribution for the particular case
of one-dimensional spin-3/2 lattice fermions in the Mott phase. Interestingly,
this spatially dependent entropy opens a possible path for an adiabatic cooling
technique that, in contrast to previous proposals, would specifically target the
spin degree of freedom. We discuss a possible realization of this adiabatic
cooling, which may allow for a highly efficient entropy decrease in the spin-
1/2 core and help access antiferromagnetic order in experiments on ultracold
spinor fermions.
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1. Introduction

Ultra-cold atoms in optical lattices offer an extraordinary controllable scenario for the study
of strongly correlated systems [1, 2], exemplified by the observation of the superfluid-to-
Mott-insulator (MI) transition in ultra-cold bosons [3]. Remarkable progress has been made
in lattice fermions as well, allowing for the precise analysis of the Fermi–Hubbard model, a
key model in condensed-matter physics of particular relevance in the study of high-temperature
superconductivity [4]. Exciting recent experiments have reported the realization of the metal-to-
MI transition in two-component fermions [5, 6]. Due to super-exchange, the MI phase of spin-
1/2 fermions is expected to exhibit a magnetic Néel (antiferromagnetic) ordering. Ongoing
experiments are already very close to reaching the mean-field entropy per particle, s, for
Néel ordering in a three-dimensional (3D) cubic lattice (s/kB = ln 2) [7]. However, quantum
corrections reduce the critical s down to sN/kB ' 0.35 [8, 9].

Reaching such an extraordinarily low entropy constitutes a major challenge at present,
requiring novel types of cooling specially designed for many-body systems in optical
lattices [10]. A number of cooling proposals have recently been suggested [8, 11–17], most
of them based on the redistribution of entropy within the trap, where certain regions act as
entropy absorbers from the region of interest, i.e. an MI at the trap center.

Interestingly, spin degrees of freedom may be employed to design cooling techniques
resembling adiabatic demagnetization cooling in solid-state physics [18]. In this method, a
decrease in the strength of an externally applied magnetic field allows the magnetic domains
of a given material to become disoriented. If the material is isolated, temperature drops as
the disordered domains absorb thermal energy in order to perform their reorientation. In cold
atoms, this technique was pioneered in Chromium experiments, where the spin-flip mechanism
was provided by dipole–dipole interactions [19]. Recently, a novel demagnetization cooling
mechanism was proposed for two-component fermions based on time-varying magnetic field
gradients [20]. In that method, scalar domains are cooled by transferring particle–hole entropy
into magnetic entropy in overlapping regions between the two components. Note, however, that
gradient cooling does not address cooling of the spin degrees of freedom, contrary to the method
discussed below.

In this paper, we study the spatial entropy distribution of multi-component spin-S fermions
with an inhomogeneous quadratic Zeeman effect (QZE), and how this spatially dependent
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entropy profile may be employed to design an adiabatic cooling method that specifically
targets the reduction of spin entropy. We show, in particular, that an inhomogeneous QZE
may lead to an effective pseudo-spin-1/2 core surrounded by spin-S fermions at the wings.
We show that, remarkably, the spin-S wings act as entropy absorbers all the way to vanishing
temperatures in the presence of frustration. We illustrate the idea with the specific example
of 1D spin-3/2 lattice fermions in the Mott phase. Interestingly, the adiabatic growth of the
spatially dependent QZE combined with spin redistribution via spin-changing collisions may
open promising routes towards adiabatic cooling of the spin-1/2 core, which may in this way
enter the antiferromagnetic spin coherent regime.

2. Entropy and frustration

In the following, we consider multi-component fermions loaded in an optical lattice. Increasing
the number of spin components from 2 to N (effective spin S = (N − 1)/2) increases the
capacity to allocate larger entropy per spin at high T by a factor of ln N/ln 2. This guarantees
that at high T , well over the Néel ordering, spatial regions with a larger effective S act as entropy
absorbers in the cooling process shown below. However, this simple argument does not apply
at low T if the system acquires conventional Néel ordering4. The entropy of the Heisenberg
antiferromagnet (HAF) in d dimensions scales for T � TN (Néel temperature, see footnote 4)
as s ∼ S−d , and hence the entropy of a spin-S system decreases as compared to that of a spin-
1/2 HAF. This is clear since larger spins attach more to the Néel direction, and hence the density
of states is smaller at low T , leading to a lower entropy.

The situation is reversed in frustrated systems, which present a large degeneracy of classical
ground states with many branches of soft excitations at low T . One arrives at the simplest
frustrated large-S model starting from the SU (N ) symmetric Hubbard model

H = −t
∑

m,〈i, j〉

(c†
m,i cm, j + h.c.) + U/2

∑
i

n2
i , (1)

where m = (−S, . . . , S), cm,i annihilates fermions with spin m in the site i , ni =
∑

m nm,i =∑
m c†

m,i cm,i , and t and U are the hopping and interaction coupling constants, respectively. In the
strong-coupling limit, U � |t |, and retaining one fermion per site, one can derive the effective
permutation model in the second order of perturbation theory,

H0 = J/2
∑
〈i, j〉

Pi, j , (2)

with Pi, j being the permutation operator and J = 4t2/U . This model is the SU (N )

generalization of the HAF. It is exactly solvable in 1D [26] and has N − 1 gapless spin
modes, each dispersing at low momenta with velocity 2v1/2/N , where v1/2 = π J/2 is the
spin wave velocity of the spin-1/2 HAF. At low T , the entropy is larger than that of spin-
1/2 HAF, due to increasing fluctuations by ‘orbital’ degrees of freedom, following sS(T ) =

N (N − 1)πT/6v1/2 [26]. For equivalent 2D and 3D lattice models an increase of entropy
with unbinding number of degrees of freedom is also expected at low T . There, the classical

4 In 1D and 2D, it must be understood as the characteristic temperature at which, e.g., the specific heat presents
a peak.
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ground state shows extensive degeneracy, and it is believed [27] that the Néel order does not get
stabilized for SU (N > 2) due to high frustration5.

Hence, due to frustration, with increasing S the Néel order is suppressed, leading to a larger
entropy storage capacity at low T . Thus, if the Mott edges become frustrated while preserving
S = 1/2 character in the central region, one can use the frustrated edges as entropy absorbers
all the way from high to extremely low T .

3. One-dimensional spin-3/2 fermions in the Mott phase

In the following, we illustrate the possibilities provided by high-spin lattice fermions with the
specific case of a balanced mixture of spin-3/2 fermions in a 1D optical lattice, in which
the number of particles Nm with spin m satisfies Nm = N−m . Interparticle interactions are
characterized by the s-wave scattering lengths for channels with total spin 0 and 2, a0,2. For
s-wave interacting fermions, S = 3/2 is the lowest spin allowing for spin-changing collisions
(which preserve the total magnetization but transfers atoms from ±1/2 into ±3/2 and vice
versa). Due to the conserved magnetization the linear Zeeman effect does not play any role.
However, the QZE, characterized by the externally controllable constant q, induces a finite
chirality τ =

1
L [(N3/2 + N−3/2) − (N1/2 + N−1/2)].

For large enough interactions and at quarter filling (one fermion per site) the 1D system
enters the MI regime, for which the ground state properties under QZE were studied in [29]. For
large QZE the ground state is a pseudo spin-1/2 isotropic HAF. Reducing q < qcr (qcr = J ln 2/2
at a0 = a2) the system enters either a spin liquid phase (for a2 < a0) or a dimerized phase
(for a2 > a0). For a0 ' a2 (the typical situation unless a0,2 are externally modified), the gap
of the dimerized phase is exceedingly small, and hence the system behaves in practice as a spin
liquid down to extremely low temperatures. For a0 = a2, in the presence of a spatially variable
QZE, the model Hamiltonian becomes H = H0 +

∑
i µm,i nm,i , with H0 given by equation (2)

with N = 4. For homogeneous µm,i , this model is exactly solvable and its thermodynamic
properties may be calculated by means of thermodynamic Bethe Ansatz. We follow the method
of [30], based on the self-consistent solution of 14 coupled integral equations, to obtain the
corresponding free energy f . The chemical potentials for each component are µm,i = µ + m2qi ,
where µ is the global chemical potential, and qi denotes the QZE constant at site i . The entropy
is then given by s = −∂ f/∂T and the chirality by τ = −∂ f/∂q.

As mentioned above, for q > qcr the system becomes pseudo-spin-1/2. Hence, the ratio
between the entropy per spin for q = 0 (s0) and that for q > qcr should follow the same
dependence as s3/2(T )/s1/2(T ). We illustrate this point in figure 1, where we compare s at large
q = q0 = 5J (sc) to s0. Note that at large T , s0/sc = 2, whereas at low T , frustration leads to
s0/sc = 6.

4. The spatially dependent quadratic Zeeman effect (QZE)

We consider at this point the entropy and chirality profiles for the case of a non-homogeneous
QZE, which may be achieved by means of microwave or optical techniques [22–24]. We
perform local QZE approximation (similar to the local density approximation standard in

5 Even if the Néel order eventually exists, due to the high frustration the ordering temperature will be much lower
than the Néel temperature of the spin-1/2 antiferromagnet.
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Figure 1. Ratio between the entropy per particle s0 at q = 0 (continuous line) or
at q = q̃(T ) (dashed line) (q̃(T ) is the QZE at which the entropy is largest at a
given T ) and the entropy sc at high QZE (q = q0) versus the temperature T in
the lattice. Observe the crucial role of frustration at low T . If we were dealing
with an unfrustrated S = 3/2 HAF, the curve would have arrived at low T at
' 0.4 [25] instead of 6.

Figure 2. Entropy per particle (in kB units) and chirality profiles for L = 120
atoms for a Gaussian QZE profile q(x)=q0 exp(−100x2/L2), with q0 =5J .
Dashed lines indicate the initial entropy prior to the switching of the
inhomogeneous QZE profile. Before the lattice loading, Ti/TF = 0.1 (left) and
0.016 (right). Note that for q > qcr, τ ' 1 and the system retains a spin-1/2
character. Note also how the entropy gain in the Mott core is larger for small
T . The entropy bump for small T at q = qcr reflects the Van-Hove singularity at
the bottom of the depleted Hubbard band.

trapped gases), i.e. we solve for the free energy at different positions x by varying q(x). The
local QZE approximation demands a sufficiently slow variation of the QZE at the scale of the
inter-site spacing. In this way we can evaluate the entropy profile inside the MI region. Note,
finally, that although the calculation is performed for the case a0 = a2, the conclusions may be
extended to the actual case where a0,2 are slightly different, in which spin redistribution via
spin-changing collisions occurs.

Figure 2 shows chirality and entropy profiles. Note that the entropy per site (i.e. per
particle) is significantly larger at the Mott wings than at the center. Hence, if the total entropy
is conserved in a process in which an initially spatially independent entropy is brought to the
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S kB

Figure 3. Sliding down the isentropic curves (solid curves) with reducing QZE
induces a reduction of the temperature in the lattice at the second stage of the
proposed adiabatic cooling scheme. Both T and q are measured in units of J .

profile of figure 2, the outer regions will remove entropy from the central core. This process is
even more effective at low T . One may indeed estimate the entropy reduction (for T → 0) at
the Mott center for model (2) in 1D, when considering an initial uniform spin-1/2 system and a
final step-like distribution with a spin-1/2 core and spin S = (N − 1)/2 wings:

γ ≡ si/sc = [(1 − L0/L)N (N − 1)/2 + L0/L], (3)

where L0/L is the ratio of the number of sites in the spin-1/2 core to the total number of sites,
and si (sc) is the initial (final) entropy per particle at the center. The gain is hence much bigger
than that at T � TN, where one substitutes N (N − 1)/2 by ln N/ln 2 in equation (3).

5. Adiabatic cooling

The spatially dependent entropy distribution opens up interesting prospects for adiabatic spin
cooling. A possible scheme would consist of three steps. In a first stage, a two-component
balanced mixture is created at the lowest possible temperature Ti, being stabilized against spin-
changing collisions [21] by means of a sufficiently large homogeneous QZE. In a second stage,
a lattice is adiabatically grown and the homogeneous magnetic field is adiabatically decreased,
allowing for spin-changing collisions throughout the sample. The drop in temperature in the
lattice with the adiabatic decrease of the homogeneous magnetic field can be estimated from the
isentropic curves in figure 3. However, to enter the spin coherent regime, local entropy should
be reduced. This is achieved in the final step, which consists of slowly changing the QZE into
a non-uniform profile by means of microwave or optical techniques [22–24], leading to the
coexistence of a spin-1/2 HAF at the trap center and a spin-S spin liquid at the wings (figure 2).

Figure 4 shows, as a function of the initial Ti/TF (TF is the Fermi temperature of the
original spin-1/2 prior to the lattice loading, see below), the central entropy per particle with
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Figure 4. Entropy at the center sc (in kB units) as a function of the temperature
before lattice loading, Ti/TF, for the inhomogeneous q(x) profile of figure 2
(solid) and for a homogeneous one q = q0 (dashed), for which the whole system
retains a spin-1/2 character. In order to associate a central sc with a given Ti/TF,
we calculated for different T inside the lattice the entropy profiles and the total
entropy Stot/L = π 2kBTi/TF.

a large homogeneous QZE (dashed line) and with a Gaussian QZE (solid line). For the case
considered, s/kB = 0.35 is achieved for the homogeneous case at Ti/TF ' 0.035, whereas for
the inhomogeneous QZE profile it is reached at Ti/TF ' 0.09, showing that an inhomogeneous
QZE may allow for a large entropy reduction at the center as a result of the entropy excess at
the storage wings. Note that for Ti/TF ' 0.1 the central entropy may be reduced by more than a
factor of 2 with respect to the entropy expected for the homogeneous spin-1/2 case.

Let us briefly comment on higher dimensional (d = 2, 3) systems. A simple estimate may
be obtained from a spin-wave analysis when a2 > a0, where at least in the limit a2 � a0 Néel
order sets in on bipartite lattices [31]; however, due to frustration the modulus of the Néel
order parameter decreases with increasing spin. There is just one spin-wave mode at q → ∞

and three spin-wave modes at q = 0. Taking the values of spin-wave velocities from [32], we
obtain that at T → 0 the factor γ is given by equation (3), albeit with N (N − 1)/2 changed
into 1 + 2[(a2 + a0)/(a2 − a0)]d , implying that the cooling should be even more efficient for
higher dimensions. Note that the spin-wave analysis predicts γ to increase indefinitely when
approaching a2 = a0, although spin-wave analysis becomes less reliable in the vicinity of that
point [32].

6. Experimental feasibility

A possible experimental sequence may be devised for, e.g., 40K. Prior to the lattice loading, a
balanced mixture of, e.g., F = 9/2, MF = −5/2 and F = 9/2, MF = −7/2 states is prepared
at the lowest possible Ti/TF using standard techniques. At this stage a sufficiently large
homogeneous magnetic field guarantees that the initial two-component mixture is stable against
spin-changing collisions. The gas can be approximated with a good accuracy by a free Fermi
gas and therefore the initial entropy per particle is given by s = kBπ2Ti/TF [28]. State of the
art experiments may reach at this stage Ti/TF ≈ 0.1, corresponding to an entropy per particle
of s ≈ kB. Once the gas is cooled down, a 3D lattice is grown and under proper conditions an
MI with one particle per site develops at the trap center [5, 6]. The next step consists in slowly
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lowering the magnetic field to allow for quasi-resonant spin-changing collisions [33] throughout
the sample, leading to a redistributed population (between F = 9/2, MF = −3/2, −5/2, −7/2
and −9/2)6 and a significant drop of T in the lattice. The temperature drop after this stage for the
1D case (assuming adiabaticity) is depicted in figure 4. Note that fermions with S > 1/2 suffer
large three-body losses [34]. However, in our scheme, S > 1/2 is explored only at a later stage,
when the system is already in the hard-core regime with one fermion per site; thus three-body
losses are largely suppressed.

Finally, the F = 9/2, MF = −3/2 and F = 9/2, MF = −9/2 states may be slowly expelled
from the trap center by the use of two Raman beam pairs. These beams couple F = 9/2,
MF = −3/2 to F = 7/2, MF = −1/2 and F = 9/2, MF = −9/2 to F = 7/2, MF = −7/2. This
1MF = −1 coupling may be realized with just three lasers. A slight blue detuning ensures that
the resulting dressed states experience a repulsive potential. The effect on the MF = −7/2, −5/2
states is largely suppressed by the ratio between Raman detuning and Zeeman splitting, which
is kept on the order of qcr. Furthermore, the Raman beams shift the resonance condition for
spin-changing collisions in the center of the trap such that no more atoms in MF = −9/2 and
MF = −3/2 are produced. The outer regions have then a larger effective spin and hence act as
entropy absorbers, as discussed above. Note that, interestingly, the center of the Raman beams
acts as a crystallization point for a slowly growing Néel state (if sN is reached). In this way, the
problem of approaching the ground state despite the presence of many metastable low-energy
states may be circumvented.

Let us mention some final remarks. For the simplicity of our calculations, we have
considered cooling only within an MI. In the presence of particle–hole excitations we expect
an even greater cooling efficiency [6]. Note that the S = 1/2 region is deeper in the Mott
region than in the S > 1/2 region, and hence the S > 1/2 region is expected to contain a larger
particle/hole entropy. We stress also that the cooling efficiency is based on the assumption
of adiabaticity. Spin-changing collisions are crucial in our cooling scheme. Although they
are low energetic, they will typically be faster than super-exchange, and hence the adiabatic
requirements of our model are comparable to those in other cooling schemes based on entropy
relocations in optical lattices.

7. Conclusions

In summary, we studied a possible route for adiabatic spin cooling using high-spin lattice
fermions. The process resembles demagnetization cooling, but the role of the magnetic field
is played by a spatially dependent QZE, and spin flip is substituted by spin-changing collisions.
The spatially dependent QZE leads to two distinct regions of different effective spins (S = 1/2
and S > 1/2). At high T the outer spin-S region acts as an entropy absorber simply due to the
larger spin, whereas the same remains true at even very low T due to frustration. As a result,
we showed that a significant reduction of the entropy (more pronounced at lower T and higher
dimensions) of the spin-1/2 Mott central region can take place. Magnetic refrigeration using
spatially variable QZE can hence significantly facilitate experimental realization of distinct
magnetic ground states, and in particular Néel ordering in spin-1/2 fermions.

6 The process (−3/2, −5/2) → (−1/2, −7/2) is in principle possible, but the two-particle energies involved in
it are different from the ones in the desired process (−7/2, −5/2) → (−9/2, −3/2). Hence, properly tuning the
QZE [33] should lead to much lower superexchange spin-changing collision in the spurious channel.
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